CHAPTER 1

GeneProgram Protocol S1

1.1 The GeneProgram probability model

1.1.1 Overview

The GeneProgram probability model is an extension of the Hierarchical Dirichlet Pro-
cess mixture model as described in Teh et al. [21]. See the appendix of this document
for further details on Dirichlet Processes. Briefly, a Dirichlet Process (DP) is char-
acterized by two parameters, a base probability distribution and a concentration or
scaling parameter. It has been shown that with probability one, each random sample
from a DP is a discrete infinite mixture over samples from the base distribution [20].
The number of “concentrated” mixture components (i.e., those with large weights) is
controlled by the scaling or concentration parameter. A mixture model over data is
constructed by using each component of the sample from the DP to parameterize the
likelihood for generating the data. For instance, an infinite Gaussian mixture model
is constructed by using a base distribution that is a prior over mean and variance.
In Hierarchical Dirichlet Processes (HDPs), dependencies are specified among a set
of DPs by arranging them in a tree structure. At each level in the tree, the base
distribution for the DP is a sample from the parent DP above.

The GeneProgram model consists of three levels of DPs. Starting from the leaves
these are: tissues, tissue groups, and the root. Each expression program corresponds
to a mixture component of the HDP. Because the model is hierarchical, the expression
programs are shared by all DPs in the model. An expression program specifies a
multinomial distribution over genes, and a set of usage modifier variables (one for
each tissue). Discrete expression levels are treated analogously to word occurrences in
document-topic models. Thus, a tissue’s vector of gene expression levels is converted
into a collection of expression events, in which the number of events for a given
gene equals the discrete expression level of that gene in the tissue. A pattern type



(e.g., induction or repression) is associated with each expression event. The model
assumes that each gene expression event in a tissue is independently generated by an
expression program. One usage modifier variable is associated with each tissue for
each program, and thus specifies the pattern type for genes from the program used
by the tissue. Usage modifiers are modeled hierarchically, and so their values are
influenced by all tissues in the data, and especially those in the same group.

In the original HDP formulation [21], the entire tree structure was assumed to
be pre-specified. We extend this work, by allowing the model to learn the number
of groups and the memberships of tissues in these groups. Thus, groups themselves
are generated by a DP, which uses samples from the root process DP as its base
distribution.

1.1.2 Formal model description

Figure 1-1 depicts the model using graphical model notation with plates and Table 1.1
summarizes the random variables in the model.
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Figure 1-1: The GeneProgram model is depicted using graphical model notation with
plates. Circles represent variables, and arrows denote dependencies among variables. Vec-
tors are depicted with bold type, and observed variables are shown inside shaded circles.
Rectangles represent plates, or repeated sub-structures in the model. See the text and
Table 1.1 for details.



Var. | Dim. | Description Cond. distribution or prior
X4 1 Expression event ¢ in tissue t; Multinomial, given the assignment to
corresponds directly to observed expression program j.
data.
2 1 Pattern type for expression Multinomial, given the assignment to
event 7 in tissue t. expression program j and selection
of the program usage by the tissue.
Z4i 1 Assignment variable of an Generated from mixing probabilities over
expression event to an expression expression programs for the tissue, i.e.,
program, i.e., z;; = j indicates that plzy =j | ™) = .
expression event ¢ in tissue ¢ is
assigned to expression program j.
Ty o0 Mixing probabilities over expression DP, given its parent mixing probabilities
programs for tissue . and concentration parameters, i.e.,
m | o1, B8° ~ DP (v, 8°).
3F 00 Mixing probabilities over expression DP, given its parent mixing probabilities
programs at the level of and concentration parameters, i.e.,
tissue group k; middle B | ag,B° ~ DP(ay, B°).
level in the DP hierarchy.
3° o0 Root level mixing probabilities in DP, generated from the stick-breaking
the DP heterarchy. distribution given its concentration
parameter, i.e., 3% | ag ~ Stick(ay).
0; M Parameters for expression, Dirichlet distribution prior
program j, describing a multinomial (parameterized by A).
distribution over genes.
A 1 Pseudo-count parameter for a Gamma distribution prior with a two-
symmetric Dirichlet distribution. dimensional hyperparameter vector a*.
Ui 1 Usage modifier variable for Multinomial, given the tissue
expression program j by group k level shared parameters, i.e.,
tissue t. uje | Qzﬂqt =k~ Multinomial(ﬂ?).
Qf A% Tissue group k level parameters for Dirichlet distribution prior, i.e.,
usage modifiers of expression program j. Q? ~ Dirichlet(agﬁgl, cee CYQQ?V).
Q? \Y% Root level parameters for Dirichlet distribution prior
usage modifiers of expression program j. | (parameterized by a?).
q; 1 Assignment variable of tissues to Generated from mixing probabilities over
groups, i.e., q, = k indicates that tissue groups, i.e, p(q, =k | €) = €.
tissue t belongs to tissue group k.
€ o0 Mixing probabilities over the tissue DP, generated from the stick-breaking
groups. prior given its concentration parameter,
i.e, €|y ~ Stick(y).
a1 1 Concentration parameter for ;. Gamma distribution prior with two-
dimensional hyperparameter vector a®.
Qg 1 Concentration parameter for 3° Gamma distribution prior with two-
and B*. dimensional hyperparameter vector a®°.
v 1 Concentration parameter for e. Gamma distribution prior with two-
dimensional hyperparameter vector a”.
aq 1 Concentration parameter for Qf Gamma distribution prior with two-

dimensional hyperparameter vector a®®.

Table 1.1: Summary of random variables used in the GeneProgram model. The columns
are: variable name (vectors are in bold type), dimensions of the variable, description, and
the conditional or prior distribution on the variable.




