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Estimation of the speakers' covariance matrices for OME and TOME 

 In order to minimize bias due to the small number of data points, the covariances 

for each category for each speaker were estimated using small-sample estimation. For a 

given vowel category, let Cs be the covariance matrix for speaker s and let 

∑=
s savg NCC , where N is the number of speakers. Then, for each speaker s, calculate 

the mixture of Cs and Cavg that maximizes the average leave-one-out likelihood (49). This 

mixed (or regularized) matrix Cs+avg is the covariance matrix for speaker s for the given 

vowel category. The regularized covariance matrices were used to generate the 8000 

training points and 2000 test points on each run (for OME), and the 32000 training points 

and 2000 test point on each run (for TOME). One English speaker had too few 

productions for this estimation to work and was excluded from the analyses. 

Analysis of unsuccessful runs with OME 

When the unsupervised learning was unsuccessful, it was typically because two 

categories were incorrectly merged (or more rarely, because a category was split into 

two). When there were several unsuccessful runs for a speaker, the failure was always 

due to the same kind of merger. For example, for the English speaker with no successful 

runs, /�/ always merged with /ε/. Table 2 shows the number of speakers with a particular 

merger, for both languages. Generally, the categories tend to merge more across vowel 



color rather than length, consistent with the results in Table 1 showing a greater d′ for 

length. It may be noted that the English runs have /�-e/ rather than /�-i/ mergers; the 

reason is that English /�/ and /e/ have similar F1 values whereas English /�/ and /i/ differ 

sharply on all three dimensions. Another notable point is the rarity of splits. The 

parametric nature of OME encourages the discovery of unimodal categories. 

Consequently, a split (where two estimated categories carve up a unimodal distribution) 

is very unstable because as soon as one category gains a slight edge, it will eventually 

completely suppress the competing category. In non-parametric learning, this 

unimodality constraint is absent and thus splits are more likely. 

Within- and Cross-language generalization with OME 

Within-language generalization. The training consisted of a single run for each 

speaker s. If the run was successful (see Evaluation of OME in Methods), the estimated 

categories were used to classify 2000 exemplars from another speaker k of the same 

language, resulting in a confusion matrix CMs,k. The generalization Gs,k from speaker s to 

speaker k was defined as 100 · Trace(CMs,k) / ∑i∑j CMs,k(i,j)), and the average generalization G 

as ∑s ∑k ≠ s Gs,k / (K · N–1), where K is the number of successfully-trained speakers and N the 

total number of speakers. 

Cross-language generalization. This measure evaluated the consistency with 

which exemplars from distinct categories in the test language were assigned to distinct 

categories in the trained language. Consider first the English training. There was a single 

run for each English speaker s. If the run was successful, the estimated categories were 



used to classify 2000 exemplars from Japanese speaker k, resulting in a confusion matrix 

CMs,k, where the rows were the (test language) categories /i, i�, e, e�/ and the columns 

were the (trained language) categories /�, i, ε, e/. Let CM′s,k be CMs,k reordered to 

maximize Trace(CMs,k). Then, the generalization Gs,k from English speaker s to Japanese 

speaker k was defined as 100 ·  Trace(CM′s,k) / ∑i∑j CM′s,k(i,j)), and the average English-to-

Japanese generalization GEJ as ∑s ∑k  Gs,k / (K · N), where K is the number of successfully-

trained English speakers and N the total number of Japanese speakers. A similar 

procedure was used to calculate the Japanese-to-English GJE. 

Note that CMs,k was reordered separately for each combination of training and test 

speaker. While this may overestimate the amount of “cross-language generalization”, it 

avoids assumptions about which category in one language is closest to a given category 

in the other language. 

Inputs and initialization for TOME 

Scaling of the inputs. Each input stimulus to the TOME algorithm had to be a 

point in the 25 x 25 x 25 space (representing F1 x F2 x Duration). Thus, values in each 

input dimension had to be scaled to be in the 1 … 25 range. For each speaker and each 

run, the training distributions of the speaker were used to generate the 32000 training 

points. Then, the F1 values was rescaled as 

F1scaled = [(F1 – F1min) / (F1max –F1min)] x (N – 1) + 1 

where N = 25 is the number of units along the F1 dimension, and the extrema 

were calculated over the training points. The same equation was used, mutatis mutandis, 



for the F2 and Duration values. Lastly, the extrema values for the training points were 

also used to scale the 2000 test points. 

Initialization. There were R = 512 initial categories. For each category unit r, the 

conditional probabilities over the 25x25x25 input space were initialized to be a spherical 

Gaussian with mean µr and covariance β·I. The means were systematically placed over 

the middle third of the 25x25x25 input space; specifically, each µr was [a b c]
T
 where a, b 

and c varied over {5 7 9 11 13 15 17 19}. The variance β was set to 1.5, and the mixing 

probabilities were initialized to 1/R. 

Simulation details for Figure 3 

The OME simulations in Figure 3 used the same parameters as the OME vowel 

learning. In order to do this, the stimuli drawn from the input distribution (Figure 3a) 

were rescaled to z-scores prior to the OME training. After training, the discovered 

categories were scaled back to the original space (Figure 3b). 

 The TOME simulations in Figure 3 used the same parameters as the TOME vowel 

learning (except with a uni-dimensional input space with 50 input units instead of a 

25x25x25 input space, and with α = 0.9). 


