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Appendix

Under our formulation  , where   is the maximum possible bias if���� � �� � � �� � � � �

there were complete confounding of the unobserved covariate and treatment, is the��

known fraction of subjects in stratum , and�

   0 . A1)�� � ��	
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By invoking the randomization, we can obtain an upper bound on   Let��.

        �� � ��	
 � �� ��

� ��	
 � ���
 �� as a consequence of the randomization. (A2)

In other words the randomization guarantees that the distribution of  does not depend


on treatment assignment  Let�
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namely, the relative risk of missingness for  versus among subjects
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and substituting (A2) and (A3) gives
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   = . A4�� � �
� �

� � � � � �
� �

� �� � � �� � +  (1 )  +  (1 )� 	 �

     If namely the relative risk for missingness between  and  is� ��� ��� 
 
 � � 
 � �

the same in the two treatment groups,  and there is no bias.  This is a weaker�� � �

condition than MAR which requires that , namely that missingness does not��� � �

depend on .


       Remarkably,  it is possible to obtain an upper bound on  given only��

�� � �
�

0�

��

, (A5)

which is the ratio between treatment groups of the relative risk of a missing outcome for


 � � 
 � �versus .  To find the maximum of  given , we substitute (A5) into (A4)� �� �

with  and set /  = 0 and /  = 0. This gives� � � � � � ��� � �� � � � �� � � � � 1

        / +  for (A6)� � 	� � � ��� � � ��� �� � � � �1s 1s

Substituting (A6) into (A4) gives the unconstrained maximum for ,��

        . (A7)���
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   Because of constraints on some probabilities the maximum in (A7) is not always

attained.  The following discussion elucidates the constraints. To simplify the notation

we drop the subscript  Define    so  . The maximum�� � ��	� � �� �
 �� � �� � � ��� � �� ��

value of  in (A7) implicitly assumes To investigate violations of this constraint� ��� � ��

we begin with the identity
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   1 ,�� � ��	� � ���

      =    (  �� � � ���
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        (A8)� 	 � 	� � ���� � � ��� �

We can rewrite (A8) as

                           = . A9� � � � ��� � ��	 � 	� � �� 	 �

Substituting (A9) into the constraint that   rewriting in terms of  and� � � �� �� �0 1� � �


� � � �� � �� , and solving for gives

                          (A10a)
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Substituting A9 into the constraint that  , rewriting in terms of  and 	 � � � �� � ��� �1

� � � , and solving for gives� �
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Equations (A10a) and (A10b) represent lower bounds and (A11a) and (A11b) represent

upper bounds on . For these bounds to be operable, the following conditions must hold:��
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    (A10a) (A11a). If , (A11a) is infinity so the condition Condition 1.  � � � �� ��

holds. If this condition reduces to (1 , which always holds.� � � �� � � 
 � � � �1 � �

   (A10b)  (A11b).  If , (A11b) is infinity, so the condition Condition 2.  � � � �� �0

always holds. If  , this condition reduces to (1 , which always � � � � �� � � � � � �� � �

holds because � � ��

    (A10a)  (A11b)   If   , (A11b) is infinity so the condition Condition 3. � � � �� ��

always holds. If , we compute the bound on   when (A6) and hence (A7)� � �� � � �

hold. Substituting (A7) into (A10a) and (A11b) and solving for  gives��
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Setting the lower bound of (A12) less than or equal to the upper bound of (A12) gives the

requirement for (A6) and hence (A7) to hold,  namely, 1/  Thus if�� � �� � � ��� �

� � � � � �� � � �
�� � � � �� � � �� � or    ( , we can obtain the maximum value of  in (A7)

If instead   (1  and , we find the largest value of  by� � � � � �� �� � � � � � �� � � �
�

computing the two possible values of , which are the solutions to a quadratic equation� 


at the boundary condition (A10a) = (A11b),

� 	 � � � � ��
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0 1

� �
� � where   . A13

Substituting (A13) into (A10a)  gives ) Substituting (A13) and� � � �1� � � �� 	 � �	� � ��

���  into (A4) gives
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� �
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� �=  where     = A14
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� � � � � � +  (1 )  +    (1 )1 1

Because  represents two possible solutions, the notation in (A14) indicates that we��

select the solution that gives the largest when and the smallest when � � �� � �� � � �

� ��

     If   , (A3a) is infinity so (A2b) (A3a).  If Condition 4. (A2b)  (A3a)� � �� � � �1

� � �� � � 	 ��, we compute the bound on  when A6 and hence (A7) holds. Substituting

(A6) into (A10b) and (A11a) and solving for  gives��
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    . (A15)� ��

Setting the lower bound of (A15) less than or equal to the upper bound of (A14) gives the

requirement that for A6 and hence (A7) to hold,   Thus if 	 � � � � �� ��� � � � �� � � �

� � � � � � � or   (1 , we can obtain the maximum value of  in (A7)   If instead,� � � �� �
�

� � � � � �  <  (1 and , we find the largest value of  by computing the� � � � � �� � � �
�

two possible values of  at the boundary condition (A10b) = (A11a),�
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Substituting (A16) into (A11a) gives Substituting (A16) and� � � �1 1� � �� � 	 � 	� � ���

��� into (A4) gives
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Because represents two possible solutions, the notation in (A17) indicates that we��

select the solution that gives the largest when  and the smallest when � � � � �� � �� �

� ��

 Reintroducing the subscript , combining (A7), (A13) (A14), (A16), (A17), the attained�

maximum of which depends only on  and is� � �� � ��
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if  (1- - 1/ - - or ,
if  (1- -     and  ,
if  (1-

�
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(A18)
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 Because the choice of  versus is arbitrary, as either 0 or 1 can be assigned to , it� �� ��� 


is reassuring that ( (1/ .   If we take the limit as  approaches 0 or� � � � � � �� �
� �� �� � �� � � � �  �

infinity then and   apply, giving� �� �s s
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Numerically we checked that  is greater than or equal to � �����
 ��s �


