Appendix
Under our formulation bias = Y1, €5 ws, Where 1, isthe maximum possible bias if

there were compl ete confounding of the unobserved covariate and treatment, w;isthe

known fraction of subjectsin stratum s, and

es = pr(X=11,s,R=1)—pr(X =0|1,s, R =1). (A1)
By invoking the randomization, we can obtain an upper bound on ¢, Let
Vs = pr(X =1]s)
(A2)

= pr(X = 1|z, s) asaconsequence of the randomization.

In other words the randomization guarantees that the distribution of X does not depend

on treatment assignment. Let

r(R=1| z,5,X=0
Kzs = 1;7«((3=1||Z,S,X:_1§ 1 (A3)
namely, the relative risk of missingnessfor X = 1 versus X = 0 among subjects

randomized to z in stratum s. Writing (A1) as

pr(X=1,R=1|Z=1,s) pr(X=1, R=1|Z=0,9)

€ = S.pr(@,R=1|Z=1,5) S, pr(z, R=1|Z=0, 5)

pr(R=11Z2=0,5X=1)pr(X=1| Z=0,s)

pr(R=11Z=1sX=1)pr(X=1|Z=1,s)
X, pr(R=1|Z=0, s,x) pr(x|Z=0,s)

- Y, pr(R=1|Z=1,s,x) pr(z|Z=1,s)

Y

and substituting (A2) and (A3) gives



s _ s
Vs + Kis (1_73) Vs + Kos (1_73) ’

€= (A4)

If kK15 = Kos, NAMely the relative risk for missingnessbetween X = 0and X = 1is
the same in the two treatment groups, ¢, = 0 and thereisno bias. Thisisaweaker
condition than MAR which requiresthat «., = 1, namely that missingness does not
depend on X.

Remarkably, it is possible to obtain an upper bound on ¢, given only
T, = e (A5)

which isthe ratio between treatment groups of the relative risk of a missing outcome for
X = 0versus X = 1. To find the maximum of ¢, given 7., we substitute (A5) into (A4)

With kos = 7oK1 and set Jeg/0y; = 0 and Je;/0k1s = 0. Thisgives

gs = \/?Sﬁlsl (1+ /7s k1s) for k1 > 0. (AB6)
Substituting (A6) into (A4) gives the unconstrained maximum for e,

= V-l (A7)

s = T /nLe

Because of constraints on some probabilities the maximum in (A7) is not always
attained. The following discussion elucidates the constraints. To simplify the notation
we drop the subscript s. Defined., = pr(R = 1| 2,2) SO k. = 6.9/0.1. The maximum
value of € in (A7) implicitly assumes 6., < 1. To investigate violations of this constraint

we begin with the identity



m, = pr(R =1|z),
= pr(R=1lz, X =1)pr(X =1|2) + pr(R= 1|z, X =0) pr(X = 0]2)
= 01 (y + K (1—7)). (A8)

We can rewrite (A8) as

Oa=m./(v+ k(1 —7)). (A9)

Substituting (A9) into the constraint that 0,0 = 6.1, < 1, rewritingintermsof ; and

ko = T k1, and solving for x; gives

o ify <,

S B (A103)
05 if v 2 71,
o if gy <

Ky > (1-7) _ 7 < o, (A10b)
0, if v = o,

Substituting (A9) into the constraint that 6,; < 1, rewritingintermsof x; and kg =

T K1, and solving for x; gives

1 ify > 1—m,

fp <q a7 m (Al1a)
o0, |f7 S 1— 1,

k< a1y = Lo (A11b)
00, ify < 1-—m

Equations (A10a) and (A10b) represent lower bounds and (A11a) and (A11b) represent

upper bounds on k4. For these bounds to be operable, the following conditions must hold:



Condition 1. (A10a) < (Alla). If v < 1 — 71, (Alla) isinfinity so the condition

holds. If ¥ > 1 — 7, this condition reducesto (1 — ;) m; > 0, which always holds.

