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Parameter Choices 

 

We simulated a system consisting of 200 A (MAPKKK) species, 200 B species 

(MAPKK), and 1,000 C species (MAPK) and 600 generic phosphatases. Scaffold 

proteins are modeled as structural elements and are represented as rigid, immobile objects 

with each unit occupying one lattice site. Scaffolds do not change the activation energies 

for phosphorylation reactions and catalytic steps when species are bound to the scaffold. 

Each unit contains a binding site that is specific to a particular type of kinase and 

occupies one site on the lattice. We allow both inactive and active kinases to potentially 

bind to their specified binding sites and catalysis to take place when two appropriate 

species come into contact. 

 

The reaction network was modeled in the simplest possible way by considering each 

elementary reaction event to comprise of a single reactive, thermally-active collision. The 

reactions used were: 
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Each reaction occurs in solution and when bound to the scaffold. Each species also can 

bind to and unbind from the scaffold, allowing for 27 possible chemical states of 

signaling complexes. 

 

The energy barrier for association is zero, E2 = 0, implying that proteins will bind to the 

scaffold when in contact with their selective binding sites. E, the energy barrier for 

disassociation from the scaffold, can range from 0 to 20. Note, for E = 0, statistically no 



proteins are bound to the scaffold, and for E = 20, each binding site on a scaffold is 

occupied (on average) provided enough kinases are present. For simplicity, we consider 

the association and disassociation constants for each site on the scaffold to be the same 

unless otherwise noted. The energy barrier for activating a species by the appropriate 

kinase, E3, is taken to be zero, implying that phosphorylation will occur when an 

activated kinase collides with its appropriate substrate. E4, the energy barrier for 

deactivating a kinase, varies in the simulation trials and can take on values ranging from 

0 to 10. For high phosphatase activity (i.e., a cascade that is intrinsically difficult to 

activate), E4 = 0. For low phosphatase activity (i.e., a cascade that is intrinsically easy to 

activate), E4 = 6. It is important to note that varying the number of phosphatases would 

have similar effects as varying E4. In this regard, E4 then sets a basal level of phophatase 

activity. For the case of a low signal, σ is taken to be 0.01. For the case of a high signal, 

σ is taken to be 1.0 or 0.25 as specified. ξ is set at 1, corresponding to one stoichiometric 

equivalent with respect to the first kinase in the cascade. Unless noted otherwise, all 

parameters used in particular simulations are those given above. But, we also studied the 

sensitivity of our results to variations in parameters. 

 

Signaling in the Cytosol vs. a Membrane 

 

We considered all events to occur in the cytosol. However, it has been shown that the 

MAPK cascade can become active in the course of membrane-proximal signaling events 

with a scaffold protein, such as KSR, being recruited to the plasma membrane. Also in 

some cases, scaffold-mediated signaling may be confined to the membranes of 

endosomes. Considering the signaling cascade on a plasma membrane does not change 

the qualitative results obtained from the simulations. The quantitative behavior of the 

signaling cascade, however, changes. 

 

The effects that we report (i.e., amplification vs. attenuation) become, in some cases, 

more pronounced when signal transduction occurs on a membrane such as the plasma or 

nuclear membrane. Differences in the quantitative behavior follow from the following 

effects: the mobility of proteins in the plasma membrane is significantly smaller than for 



proteins in the cytosol, and so the area that an active kinase can sweep out becomes 

smaller in two dimensions; also, the time it takes for a phosphatase to deactivate a kinase 

changes accordingly. A very interesting recent study (1) reports some of these effects in a 

scaffolded mammalian MAPK system. That study finds that the sensitivity of the MAPK 

pathway greatly increases when signaling is confined on a membrane. 

 

Importance of Protein Diffusion 

 

An important variable that determines the role of scaffolding a kinase cascade is the 

amount of time required (τec) for an active kinase to encounter its downstream target. For 

simple diffusion, in three dimensions, τec ∼ 
3/2

1

DC , 
 where D is the diffusion constant 

and C is a typical concentration of kinases. Experiments indicate that τec is significantly 

larger than 1 µs (on the order of 10
-4 

s to 10
0
 s) (2). Our studies focused on these 

experimentally relevant conditions. 

 

Monte Carlo time can be related to real time by equating a diffusion constant of a typical 

protein in the cytoplasm (i.e., 10 µm
2
/s) (2) with the diffusion constant used in most of 

our simulations [1 (lattice spacings)
2
)/mcstep], and taking a value of the lattice spacing to 

be 10 nm. The cell is considered to have a ~6-µm radius. This leads to a conversion 

factor, 1 mcstep ∼ 1 µs. Typical physiological values of τec range from ~10
-4

 s to  1 s. 

