Appendix

Under our formulation $bias = \Sigma_s \psi_s \epsilon_s w_s$, where ψ_s is the maximum possible bias if there were complete confounding of the unobserved covariate and treatment, w_s is the known fraction of subjects in stratum s, and

$$\epsilon_s = pr(X = 1|1, s, R = 1) - pr(X = 0|1, s, R = 1).$$
(A1)

By invoking the randomization, we can obtain an upper bound on $\epsilon_{s.}$ Let

$$\gamma_s = pr(X = 1|s)$$

= $pr(X = 1|z, s)$ as a consequence of the randomization. (A2)

In other words the randomization guarantees that the distribution of X does not depend on treatment assignment. Let

$$\kappa_{zs} = \frac{pr(R=1|z,s,X=0)}{pr(R=1|z,s,X=1)},$$
(A3)

namely, the relative risk of missingness for X = 1 versus X = 0 among subjects randomized to z in stratum s. Writing (A1) as

$$\epsilon_{s} = \frac{pr(X=1,R=1 | Z=1,s)}{\Sigma_{x} pr(x,R=1 | Z=1,s)} - \frac{pr(X=1,R=1 | Z=0,s)}{\Sigma_{x} pr(x,R=1 | Z=0,s)}$$
$$= \frac{pr(R=1 | Z=1,s,X=1) pr(X=1 | Z=1,s)}{\Sigma_{x} pr(R=1 | Z=1,s,x) pr(x | Z=1,s)} - \frac{pr(R=1 | Z=0,s,X=1) pr(X=1 | Z=0,s)}{\Sigma_{x} pr(R=1 | Z=0,s,x) pr(x | Z=0,s)},$$

and substituting (A2) and (A3) gives

$$\epsilon_s = \frac{\gamma_s}{\gamma_s + \kappa_{1s} (1 - \gamma_s)} - \frac{\gamma_s}{\gamma_s + \kappa_{0s} (1 - \gamma_s)} \,. \tag{A4}$$

If $\kappa_{1s} = \kappa_{0s}$, namely the relative risk for missingness between X = 0 and X = 1 is the same in the two treatment groups, $\epsilon_s = 0$ and there is no bias. This is a weaker condition than MAR which requires that $\kappa_{zs} = 1$, namely that missingness does not depend on X.

Remarkably, it is possible to obtain an upper bound on ϵ_s given only

$$\tau_s = \frac{\kappa_{0s}}{\kappa_{1s}},\tag{A5}$$

which is the ratio between treatment groups of the relative risk of a missing outcome for X = 0 versus X = 1. To find the maximum of ϵ_s given τ_s , we substitute (A5) into (A4) with $\kappa_{0s} = \tau_s \kappa_{1s}$ and set $\partial \epsilon_s / \partial \gamma_s = 0$ and $\partial \epsilon_s / \partial \kappa_{1s} = 0$. This gives

$$g_s = \sqrt{\tau_s} \kappa_{1s} / \left(1 + \sqrt{\tau_s} \kappa_{1s}\right) \text{ for } \kappa_{1s} > 0.$$
(A6)

Substituting (A6) into (A4) gives the unconstrained maximum for ϵ_s ,

$$\epsilon_{Ms} = \frac{\sqrt{\tau_s} - 1}{\sqrt{\tau_s} + 1}.\tag{A7}$$

Because of constraints on some probabilities the maximum in (A7) is not always attained. The following discussion elucidates the constraints. To simplify the notation we drop the subscript s. Define $\theta_{zx} = pr(R = 1 | z, x)$ so $\kappa_z = \theta_{z0}/\theta_{z1}$. The maximum value of ϵ in (A7) implicitly assumes $\theta_{zx} \leq 1$. To investigate violations of this constraint we begin with the identity

$$\pi_{z} = pr(R = 1 | z),$$

$$= pr(R = 1 | z, X = 1) pr(X = 1 | z) + pr(R = 1 | z, X = 0) pr(X = 0 | z)$$

$$= \theta_{z1} (\gamma + \kappa_{z} (1 - \gamma)).$$
(A8)

We can rewrite (A8) as

$$\theta_{z1} = \pi_z / (\gamma + \kappa_z (1 - \gamma)). \tag{A9}$$

Substituting (A9) into the constraint that $\theta_{z0} = \theta_{z1}\kappa_z \leq 1$, rewriting in terms of κ_1 and $\kappa_0 = \tau \kappa_1$, and solving for κ_1 gives

$$\kappa_1 \ge \begin{cases} \frac{\pi_1 - \gamma}{1 - \gamma}, & \text{if } \gamma < \pi_1, \\ 0, & \text{if } \gamma \ge \pi_1, \end{cases}$$
(A10a)

$$\kappa_1 \geq \begin{cases} \frac{\pi_0 - \gamma}{\tau(1 - \gamma)}, & \text{if } \gamma < \pi_{0,} \\ 0, & \text{if } \gamma \geq \pi_{0,} \end{cases}$$
(A10b)

Substituting (A9) into the constraint that $\theta_{z1} \leq 1$, rewriting in terms of κ_1 and $\kappa_0 = \tau \kappa_1$, and solving for κ_1 gives

$$\kappa_1 \leq \begin{cases} \frac{\gamma}{\pi_1 - (1 - \gamma)}, & \text{if } \gamma > 1 - \pi_1, \\ \infty, & \text{if } \gamma \leq 1 - \pi_1, \end{cases}$$
(A11a)

$$\kappa_{1} \leq \begin{cases} \frac{\gamma}{\tau(\pi_{0} - (1 - \gamma))}, & \text{if } \gamma > 1 - \pi_{0}, \\ \infty, & \text{if } \gamma \leq 1 - \pi_{0}. \end{cases}$$
(A11b)

Equations (A10a) and (A10b) represent lower bounds and (A11a) and (A11b) represent upper bounds on κ_1 . For these bounds to be operable, the following conditions must hold: Condition 1. (A10a) \leq (A11a). If $\gamma \leq 1 - \pi_1$, (A11a) is infinity so the condition holds. If $\gamma > 1 - \pi_1$, this condition reduces to $(1 - \pi_1) \pi_1 \geq 0$, which always holds.

Condition 2. (A10b) \leq (A11b). If $\gamma \leq 1 - \pi_0$, (A11b) is infinity, so the condition always holds. If $\gamma > 1 - \pi_0$, this condition reduces to $\tau (1 - \pi_0) \pi_0 \geq 0$, which always holds because $\tau \geq 0$.

Condition 3. (A10a) \leq (A11b) If $\gamma \leq 1 - \pi_0$, (A11b) is infinity so the condition always holds. If $\gamma > 1 - \pi_1$, we compute the bound on τ when (A6) and hence (A7) hold. Substituting (A7) into (A10a) and (A11b) and solving for κ_1 gives

$$\frac{\pi_1}{1 + \sqrt{\tau} (1 - \pi_1)} \le \kappa_1 \le \frac{\sqrt{\tau} (1 - \pi_0) + 1}{\tau \pi_0}$$
(A12)

Setting the lower bound of (A12) less than or equal to the upper bound of (A12) gives the requirement for (A6) and hence (A7) to hold, namely, $1/\sqrt{\tau} \ge \pi_0 + \pi_1 - 1$. Thus if $\pi_0 + \pi_1 \le 1$ or $\tau \le 1/(\pi_0 + \pi_1 - 1)^2$, we can obtain the maximum value of ϵ in (A7). If instead $\tau > 1/(1 - \pi_0 - \pi_1)^2$ and $\pi_0 + \pi_1 > 1$, we find the largest value of ϵ by computing the two possible values of γ , which are the solutions to a quadratic equation, at the boundary condition (A10a) = (A11b),

$$\gamma_U = \frac{\zeta \pm \sqrt{\zeta^2 - 4 \pi_1 (1 - \pi_0) \tau (\tau - 1)}}{2 (\tau - 1)}, \text{ where } \zeta = -1 - \pi_0 \tau + \pi_1 \tau + \tau.$$
(A13)

Substituting (A13) into (A10a) gives $\kappa_{1U} = (\pi_1 - \gamma_U)/(1 - \gamma_U)$. Substituting (A13) and κ_{1U} into (A4) gives

$$\epsilon_{U} = \begin{cases} max(\epsilon_{U}^{*}), & \text{if } \tau \ge 1, \\ min(\epsilon_{U}^{*}), & \text{if } \tau < 1, \end{cases} \text{ where } \epsilon_{u}^{*} = \frac{\gamma_{U}}{\gamma_{U} + \kappa_{1U}(1 - \gamma_{U})} - \frac{\gamma_{U}}{\gamma_{U} + \tau \kappa_{1U}(1 - \gamma_{U})} \tag{A14}$$

Because g_U represents two possible solutions, the notation in (A14) indicates that we select the g_U solution that gives the largest ϵ_U when $\tau \ge 1$ and the smallest ϵ_U when $\tau < 1$.