We will begin by describing the model at the level of observed data, and then
move up the hierarchy. Assume that there are T tissues and G genes. The expression
data associated with each tissue ¢ consists of a GG-dimensional vector e; of discrete
expression levels, i.e., e, € {0,1,..., E'} is the expression level of gene ¢ in tissue ¢,
where there are E possible discrete expression levels.

A tissue’s vector of gene expression levels is converted into a collection of expres-
sion events, in which the number of events for a given gene equals the expression level
of that gene in the tissue. This representation of expression levels as an unordered
“bag of expression events” is analogous to the representation of words in a document
as a “bag of words” in topic models. To be precise, let x; denote a set of expression
events for tissue ¢, and define a mapping w from x; to genes, where w(xy;) = ¢ iff
e,y > 0. The vector x; will have IV, elements, where IV, = Zngl €ig, 1.€., as many
elements as there are discrete expression events in the tissue.

We associate an observed pattern type with each expression event. The pattern
type, denoted by vy,;, can take one of V values. For instance, if we are modeling
induction and repression, V' = 2 and y,; € {—1, 1}, representing the direction of
expression change for the gene.

The model assumes that each gene expression event in a tissue is independently
generated by an expression program. The variable z;; assigns gene expression events
to programs, i.e., z;; = j indicates that x;; was generated from the jth expression
program. An expression program specifies a multinomial probability distribution
over genes. To be precise, let 6; represent a parameter vector of size GG for expression
program j. Then, the probability of generating expression event x;; corresponding to
gene g given that it is assigned to expression program j is p(w(x;) =g | zi; = 7,0;) =
8;4. We use a symmetric Dirichlet prior for 8; with parameter A, and a Gamma prior
for A with hyperparameter vector a*.

Program usage modifier variables influence which pattern types are generated for
genes in an expression program used by a specific tissue. We denote the usage modifier
variable for tissue ¢ using expression program j by uj;, where uj; can take on one of V'
values. Usage modifier variables influence how pattern types are generated through
a compatibility function v(-,-), which simply specifies the probability of generating
a particular observed pattern type given some usage modifier value, i.e., ¥ (yy, uj) =
p(ys | uje). As an example, if we are modeling induction and repression, we might
specify a symmetrical compatibility function that returns a large probability when
the usage modifier and pattern type variables take on the same value, and a small
probability otherwise, i.e., ¥(—1,—1) = ¥(1,1) = 0.99 and ¥(—1,1) = ¢(1,-1) =
0.01.

Usage modifier variables themselves are generated via multinomial distributions
parameterized by expression program level parameters, where we have a separate set
of such V-dimensional parameters, Qf for each expression program j and tissue group
k. For each expression program j, these parameters share a common top-level Dirich-

let, prior parameterized by Q9 and agq. That is, Q¥ ~ Dirichlet(ao),, ..., aqQf).
We assume that ag has a Gamma prior with hyperparameter vector a*?. Further,
we have that Q? ~ Dirichlet(a¥,...,da$t), where a‘ is a V-dimensional vector of
hyperparameters.



The mixing probabilities over expression programs are generated by the DPs in
the hierarchy. To be precise, let 7r; denote the mixing probabilities at the leaf level
in the DP hierarchy. That is, 7r; denotes the mixing probabilities over expression
programs for tissue ¢, i.e., p(zyz = j | m) = m;. Let B* denote the mixing prob-
abilities at the middle level in the DP hiearchy. That is, B* denotes the mixing
probabilities over expression programs at the level of tissue group k. Finally, we let
B° denote the root-level mixing probabilities. In the stick-breaking construction for
HDP models, it is assumed that root level mixing probabilities are generated by the
stick-breaking distribution, i.e., 3° | iy ~ Stick(ayp), where ay ~ Gamma(a®®). The
hierarchical structure of the model then implies that B* is conditionally distributed
as a Dirichlet Process, i.e., 8% | ap, 3° ~ DP(ayp, 3°), where we assume that 8% also
uses concentration parameter o.

The tissue level expression program mixing probabilities 7, depend on the group
that the tissue is assigned to. The variable q, assigns tissues to groups, i.e., q, = k
indicates that tissue ¢ belongs to tissue group k and p(q, = k | €) = €, where €
represents mixing probabilities over the tissue groups. The mixing probabilities ¢
over tissue groups are also modeled using a Dirichlet Process. That is, € | v ~
Stick(y), where « is a concentration parameter with v ~ Gamma(a?). Given an
assignment of tissue ¢ to group k, the tissue level mixing probabilities over expression
programs 7r; are then generated from the middle level mixing probabilities 3*. That
is, m | q, = k,a1,B8 ~ DP(ay, 8%), where a; is a concentration parameter with
hyperparameters a*', i.e., a; ~ Gamma(a®'). This completes our formal description
of the GeneProgram probability model.

1.2 Model inference

The posterior distribution for the model is approximated via Markov Chain Monte
Carlo (MCMC) sampling using the follow steps:

1. Sample each assignment of an expression event to an expression program, z;
create new expression programs as necessary.

2. Sample each usage modifier variable u;; for each tissue and expression program.
3. Sample 3°, 3% and auxiliary variables for all tissue groups.

4. Sample tissue group assignments q, for all tissues; create new tissue groups as
necessary.

k o7 . . .
5. Sample 27 and auxiliary variables for each expression program and tissue group.
6. Sample Qg and auxiliary variables for each expression program.
7. Sample concentration parameters ag, o; and 7.

8. Sample expression program Dirichlet prior parameter \.



9. Sample concentration parameter aqg.

Note that x;; | z,; = j,0; ~ Multinomial(6;), and 6; is Dirichlet distributed,
allowing us to integrate out 8; when computing the posterior for z;;. This means that
we do not need to represent 8 explicitly during sampling.

Steps 3 and 7 are identical to those described by Teh et al. in their auxiliary
variable sampling scheme [21] (see Section A.3 for further details). Step 8 uses the
auxiliary variable sampling method for resampling the parameter for a symmetric
Dirichlet prior, as detailed in [6].

In step 1, we sample z;;, the assignment of expression event i in tissue ¢ to an
expression program. For assignment to a non-empty expression program j, the con-
ditional distribution for z;; is given by:

p(zi =J | 24:,8,0,2,u,x,y,q_;,q, = k) x (0415;”‘";)1?()% | 05)% (Yes, wje)p(uje | Qf)

Here, z_;; denotes the assignments of all expression events excluding event i in tissue
t, n; denotes the number of events from tissue ¢ assigned to program j excluding
event i, F'(-) denotes the mixture component likelihood (multinomial), and (-, -) is
the compatibility function defined in Section 1.1.2.

For assignment to a new expression program, the conditional distribution for z;
is given by:

Pz #za V1 #i|z4,0,0,2,u,x,y,q9_4,q, = k) x

(Oqﬁ,?)/ (th | 5 d€ (Z Q*vdj Yti, U ))

Here, H(-) is the prior for the mixture component likelihood, 3° represents the mixture
weight for the new component and €2, the respective new parameter values. The new
weight is sampled as described in Teh et al. [21] (see Section A.3). The new €, is
simply sampled from its prior, i.e., £, ~ Dirichlet(a®).

In step 2, The usage modifier variables uj; for each tissue ¢t and expression program
j are sampled. The posterior distribution for these variables is given by:

p(uj=v|2,Qy.9 9 =k) <} Hwym,

Here, N, is the number of expression events in tissue t.

In step 4, we must compute the posteriors for tissue group assignments. This can
be written as:

p(qt =k | Z,q_4Y, avaya/@k QO Qk)

J N
(qt_k|qtv H/ th|7Tt 7Tt|,3 aodﬂt<zzzﬁjv Ytis U )

7j=1 i=1 v=1
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Here, q_, denotes all tissue group assignments excluding tissue ¢, and J is the number
of non-empty expression programs. Note that because the conditional distributions
for z; and m; are conjugate, the integral in the above equation can be computed
in closed form. If a tissue is assigned to a new group, we must also sample new
parameters, i.e., QF ~ Dirichlet(aoQY,, ..., aqQ,) for j =1,...,J.

In step 5, we need to sample from the posterior distributions for the tissue group
level usage modifier variable priors, Qk Because the prior for Qk is Dirichlet given
QO and the usage modifier variable posterlors are multinomial condltloned on Qk’ the
samphng posterior will simply be a Dirichlet distribution:

p(92¥ | u, Q% aq) o Dirichlet(2F | anQ? + c¥,..., aQ, + cf)

Here, ¢/* denotes the number of tissues in group k using expression program j with
pattern type v.

In step 6, we need to sample from the posterior distributions for the root level
usage modifier variables priors, Qg. Sampling from these posteriors uses an auxiliary
variable sampling scheme essentially the same as described in Section A.3 for sampling
Hierarchical Dirichlet Process mixture weights. As it turns out, the same sampling
method can be used for a finite Dirichlet distribution with only a slight modifica-
tion. As before, we introduce auxiliary variables m. The conditional distributions for
sampling m and QY are then:

p(Mgjo = m | u,m_yjo, ;) o 8o, m)(a0€2,)™
p(2) | m) Dirichlet(z Mgty - - - Z Mgy )
K K

Here, s(-,-) denotes a Stirling number of the first kind and ng;, is the number of
tissues in group k using expression program j with value v.

We also sample the concentration parameter agq (Step 9) using an auxiliary vari-
able scheme essentially the same as described in section A.3 for sampling Hierarchical
Dirichlet Process concentration parameters. We introduce two auxiliary variables w
and b. The update equations are then given by:

p(wi; | ag) o wk 7 (1 — wgy) ™
T, brj
by Zk
plbsy o) < (1)
K K J
p(aq | w,b) oc Gamma(a]® + ZZ (My; — bgj),a ZZ 0g Wg;)
k=1 j=1 k=1 j=1

Here, T}, is the number of tissues in group k, a7 and as® are the hyperparameters
for the Gamma prior on ag and Mj; = Zvvzl M-

We implemented the sampling scheme in Java. Inference was always started with
all data assigned to a single expression program. We burned in the sampler for



100,000 iterations, and then collected relevant posterior distribution statistics from
10,000 samples (see Section 1.3). We set the hyperparameters for all concentration
parameters to 1078 to produce vague prior distributions. Both hyperparameters for
the Gamma prior on A\ were set to 1.0, biasing A toward a unit pseudo-count Dirichlet
distribution.

1.3 Consensus tissue groups and recurrent expres-
sion programs

We use two methods to summarize the posterior distribution samples: consensus
tissue groups (CTGs) and recurrent expression programs (REPs).

CTGs are constructed by first computing the empirical probability that a pair of
tissues will be assigned to the same tissue group. The empirical co-grouping probabil-
ities are then used as pair-wise similarity measures in a standard bottom-up agglom-
erative hierarchical clustering algorithm using complete linkage (e.g., as discussed
in [5]). To be precise, let S denote the total number of samples, and ¢\ the tissue
group assignment for tissue ¢ in sample [. The empirical co-grouping probability for

tissues t and r is then: ;

P = g =q")/8

Here, I(-) is the indicator function.

Clustering is stopped using a pre-defined cut-off ¢;, to produce the final CTGs.
We used a cut-off of ¢,y = 0.90 to produce strongly coherent groups. However, we
note that the empirical co-grouping probabilities tend to be either very small or close
to 1.0, rendering our results relatively insensitive to the choice of ¢,.

