The following software and databases were used in this work.

<u>Automated</u>: explains how software/database was used in the automated pipeline. <u>Analysis</u>: explains how software/database was used in subsequent non-automated analysis.

Name	Description	Reference
Conserved Domain	Database of conserved domains, including	(1)
Database (CDD)	descriptions of the domains, and profile HMMs.	
version 2.08	Automated and Analysis: used profile HMMs to	
	classify domains within ORFs	
RefSeq versions 14	Database of genome sequences, and nucleotide	(2)
and 19	positions of ORFs. ORF positions are used with the	
	CDD to classify their domains.	
	Automated: used version 14 to collect potential	
	UTRs, and search for additional homologs in	
	automated refinement of motifs.	
	Analysis: used version 19.	
Rfam database	Database of known structured RNAs.	(3)
version 7.0	<u>Automated</u> : Used to mark known RNAs in motif	
KEGG	Database of information on metabolism and	(4)
11200	associated genes.	
	Analysis: informed analysis of motifs.	
Acid mine drainage	Analysis: searched these sequences for homologs.	(5)
shotgun sequences		
Sargasso Sea	Analysis: searched these sequences for homologs.	(6)
shotgun sequences		
MicroFootPrinter	Automated: used to extract potential UTRs of genes,	(7)
	and, in some cases, to highlight promising motifs	
	based on sequence conservation.	
CMfinder version	Automated: predicted motifs using potential	(8)
0.2	homologous UTRs, and refined motifs using	
	additional homologs.	
	Analysis: assisted in manual improvement of	
	alignments.	
RAVENNA version	Automated and Analysis: homology searches for	(9-11)
0.2f	RNA motifs.	
Infernal version 0.7	Software integrated into RAVENNA. Implements	(12)
	covariance models, and GSC algorithm (used to	
	establish levels of conservation/covariation in motif	
	diagrams).	
RSEARCH	Software integrated into RAVENNA. Implements E-	(13)
	value statistics for covariance models.	
Additional scripts	Some scripts were created specifically to support this	(14)
	pipeline.	

RALEE	Analysis: used to edit motif alignments.	(15)
NCBI BLAST	Analysis: tblastn was used to find homologs of	(16)
	protein-coding genes, in order to search their	
	potential UTRs. rpsblast was used to classify ORFs	
	in RefSeq into profile HMMs from the Conserved	
	Domain Database.	
Mfold	Analysis: used to predict potential structures,	(17)
	particularly for variable-length stems, whose identity	
	might not be conserved among homologs.	
Rnall	Analysis: used to predict rho-independent	(18)
	transcription terminator hairpins.	

- Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He, S., Hurwitz, D.I., Jackson, J.D., Ke, Z. *et al.* (2005) CDD: a Conserved Domain Database for protein classification. *Nucleic Acids Research*, 33, 192-196.
- 2. Pruitt, K., Tatusova, T. and Maglott, D. (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Research*, **33**, 501-504.
- 3. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R. and Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes. *Nucleic Acids Research*, **33**, 121-124.
- 4. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. and Hirakawa, M. (2006) From genomics to chemical genomics: new developments in KEGG. *Nucleic Acids Res*, **34**, D354-357.
- Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S. and Banfield, J.F. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. *Nature*, **428**, 37-43.
- 6. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W. *et al.* (2004) Environmental Genome Shotgun Sequencing of the Sargasso Sea. *Science*, **304**, 66-74.
- 7. Neph, S. and Tompa, M. (2006) MicroFootPrinter: a Tool for Phylogenetic Footprinting in Prokaryotic Genomes. *Nucleic Acids Research*, **34**.
- 8. Yao, Z., Weinberg, Z. and Ruzzo, W.L. (2006) CMfinder–a covariance model based RNA motif finding algorithm. *Bioinformatics*, **22**, 445-452.
- 9. Weinberg, Z. and Ruzzo, W.L. (2004), *RECOMB04: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology*, San Diego, CA, pp. 243-251.
- 10. Weinberg, Z. and Ruzzo, W.L. (2004) Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. *Bioinformatics*, **20**, i334-i341.
- 11. Weinberg, Z. and Ruzzo, W.L. (2006) Sequence-based heuristics for faster annotation of non-coding RNA families. *Bioinformatics*, **22**, 35-39.
- 12. Eddy, S.R. (2005) Infernal User's Guide.

- 13. Klein, R.J. and Eddy, S.R. (2003) RSEARCH: finding homologs of single structured RNA sequences. *BMC Bioinformatics*, **4**, 44.
- 14. Yao, Z., Barrick, J.E., Weinberg, Z., Neph, S., Breaker, R.R., Tompa, M. and Ruzzo, W.L. (2007) A computational pipeline for high throughput discovery of *cis*-regulatory noncoding RNA in prokaryotes. In press.
- 15. Griffiths-Jones, S. (2005) RALEE-RNA ALignment Editor in Emacs. *Bioinformatics*, **21**, 257-259.
- 16. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, **25**, 3389-3402.
- 17. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res*, **31**, 3406-3415.
- 18. Wan, X.-F. and Xu, D. (2004) Intrinsic Terminator Prediction and Its Application in *Synechococcus* sp. WH8102. *J Comp Sci & Tech*, **20**, 465-482.