Condition 4. (A2b) \leq (A3a) If $\gamma \leq 1 - \pi_1$, (A3a) is infinity so (A2b) \leq (A3a). If $\gamma > 1 - \pi_1$, we compute the bound on τ when (A6) and hence (A7) holds. Substituting (A6) into (A10b) and (A11a) and solving for κ_1 gives

$$\frac{\pi_0}{\tau + \sqrt{\tau} (1 - \pi_0)} \leq \kappa_1 \leq \frac{\sqrt{\tau} + (1 - \pi_1)}{\pi_1 \sqrt{\tau}}.$$
(A15)

Setting the lower bound of (A15) less than or equal to the upper bound of (A14) gives the requirement that for (A6) and hence (A7) to hold, $\sqrt{\tau} \ge \pi_0 + \pi_1 - 1$. Thus if $\pi_0 + \pi_1 \le 1$ or $\tau \ge (1 - \pi_0 - \pi_1)^2$, we can obtain the maximum value of ϵ in (A7). If instead, $\tau < (1 - \pi_0 - \pi_1)^2$ and $\pi_0 + \pi_1 > 1$, we find the largest value of ϵ by computing the two possible values of γ at the boundary condition (A10b) = (A11a),

$$\gamma_L = \frac{\beta \pm \sqrt{\beta^2 - 4 \pi_0 (1 - \pi_1) (1 - \tau)}}{2 (1 - \tau)}, \quad \text{where } \beta = 1 + \pi_0 - \pi_1 - \tau.$$
(A16)

Substituting (A16) into (A11a) gives $\kappa_{1L} = \gamma_L / (\pi_1 - (1 - \gamma_L))$. Substituting (A16) and κ_{1L} into (A4) gives

$$\epsilon_L = \begin{cases} max(\epsilon_L^*), & \text{if } \tau \ge 1, \\ min(\epsilon_L^*), & \text{if } \tau < 1, \end{cases} \text{ where } \epsilon_L^* = \frac{\gamma_L}{\gamma_L + \kappa_{1L}(1 - \gamma_L)} - \frac{\gamma_L}{\gamma_L + \tau - \kappa_{1L}(1 - \gamma_L)}. \tag{A17}$$

Because γ_L represents two possible solutions, the notation in (A17) indicates that we select the γ_L solution that gives the largest ϵ_L when $\tau \ge 1$ and the smallest ϵ_L when $\tau < 1$.

Reintroducing the subscript s, combining (A7), (A13) (A14), (A16), (A17), the attained maximum of ϵ_s , which depends only on τ_s and π_{zs} , is

$$\epsilon_{s}^{*}(\tau_{s};\pi_{zs}) = \begin{cases} \epsilon_{Ms}, & \text{if } (1-\pi_{0s}-\pi_{1s})^{2} \leq \tau_{s} \leq 1/(1-\pi_{0s}-\pi_{1s})^{2} \text{ or } \pi_{0s} + \pi_{1s} \leq 1, \\ \epsilon_{Ls}, & \text{if } \tau_{s} < (1-\pi_{0s}-\pi_{1s})^{2} \text{ and } \pi_{0s} + \pi_{1s} > 1, \\ \epsilon_{Us}, & \text{if } \tau_{s} > 1/(1-\pi_{0s}-\pi_{1s})^{2} \text{ and } \pi_{0s} + \pi_{1s} > 1. \end{cases}$$
(A18)

Because the choice of τ_s versus $1/\tau_s$ is arbitrary, as either 0 or 1 can be assigned to X, it is reassuring that $\epsilon_s^*(\tau_s; \pi_{zs}) = -\epsilon_s^*(1/\tau_s; \pi_{zs})$. If we take the limit as τ_s approaches 0 or infinity then ϵ_{Ls} and ϵ_{Us} apply, giving

$$\epsilon_{(max)s} = max(\frac{1-\pi_{0s}}{\pi_{1s}}, \frac{1-\pi_{1s}}{\pi_{0s}}).$$
(A19)

Numerically we checked that $\epsilon_{(max)s}$ is greater than or equal to ϵ_{Ms} .