REPs consist of sets of tissues and genes that appear together with significant
probability in expression programs across multiple samples. After burn-in, we save
a predetermined number of samples and then sequentially merge similar programs
across samples based on how similar the gene expression probabilities are for pro-
grams. Similarity is calculated using the Hellinger distance, a general distance metric
for probability measures [3]. To be precise, the Hellinger distance between expression
programs j; and j, is calculated as:

G
]1 | |932 Z 89]'1993'2
g=1

Here, GG is the total number of genes. Expression programs are merged if the distance

between them is less than some threshold ¢y (we used ¢y = 0.50).

(s)

For tissue ¢ using expression program j in sample s, the tissue usage score v;;” is

calculated as:
/Ut] Z 9 w(xei)g th - -7)



Here, w(-) is the function mapping expression events to genes, 6; is the probability
vector for genes in program j, I(-) is the indicator function, and zt(f ) is a variable
denoting the assignment of expression event ¢ to an expression program in iteration
s. Note that this score will be higher if a tissue uses more genes from the program,
regardless of the total number of expression events in the tissue. Further, the score
will be higher if a tissue uses genes with large 8, values (i.e., higher probabilities
of being expressed). Thus, the score reflects how “typical” a tissue’s usage of an
expression program is. A tissue t is reported as associated with a REP j if its mean
usage score Ty; is greater than some threshold ¢; (we used ¢; = 0.25).
The empirical mean expression level €,; for gene g in REP j is defined as:

- —ZZ“ Zm)_])egy
” s=1 Szt 1

We use 1,000 samples to generate REPs as follows. After burn-in of the MCMC
sampler for 100,000 iterations, 10,000 samples are generated, with 1,000 samples saved
and 100 iterations between each saved sample discarded. Note that spaced samples
from the MCMC sampler better approximate independent samples from the posterior,
and can thus result in more accurate results [10]

After all potential REPs are generated, infrequently occurring REPs and genes
are filtered for the final output. We filter out REPs that occur in fewer than 50% of
samples, and filter out genes with €g4; scores less than 0.05.

st w(xy) =g

1.4 Generality score

The generality score is the entropy of the normalized distribution of usage of an ex-
pression program by all tissues in each group. Because the distribution is normalized,
tissue groups that only use an expression program a relatively small amount will have
little effect on the score. Thus, a high generality score indicates that an expression
program is used relatively evenly across many tissue groups; a low score indicates
usage of the program is concentrated among a small number of tissue groups. Note
that the generaliry score is computed for each expression program in each MCMC
sample, and then averaged across all samples when REPs are constructed.

The algorithm computes the usage hkj for tissue group k of REP j in sample s

as:
T

he) = "o (g = k)

t=1

Here, qt(s) is the assignment of tissue ¢ to a tissue group in sample s, and vij) is the

tissue usage score described in Section 1.3. The h,gj.) values are then normalized across
all tissue groups in the sample, i.e.,:

/];gj) _ hZJ
J K (s)
Zl:l h’l]
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Here, K is the total number of tissue groups in the sample. The generality score for
expression program j in sample s is then computed as:

K
GS\ = = " h loghy) (1.1)
k=1

The final generality score for a REP is then simply the mean of generality scores
computed in equation 1.1, averaged across all samples in which the relevant expression
programs occur.

1.5 Expression data discretization

Expression data input into GeneProgram was first discretized using a mutual information-
based greedy agglomerative merging algorithm, essentially as described in Hartemink
et al. [11].

For completeness, we describe the discretization algorithm here. We begin by
initializing the algorithm with sets of expression levels for each tissue. We denote
gene i in tissue t by g;;, where there are T tissues. Let r(g;) denote the rank of gene
7 in tissue ¢ based on the continuous expression value of the gene. To initialize the
algorithm, we begin by assigning genes in each tissue ¢ to an ordered set A§°) of Ny,
discrete expression levels that induce uniform blIlS on the gene rankings for the tissue.
That is, A" = (Lfff),... ng\; ), where gy; € L Viff -1 < r(g1) Ny /Gy < l. Here,
G is the number of genes in tissue t that are con81dered expressed (e.g., expression
values greater than some threshold).

Each iteration consists of a set of trial merges, in which adjacent levels are merged
and a score is computed. For iteration ¢ and for each trial h, the adjacent levels

h and h + 1 are mer ed formlng a new set of levels Wlth one less element, i.e.,

—1 1 1
(LY, Ay LY h+1 L ?th%), . ’_LE?NL)jq))‘ Let e\ denote the discrete vec-
tor of expressmn levels for tissue t for iteration ¢ of the algorithm and trial merge

h. That is, egq) = [ iff g is in level [ for trial merge h and g; is expressed

in the tissue (otherwise, we set egh) = 0). The score for a trial merge h is the

mutual information between all palrs of vectors of discretized expression data, i.e.,
Ztl 1D atyot, MI(eg1 ), §2 ). At each iteration, the single merge operation that
produces the highest score is retained. Note that because the algorithm is greedy, its

run-time is O(N?T?).

1.6 Synthetic data

In creating synthetic data, we sought to simulate important features of real microarray
data profiling mammalian tissues. Thus, we assumed noisy data in which there were
several distinct populations of related tissues using different sets of co-expressed genes.

We generated four gene sets used by 40 tissues divided equally among four tissue
populations. Each gene set contained 40 genes with varying mRNA levels; gene sets

10



gene set no. | tissue pop. 1 | tissue pop. 2 | tissue pop. 3 | tissue pop. 4
1 30 25 3 3
2 3 30 25 3
3 ) 3 37 20
4 3 3 20 20

Table 1.2: Tissue population means for synthetic data. Each tissue population was asso-
ciated with a mean vector of the numbers of genes to be used from each gene set. For a
tissue from a population, the number of genes to be used from a gene set was sampled from
a Poisson distribution using the population mean.

three and four overlapped in 10 genes. The simulated underlying mRNA level m,; for
gene 7 in gene set j was generated as m;; ~ round (1000 * Gamma(3, 2)).

Each tissue population k was associated with a mean vector N of the numbers
of genes to be used from each gene set (see Table 1.2 for the mean vectors used to
generate the simulated data). For a tissue ¢ from population k, the number of genes
to be used from gene set j was sampled from a Poisson distribution with parameter
Nkj'

Genes were picked to be expressed from each set used by the tissue. Genes were
picked without replacement such that the probability of picking gene ¢ from gene set
7 for tissue t when [ genes had already been picked was:

0 _ log m;
ti ZlﬁéGiéil) 10g M

Where genes were picked sequentially and Gg-_l) denotes the collection of the first
[ — 1 genes picked from gene set j for tissue . The probability is zero if the gene had
already been picked. Finally, the observed expression value e; for gene ¢ in tissue ¢
was generated as:

it = QipLyijmi; + by

Here, I;; is an indicator denoting whether gene ¢ from gene set j was picked by
tissue t, and a;; and b; are multiplicative and additive noise respectively. Noise was
generated with a;; ~ lognormal(0,0.1) and b;; ~ lognormal(log(200),1). The mean
and scale of noise were chosen to approximate Affymetrix microarray data (see [18]).

We note that our scheme for simulating data does not simply recapitulate the
assumptions present in the GeneProgram model (e.g., it does not assume discrete
and independent “units” of expression signal and it introduces microarray-like noise).
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APPENDIX A

Dirichlet Processes Overview

A.1 Introduction

The task of assigning data to clusters is a classic problem in machine learning and
statistics. A common approach to this problem is to construct a model in which data
is generated from a mixture of probability distributions.

In finite mixture models, data is assumed to arise from a mixture with a pre-
determined number of components [14]. The difficulty with such models is that the
appropriate number of mixture components is not known a priori for many modeling
applications. This issue is generally addressed by constructing a series of models
with different numbers of components, and evaluating each model using some quality
score [14].

An alternate, fully Bayesian approach is to build an infinite mixture model, in
which the number of mixture components is potentially unlimited, and is itself a
random variable that is part of the overall model. Obviously, only a finite number
of mixture components can have data assigned to them. However, we still imagine
the data as arising from an infinite number of components; as more data is collected,
more components may be used to model the data more accurately. Thus, the infinite
mixture model is a nonparametric model, in the sense that the number of model
parameters grows with the amount of data. The challenge with such a model is how
to place an appropriate prior on the infinite number of mixture component parameters
and weights.

The Dirichlet Process (DP), a type of stochastic process first introduced in the
1960’s [9] and originally of mostly theoretical interest |7, 8], has recently become an
important modeling tool as a prior distribution for infinite mixture models. In this
appendix, we will introduce the main concepts of DPs necessary to understand the
GeneProgram model. In this regard, we will focus on a constructive definition of DPs
in the context of priors for infinite mixture models. This development, which avoids
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measure theory, closely parallels that presented by [16] and [19].

A recent extension to the standard DP model is the Hierarchical Dirichlet Process
(HDP), in which dependencies are specified among a set of DPs by arranging them
in a tree structure [21]. HDPs are useful as priors for hierarchical mixture models, in
which data is arranged into populations that preferentially share the usage of mixture
components. Here, we will discuss the original HDP formulation by Teh et al. in the
context of infinite mixture models.

The use of DPs for real-world applications is predicated on practical inference
methods. A great advance in this regard has been the development of efficient Markov
Chain Monte Carlo (MCMC) methods for approximate inference for infinite mixture
models using DP priors [20, 17, 19]. Although other approximate inference methods
have been developed [15, 4, 13], MCMC remains the most widely used and versa-
tile method. In particular, efficient MCMC schemes have been developed for HDP
models [21], and can be readily extended for the GeneProgram model. Thus, our
discussion of DP inference in this appendix will be restricted to MCMC methods.

The remainder of this appendix is organized as follows. First, we describe how
Dirichlet Processes arise as priors in terms of the infinite limit of mixture models.
Next, we describe the extension of DPs to HDPs. Finally, we describe basic MCMC
sampling schemes for DPs and HDPs.

A.2 Probability models

A.2.1 Bayesian finite mixture models

We begin by defining a typical Bayesian finite mixture model, which we will sub-
sequently extend to the infinite case. Figure A-1 depicts the model using standard
graphical model notation with plates. The model consists of J mixture components,
where each component j has associated with it a mixture weight denoted 7; and a
parameter denoted 6;. Assume we have N data points denoted x;, where 1 <7 < N.
Each data point is assigned to a mixture component via an indicator variable z;, i.e.,
the probability that data point ¢ is assigned to component j is p(z; = j | w) = 7, or
z; |w ~ Multinomial(- | 7). The conditional likelihood for each data point may then
be written as:
p(xi |z = j,0) = F(xi | 6;)

Here, F(- | -) is a probability density function parameterized by 6.

To complete the model, we need to define prior distributions over the parame-
ters. We will assume that the component parameters are drawn i.i.d. from some
base distribution H, i.e., 8; ~ H(-). We also need to specify a prior distribution for
the weight parameters. As is typical for Bayesian mixture models, we will assume a
symmetric Dirichlet prior on the mixture weights, i.e., w | J, a ~ Dirichlet(- | o/ .J).
One consequence of using a symmetric prior is that it is not sensitive to the order of
the component parameters. Note that the Dirichlet prior is conjugate to the multi-
nomially distributed weights, so that the posterior is also a Dirichlet distribution.
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To summarize, our J-dimensional mixture model is defined as:
m | a, J ~ Dirichlet(- | a/J)

0,1 H ~ H()
z; | ™ ~ Multinomial(- | 7)

xi|zi=7j,0 ~F(-]0;)

OENO
O |,
OF

Figure A-1: A graphical model depiction of a finite mixture model with J mixture com-
ponents and N data items. Circles represent variables, and arrows denote dependencies
among variables. Vectors are depicted with bold type, and observed variables are shown
inside shaded circles. Rectangles represent plates, or repeated sub-structures in the model.

In mixture models, we are primarily interested in knowing which component each
data point ¢ has been assigned to—the weights 7 are to some extent “nuisance” pa-
rameters. It is possible to derive closed form expressions for the data point assignment
variable posterior distributions with the mixture weights integrated out. These pos-
terior distributions will be particularly useful in the extension to the infinite mixture
model. Note that although the assignment variables z are conditionally independent
given the weights, they become dependent if we integrate out the weights (i.e., the
probability of assigning a data point to a particular component depends on the as-
signments of all other data points). As it turns out, the probability of assigning data
point 7 to some component j given assignments of all other data points can be written
as a simple closed form expression (see [19]):

bz — i 200 ) / p(z; = j | ©)p(m | 2o, @, J)dre
p( | 2.0, J) o plz_s | m)p(re | @, J)
o p(z = | 20, ) / p(zi = j | ®)p(zs | ®)p( | @, J)dn
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n;' +afJ
N—-1+4+a«a

Here, z_; denotes the assignments of all data excluding data point 7, and n;’ denotes
the number of data points assigned to component j excluding data point i. The
second line of the derivation follows simply from Bayes’ theorem. The final line of
the derivation follows from conjugacy between the Dirichlet prior on the weights and
the multinomial distribution on the assignment variables. Thus, the density function
under the integral is that of a non-symmetrical Dirichlet distribution, allowing us to
derive the final closed form expression.

=plz,=j|z_,0,J) x (A1)

A.2.2 Infinite mixture models and Dirichlet Processes

In this subsection we show how the Dirichlet Process arises as a prior for infinite
mixture models.

Figure A-2 depicts an infinite mixture model using standard graphical model no-
tation with plates. As can be seen from the figure, the model is almost structurally
identical to the finite version. The distinguishing feature is that the weight and
parameter vectors are now infinite dimensional.

The challenge with this model is then to define an appropriate prior for the in-
finite dimensional parameters and weights. As with any mixture model, the infinite
dimensional weights must sum to one. A probability distribution that generates such
weights is the stick-breaking distribution, denoted Stick(«), where « is a scaling or
concentration parameter (discussed in more detail below). This distribution is de-
fined constructively. Intuitively, we imagine starting with a stick of unit length and
breaking it at a random point. We retain one of the pieces, and break the second
piece again at a random point. This process is repeated infinitely, producing a set of
random weights that sum to one with probability one [20]. To be more precise, the
Jth weight 7; is constructed as:

7 | a ~ Beta(l, )

j—1
T =T} H(l — )
1=1

The infinite mixture model can be constructed using the stick-breaking distribu-
tion as a prior on the mixture weights and the base distribution H as a prior on the
component parameters. This can be summarized as:

7 | a ~ Stick(«)
0, H ~ H()
z; | ™ ~ Multinomial(- | )
xi |z = 7,0 ~ F(-]0;)

Note that this construction produces a vector w with a countably infinite number
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of dimensions, whose components all sum to one, and H is sampled independently
a countably infinite number of times to generate the mixture component parameter
values.

0
Jo

]
N

Figure A-2: A graphical model depiction of the infinite mixture model. Circles represent
variables, and arrows denote dependencies among variables. Vectors are depicted with bold
type, and observed variables are shown inside shaded circles. Rectangles represent plates,
or repeated sub-structures in the model.

To establish the connection between Dirichet Processes and the model described
above, we consider the distribution over all possible component parameter values for
the infinite mixture model. This distribution will be non-zero at a countably infinite
number of values. Formally, we denote this distribution by G' and can write it as:

GY) = Z%ﬁ(?ﬂ —0;)

Here, 1) is an arbitrary parameter value, and §(-) is the standard delta-function, which
is non-zero only when its argument is zero.

Each distribution G thus constructed can be viewed as a sample from a stochastic
process, which can in fact be proven to be the Dirichlet Process (see [12] and [20]).
In general, we will characterize a Dirichlet Process by a scalar parameter «, called
the concentration parameter, and a base distribution H. A sample from a Dirichlet
Process, which we denote G |or, H ~ DP(«, H), is thus a distribution that is non-zero
over a countably infinite number of values (with probability one). As we have seen,
each sample effectively parameterizes an infinite dimensional mixture model.

The concentration parameter « affects the expected number of mixture compo-
nents containing data items when the DP is used as a prior for the infinite mixture
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model. As shown in [2], the expected number of non-empty mixture components J
depends only on « and the number of data points N:

N
1 N
E[J|04,N]:oz2—%aln( +a)

=J-1

Thus, we see that the number of non-empty components grows approximately as the
logarithm of the size of the data set. Further, we see that the number of components
grows as the concentration parameter « increases.

To make our model fully Bayesian, we would like to treat the concentration pa-
rameter « as a random variable and place a prior on it. The Gamma distribution is
commonly used as a prior for «, in part because efficient inference is possible with
this prior, and also because appropriate parameter choices result in a relatively unin-
formative prior [16]. Thus, we place a Gamma prior on « with hyperparameters a®,
ie., a|a®* ~ Gamma(a$,ay).