These values of are obtained from consideration of typical values of D (for a ∼50-kDa 

protein) in the cytoplasm (10 µm
2
/s) and upper and lower bounds of kinase 

concentrations (3, 4). SI Fig. 7 gives an example of how protein mobility can influence 

the role of scaffold-mediated signal transduction. 

 

Variations in Kinases Concentration and Catalytic Rates and Mechanisms 

 

SI Fig. 6 illustrates some of the dependence of the results on kinase numbers and catalytic 

rates. We also explored the effects of incorporating enzymatic mechanisms for kinase 

activation rather than single reactive collisions. Specifically, we studied the following 



mechanism: PEESSE
kcatk

k

+→+ ↔
−

1

1

, where E is the enzyme, ES the enzyme-substrate 

complex, and P is the product. The constants k1, k-1, and kcat, determine the kinetics. The 

rate of each elementary step is determined by an energy barrier. Qualitative results do not 

change for the parameter ranges used (SI Fig. 6 e and f). Energy barriers have been varied 

between 0 and 4 kBT except for the catalysis step for the phosphatase inactivating a 

kinase that was varied from 0 to 8 kBT. Note that changes in energy barriers alter the 

effective rate constants exponentially, 
( )TkE Bek

/~ − , so our parameter variations change 

the rates by factors of ∼50 and ∼3,000 as the energy barriers are changed by 4 and 8 kBT, 

respectively. The insensitivity of our results to such large variations comes from the fact 

that these parameter choices do not limit the availability of the enzyme. Note that the 

effects of enzyme saturation (5) and distributive phosphorylation (6) have not been 

investigated. 

 

Computation of Ensemble-Averaged Quantities 

 

All calculations presented are carried out at steady state, and ensemble-averaged 

quantities are reported. Ensemble averaging was performed by first allowing the system 

to approach steady state as determined by no time dependence in the mean square 

displacement, 0
)]0()([ 2

=
>−<

dt

RtRd
, and also ensuring that the simulation has 

advanced to where the time is much longer than the reaction time scales; sampling of 

each configuration is done thereon. Simulations are carried out for ~10
9
 Monte Carlo 

steps, a time much longer than the time to approach steady state and a time needed to 

acquire adequate statistics. These extended Monte Carlo trajectories ensure that there are 

no artifacts in our calculations because of insufficient statistical sampling. Analysis of the 

Monte Carlo trajectories shows that the approach to steady state is monotonic and that the 

results obtained are independent of initial conditions provided that the scaffolds are 

uniformly distributed within the simulation box. This indicates that the approach to 

steady state will also have the same properties as those reported for the steady-state 



ensemble-averaged quantities. Thus, dynamical properties of the signaling cascade can be 

inferred from the steady-state distributions that we calculate. 

 

Computer code for the kinetic Monte Carlo simulations was written in ANSI C and 

compiled with the GNU C Compiler. Simulations were carried out with serially clustered 

AMD Opteron 248 Processors. All data analysis was performed either with MATLAB or 

code written in the PERL scripting language. 

 

Why Ordinary Differential Equations (ODEs) Were Not Used 

 

The most commonly used method for modeling cell signaling dynamics is to use a set of 

ODEs and impose mass-action kinetic laws that govern the reaction dynamics subject to a 

prescribed network topology. It is therefore important to note that a model of scaffold-

mediated signal transduction, based on ODEs and mass action kinetics, cannot capture 

the physical effects of the scaffolding revealed by our studies. As discussed in the text, 

scaffold proteins impose a stoichiometric constraint on how many downstream targets 

with which an activated kinase can interact. As shown before in many contexts (e.g.,  

refs. 7 and 8), stoichiometric constraints introduce a length scale  (Lscaf in our case). An 

ODE-based model using the “well-stirred chemical reactor approximation” (9), on the 

other hand, is a model with infinite ranged interactions and no length scales. Scenarios 

exist (e.g., low phosphatases levels in our model) where the ODE model would predict 

that scaffolds enhance signal transduction when this is physically impossible because of 

the inhibitory effects of the spatial constraints imposed by the stoichiometric limitation. 

 

A Possible Model Based on Partial Differential Equations (PDEs) 

 

We note that a different type of mean-field model involving a set of partial differential 

equations could conceivably capture the physical effects contained in the kinetic Monte 

Carlo simulations provided that the kinase concentration fields are properly constrained 

in the model. This approach would involve the numerical solution of many coupled 



nonlinear PDEs. It may be interesting to investigate the qualitative behavior of a minimal 

model of this sort. 

 

For an example, in a system with N scaffolds, and reactions characterized by kinetic 

parameters, k+ (rate of phosphorylation), k- (rate of dephosphorylation), kon (rate of 

binding to the scaffold), kof f(disassociation rate for unbinding from the scaffold), and D 

(a protein diffusion coefficient), a set of reaction-diffusion equations can be constructed 

for the time evolution of the concentration of the ith activated species (denoted in the 

superscript), ),(*,
tr

i

uρ , where * indicates an activated kinase and the subscripts b and u 

identify a bound or unbound form of the molecule. 
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where jr is the location of the jth scaffold, )(rδ  is the Dirac delta function that confines 

each scaffold to a point in space, r, and the Heaviside step function, )(XΘ  (defined as 0 

for X <0 and 1 for X >0), imposes the constraint that the total concentration of a particular 

kinase ),(, trub
iρ  + ),(,

*, trub
iρ  can accumulate at each scaffold site at rj only up to a 

threshold value, Tρ . 

 

In such a phenomenological model, the time evolution of kinase concentration fields is 

set by incorporating diffusion, activation by a downstream kinases, deactivation, binding 

and unbinding to the scaffold, and inactivation and deactivation on the scaffold. 

 



Influence of the Network of Interactions Between Phosphatases and Their Target 

Kinases 

 

We investigated two distinct hypotheses. In SI Fig. 9 a and b, results are shown for cases 

in which a particular kinase can be inactivated in solution by a phosphatase but is 

protected from such deactivation when bound to the scaffold. SI Fig. 9 c and d shows 

results from simulations in which a particular kinase is protected from phosphatase-

mediated deactivation (i.e., the rate of inactivation is zero) regardless of whether it is in 

solution or bound to a scaffold as could be the case in a mutant kinase; no spontaneous 

activation occurs on the time scale of our simulation because the energy required to 

remove a phosphate group in the absence of an enzyme is very large in biological 

contexts. 

 

We calculated θ for situations where scaffolds enhance (SI Fig. 9 a and c) and where they 

inhibit (SI Fig. 9 b and d) signal amplification in the “wild-type” case (Figs. 2 and 3). All 

other parameters are the same as those used in Figs. 2 a and b and 3 c and d, and scaffold-

bound kinases cannot act on their targets that remain in solution. 

 

We first investigate the situation where kinases are protected from phosphatases only 

when they are bound to the scaffold. As seen in SI Fig. 9 a and b qualitative results are 

identical to their analogous cases in Figs. 2 and 3. Quantitative signal output does, 

however, change, because the value of Nscaf, and hence signal output, increases because 

some kinases are permanently active when bound to the scaffold. 

 

Now, we consider the situation in which phosphatases do not act on a particular kinase 

irrespective of whether it is bound to the scaffold or in solution. First, we discuss the case 

of high constitutive phosphatase activity (SI Fig. 9c). For the case where phosphatases 

cannot act upon the first kinase (A), we find that the qualitative behavior in signal 

amplitude is the same as that in Fig. 2b (SI Fig. 9c, diamonds) and scaffolds amplify 

signals. However, when phosphatases do not act on kinase B (SI Fig. 9c, circles), 

scaffolding makes only a minor difference for the case of high phosphatase activity. In 



solution, when the first active kinase (A*) is protected from phosphatase action, the step 

involving C → C* is still hindered by the quick deactivation of B* by phosphatases. Our 

results imply that the short encounter time for this step on a scaffold allows it to amplify 

signals in this circumstance. However, when kinase B is protected from phosphatase 

activity, the step involving C  →  C* is not hindered by the inactivation of B*, and the 

advantage of having a short encounter time becomes less important. 

 

This suggests something counterintuitive; scaffold proteins could potentially inhibit 

signaling if the final (kinase C) kinase along the cascade is protected from phosphatase 

interactions. This is observed in SI Fig. 9c (crosses) where kinase C is protected. This 

effect follows from a consideration of the excess kinases in solution that are never 

allowed to assemble onto a scaffold because the affinity of a kinase to a scaffold is 

sufficiently strong so that the kinases do not exchange from the scaffold in the time scale 

of the simulation. However, such an inhibitory function is eliminated when downstream 

kinases are allowed to exchange from the scaffold (in reasonable times) as all kinases 

eventually become permanently activated. 

 

Finally, for low basal phosphatases levels, similar qualitative behavior to that observed in 

Fig. 3 is seen at low phosphatase activities. For this case, in both the wild-type and 

kinase-protected scenarios (SI Fig. 9d), the inhibitory effects of the scaffold dominate 

provided that scaffold bound kinases cannot interact with their substrates in solution and 

the exchange rate from the scaffold is not too fast. 
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