Condition 2. (A10b) < (Al1lb). If v < 1 — mp, (A1lb) isinfinity, so the condition
awaysholds. If v > 1 — m, thiscondition reducesto 7 (1 — ) my > 0, which always

holds because = > 0.

Condition 3. (A10a) < (Allb) If v < 1 — m, (Allb)isinfinity so the condition
awaysholds. If v > 1 — m;, we compute the bound on 7 when (A6) and hence (A7)

hold. Substituting (A7) into (A10a) and (A11b) and solving for ; gives

< V7 (-m)+ (A12)

T/ S
Setting the lower bound of (A12) less than or equal to the upper bound of (A12) givesthe
requirement for (A6) and hence (A7) to hold, namely, 1/ \/? > 7o+ m — 1. Thusif
mo+m <1or7< 1/ (m +m — 1)2, we can obtain the maximum value of € in (A7).
Ifinstead ™ > 1/ (1 — my — m1)? and my + m; > 1, wefind the largest value of ¢ by
computing the two possible values of ~, which are the solutions to a quadratic equation,

at the boundary condition (A10a) = (A11b),

. C:I:\/C2—47T1 (1—mo)7 (1—1
To = 2(r—1)

), where( = — 1 — mor + m7 + 7. (A13)

Substituting (A13) into (A10a) givesky; = (11 — )/ (1 — vy ). Substituting (A13) and

k1 into (A4) gives



where ¢ = gl — 0 (A14)

*
v gy +kw (=) v+ 7 kw (=)

maz(ef;), ifr>1,
min(eg;), ifrT <1,

Because gy represents two possible solutions, the notation in (A14) indicates that we
select the gy solution that gives the largest eywhen 7 > 1 and the smallest e;;when

<1

Condition 4. (A2b) < (A3a) If v < 1 — mq, (A3d) isinfinity so (A2b) < (A3a). If
~v > 1 — w1, we compute the bound on = when (A6) and hence (A7) holds. Substituting
(A6) into (A10b) and (A11a) and solving for x; gives

< gy < MTHAEm) (A15)

EEvedi=n) S T

Setting the lower bound of (A15) less than or equal to the upper bound of (A14) givesthe
requirement that for (A6) and hence (A7) to hold, \ﬁ > mg+m — 1. Thusif 7y + m;

<lort > (1L-m — m)? wecan obtain the maximum value of ¢ in (A7). If instead,
7 < (1—m —m)?andm + m > 1, wefind the largest value of ¢ by computing the

two possible values of ~ at the boundary condition (A10b) = (Al1a),

o ﬁi\/ﬁzf;g(ﬁi;m)(l*ﬂ’ where =1 + 7wy — 7 — 7. <A16)

Substituting (A16) into (Al1a) givesk,; = v/ (m1 — (1 — vz )). Substituting (A16) and

k1z into (A4) gives

_ [ max(e;), ifr>1, . - -
L= { min(ez), ifr<1, where L™ k@) *7 R @) (A]-?)



Because v, represents two possible solutions, the notation in (A17) indicates that we
select the v, solution that givesthe largest e, when 7 > 1 and the smallest e, when 7
< 1.
Reintroducing the subscript s, combining (A7), (A13) (A14), (A16), (A17), the attained
maximum of €., which dependsonly on 7, and 75, IS
enrs, If (Lmosms)? < 7o < U (1-mosmris)? OF mos + mis < 1,

€ (Ts;mas) =% €rs, if 7, < (Lmosmis)?  and mos + ms > 1, (A18)
evs,  if 75 > 1/(L-mosmis)? and mos + mis > 1.

Because the choice of 7, versus 1/, is arbitrary, as either 0 or 1 can be assigned to X, it
isreassuring that €’ (7; m.s) = — €i(Ury;m.5). If wetake the limit as 7, approaches 0 or

infinity then e;sand ey apply, giving

€(maz)s = maac(ﬂ ﬂ) (A19)

T1s ’ Tos

Numerically we checked that €, IS greater than or equal to ejy..