A.2.3 Hierarchical Dirichlet Process models

In this section, we describe the Hierarchical Dirichlet Process (HDP) models intro-
duced by Teh et al. [21]. As in the previous section on DPs, we will present HDPs
in terms of priors for infinite mixture models. We will describe only a two-level hier-
archical model for clarity; additional levels are simply added by applying the model
construction process recursively.

Figure A-3 depicts a basic HDP using standard graphical model notation with
plates. In HDP models, we assume that data is divided into T subsets, each consisting
of N; data points denoted x;;, where 1 < ¢t < T and 1 < i < N;. Each such data
set division is modeled by an infinite mixture model with weights 7, and component
assignment variables z;;. These infinite mixture models are not independent; the
mixtures share component parameters @ and a common Dirichlet Process prior.

The dependencies among the infinite mixture models can be understood in terms
of a construction using the stick-breaking distribution. Beginning at the top of the
model, we imagine drawing a sample G from a Dirichlet Process, i.e., G | ag, H ~
DP(ag, H). Recall that we can write this sample as:

o0

Gw)=>_ (-0

=1

Here, 6; are drawn i.i.d. from the base distribution H, and 3° | ag ~ Stick(ay).

We next form a second DP using the sample G itself as a base distribution, i.e.,
we construct DP(ay, G). We then generate i.i.d. samples from this DP for each of
the T sub-models, i.e., G; | @y, G ~ DP(ay, G). Each sample can be written as:

Giw) = > myd( — b))
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Figure A-3: A graphical model depiction of the Hierarchical Dirichlet process represented
as an infinite mixture model. Circles represent variables, and arrows denote dependencies
among variables. Vectors are depicted with bold type, and observed variables are shown
inside shaded circles. Rectangles represent plates, or repeated sub-structures in the model.

T

Notice that these distributions must necessarily be non-zero only at the same points
0; as G is. We have now constructed a set of 7" dependent infinite mixture models,
where each model has separate (but dependent) weights 7r; and shared component
parameters 6.

It can be shown that the weights 7r; can be constructed via a stick-breaking process
using the top-level weights 3° (see [21]):

J
m;; ~ Beta <alﬁ§), oy (1 — Zﬁf))
=1



A.3 Markov Chain Monte Carlo inference for in-
finite mixture models

A.3.1 Single level infinite mixture models

Markov Chain Monte Carlo (MCMC) algorithms are general tools for approximat-
ing posterior distributions of models. With these methods, one alternately samples
from the distributions for subsets of variables conditioned on the remaining variables.
Given some mild constraints on the model distributions, the approximation converges
to the true posterior distribution in the large sample limit [10]. The utility of MCMC
methods hinges on the ability to sample from a set of conditional distributions more
efficiently than sampling from the full posterior.

In the case of infinite mixture models using a DP prior, sampling can be made
efficient by exploiting a “trick” that requires tracking of only a finite number of non-
empty mixture components and the data points already assigned to them. Figure A-4
presents the overall MCMC sampling scheme for single level infinite mixture models.

Repeat for all data items i =1...N:
Sample z;, the assignment of the data item to a mixture component,
from its posterior, i.e., p(z; | z_;, @, 0)
If the data item has been assigned to a new component, sample a new
mixture component parameter 6, from its posterior

Repeat for all non-empty mixture components j =1...J:
Sample the component parameter ; from its posterior

Sample the DP concentration parameter o from its posterior

Figure A-4: One iteration of the basic MCMC sampling scheme for an infinite mixture
model using a Dirichlet Process prior.

The key MCMC sampling step for Dirichlet Processes involves picking assignments
of data points to mixture components. We sample the assignment of a data point ¢
conditioned on the other variables from the distribution given by:

p(zi ‘ z_;,Q, 97X) X p(Zl | Z_Z',Ck)p(x | z, 9) (AQ)

The proportionality simply follows from Bayes’ theorem. Recall from equation A.1
that for finite mixture models, we can write p(z; = j | z_;, @, J) in closed form:

n'+afJ
p(ZZ:j | Z_i,O./,J) X ]\;——14—/04

For the case of infinite mixture models, and in which n]_Z > 0 (i.e., the jth component
of the mixture is non-empty), it can be proven that this distribution converges to
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(see [19]): .

n.
: j
z,=J|z 5, a) X ———— A3
Pz =125 0) x 2 — (43)
For infinite mixture models, we must consider the probability that a data point
does not belong to one of the mixture components containing other data points. That
is, we will need to calculate p(z; # z,V 1 # i | z_;,«). It can be proven that this
probability is given by (see [19]):

«

P # 2Vl A1 2o, a) o

(A.4)

We can thus combine equations A.2, A.3 and A.4 to obtain the posterior distri-
butions for the assignment variables:

—1

n .
p(zi=j|z_i,a,0,x) x N1 ap(xl |6;) forn;" >0 (A.5)
. (0]
p(ZZ' 7£ Zl,Vl 7£ 7 | Z,Z',OJ,H,X) X N——H—a /F(XZ ’ w>H(¢)d¢ (A6)

Thus, for each iteration, we sample the mixture component assignments for all
data points using equations A.5 and A.6. For the first J components already contain-
ing data items, we use equation A.5 to compute the assignment probability. We use
equation A.6 to compute the probability of assigning the data point to a new mixture
component. Notice that in equation A.6, we integrate over the mixture component
parameter, as any component parameter is possible for a new component. Sampling is
most efficient when F'(-) and H(-) are conjugate. However, in cases of non-conjugacy
of these distributions, Monte Carlo methods may be used [17, 19].

We also need to sample from the posterior for the concentration parameter a.. It
can be shown that the conditional distribution for « is given by (see [16]):

p(a | J,N,a%) < ot/ 1e72B(a, N)
Here, B(:,-) is the standard Beta function defined as:

[(uw)l(v)

Bl = Turo)

1
=/ (1 —n)"ldn
0

Escobar and West describe an efficient sampling scheme for o [6]. They noted
that p(a | J, N,a®) can be written as a marginalization over an auxiliary variable 7:

1
p(a | J, N, a) / p(asn | J,N)dy
0

pla,n | J,N) o a®i /= emsepa =i (1 — )
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From the joint distribution, we can see that:
pla|n,J,N,a%) x Gamma(«a | af + J — 1,a5 — Inn)

p(n | o, J,N) o< Beta(n | a, N)

Thus, by sampling from the above two conditional distributions, we can sample from
the posterior for a to update the concentration parameter during the MCMC sampling
iterations.

A.3.2 Hierarchical Dirichlet Process models

Teh et al. described an MCMC method for HDP infinite mixture models that uses
auxiliary variables to make sampling from the conditional distributions efficient [21].
Figure A-5 provides an overview of the sampling scheme.

Repeat for all data subsets ¢ = 1...7 and data items ¢ =1... N:
Sample z;;, the assignment of data item ¢ from subset ¢ to a mixture component,
from its posterior, i.e., p(zy | z_;, 8°, 0, %, ay)
If the data item has been assigned to a new component, sample a new
top-level mixture weight 89 from the stick-breaking distribution and
a new mixture component parameter 6, from its posterior

Repeat for all non-empty mixture components j =1...J:
Sample the component parameter ; from its posterior

Sample the top-level mixture weights 3° from their posterior

Sample the concentration parameters ag and a4 from their posteriors

Figure A-5: One iteration of the basic MCMC sampling scheme for the Hierarchical Dirich-
let Process mixture model with two levels.

The first task is to sample the data point assignment variables, z. The method
for this is similar to that used for ordinary Dirichlet Process mixture models. We
begin by considering a finite mixture model of dimension J and integrating out the
individual mixture weights 7r; to obtain the conditional probability of z given 3°:

T

J Q_|_ y
p(z| 8" ) H F (o + Nt H (Oérl(ﬁojlﬁogl : (A1)

t=1

Here, N; denotes the number of data items in subset ¢, and n; represents the number
of data items from subset ¢ assigned to mixture component j. It can be shown that in
the limit of an infinite mixture model, the conditional probability has a particularly
simple form:

p(zti :] | Z—i?ﬁoa al) X alﬁ;‘) + n;z
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By combining this with the conditional likelihood for data points, F'(- | -), we obtain
the posterior distribution for assigning data points to mixture components:

p(zi = | 2-:,8°, 0, %, a1) o< (3] + 1" ) F (i | 0)) (A.8)

This equation holds if j is a non-empty component. The posterior distribution for
assigning a data point to a new component is given by:

Pz #za V1 £i ]z, 0,x 1) x (alﬁg)/F(Xti | ) H (¢)dyp (A.9)

Here, we define 80 = 1 — 22]:1 3P, where there are J components with data points
assigned to them. As with ordinary DPs, Monte Carlo methods may be used if F(- | -)
and H(-) are non-conjugate distributions.

So, to sample the data point assignments we use equations A.8 and A.9. If a data
point is assigned to a new component, we must also generate a new weight ﬁf} 41 using
the stick-breaking distribution, i.e., we sample b ~ Beta(1, ap) and set 35, < b3?.

To sample from the model posterior, we also must sample the top-level weights 3°.
The method for this relies on a “trick” using auxiliary variables. For the derivation,
we need to use a general property of ratios of Gamma functions given by:

n

N?(—l_)a) = mzos(n, m)a™ (A.10)
Here, n and a are natural numbers. In equation A.10, the ratio of Gamma functions
has been expanded into a polynomial with a coefficient s(n,m) for each term. These
coefficients are called unsigned Stirling numbers of the first kind, which count the
permutations of n objects having m permutation cycles (see [1]). By definition,
s(0,0) =1, s(n,0) =0, s(n,n) = 1 and s(n,m) = 0 for m > n. Additional coefficients
are then computed recursively using the equation s(n+1,m) = s(n,m—1)+ns(n, m).

Note that the 8° weights in the conditional probability p(z | 3°) in equation A.7
occur as arguments of ratios of Gamma functions. These ratios can be expanded to
yield polynomials in the 3° weights:

T(af) +ny) -
Fl(a—lﬁjo) = Z s(ntj,mtj)(ozlﬁ?) J (All)

me =0

An efficient sampling method can be derived by introducing m as auxiliary variables.
The conditional distributions for sampling m and B° can be shown to be:

p(my =m | z,m_y;, %) o s(ny, m)(ca 39" (A.12)

J

p(B° | z,m) o (B2)*~! H@Zt il o Dirichlet(z My thj, ap)  (A.13)
¢ t

J=1
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Finally, we need to sample the concentration parameters oy and oy for the HDP.
As with the regular DP model, we will assume Gamma priors on the concentration
parameters.

For ay, it can be shown that:

I'(ap)

p(J =J | ao,m) X S(M, J)aojm

Here, M =37, >" ;my;j and J is the number of non-empty mixture components. Com-
bining the above equation with the prior for aq yields the conditional probability for
ap, which can be sampled using the same method as described for sampling concen-
tration parameters for regular DPs.

Sampling a; requires the introduction of two additional auxiliary variables w and
b. The following update equations can then be derived:

p(wy | aq) oc wit (1 — w)™ !

piby | o) x (ﬁ)

aq

T T
p(a; | w,b) o Gamma(aj"' + Z(Mt —b), a5 — Zlog wy)
t=1

t=1

Here, af* and a5' are the hyperparameters for the Gamma prior on oy and M; =

J
Zj:l Mg
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