Viaud et al. 10.1073/pnas.0700773104.

Supporting Information

Files in this Data Supplement:

SI Figure 7
SI Table 1
SI Table 2
SI Figure 8
SI Movie 1
SI Figure 9




SI Figure 7

Fig. 7. Inhibitory mechanism of LM11.

All nucleotide exchange rates are measured by fluorescence kinetics. (A) Effect of LM11 on spontaneous nucleotide exchange. (B) Effect of LM11 on the dissociation of the nucleotide-free Arf1-ARNO complex by mGTP. (C) Inhibitory effect of LM11 on the apparent activation rate constant (kapp) of 1 mM [Δ17]Arf1 by 50 nM ARNO4M after addition of 10 mM mGTP.





SI Figure 8

Fig. 8.

Arf-GTP pull-down assay.

The VHS-GAP domain of GGA3 fused to GST (GST-GGA3VHS-GAT) was expressed in BL21 Gold E. coli and purified on a Glutathione sepharose 4FF column followed by a gel filtration on a Superdex S75 10/330 GL column (Amersham). Glutathione sepharose 4FF beads were incubated with GST-GGA3VHS-GAT at 4°C for 1 hour with slow rotation, then washed 3 times with 10 volumes of PBS 1X. Binding of GST-GGA3VHS-GAT was verified by SDS/PAGE. HeLa cells were treated with either 100 M of LM11, 100 mM BFA or DMSO during 2 hours at 37°C in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum, GlutaMAX and an antibiotic/antimycotic mixture in 10 cm treated dishes (Nunc). Cells were cleared by one volume of PBS 1X, lysed by 1 ml of 50 mM Tris, pH 7.5/100 mM NaCl/2 mM Mgcl2/0.1% SDS/0.5% sodium desoxycholate/1% Triton X-100/10% glycerol and a protease inhibitors cocktail during 10 min at 4°C with slow rotation, and finally centrifugated at 13,000 ´ g for 10 min at 4°C. The clear lysates were incubated with 50 µl of GST-GGA3VHS-GAT-coated beads for 1 hour at 4°C under slow rotation. The beads were washed 3 times with 10 volumes of washing buffer (50 mM Tris, pH 7.5/100 mM NaCl/2 mM MgCl2/1% NP-40/10% glycerol with protease inhibitors), then resuspended in 30 µl of buffer at 95°C for 5 min before centrifugation at 13,000 ´ g and analysis by SDS/PAGE. Western blot detection of Arf proteins was done with the 1D9 primary antibody (Abcam) and revealed using the SuperSignal West Pico Chemiluminescent Substrate (Pierce Biotechnology). Treatment of HeLa cells with 100 mM LM11 (right lanes) resulted in the inhibition of endogeneous Arf proteins to an extent similar to that seen with BFA (left lane). It is likely, given the abundance of Arf1 relative to other Arf members in cells, that this mostly reflects Arf1 inhibition.





SI Figure 9

Fig. 9. SiRNA silencing of ARNO in MDCK cells.

The targeting sequence of ARNO or a control nonsilencing siRNA was used. MDCK cells were transfected with 150 pmol of ARNO or control siRNA oligonucleotides using Lipofectamine 2000. At 2 days after transfection, MDCK cells monolayers were wounded and the level of ARNO (cytohesin 2) or cytohesin 1 (negative control) was measured at the end of wound healing experiment by immunoblot after immunoprecipitation of the cell lysates using anti-ARNO antibodies.





SI Movie 1a
SI Movie 1b

Movie 1. LM11 inhibits ARNO-dependent migration of MDCK cells. Stably transfected MDCK cells expressing exogenous wt-ARNO were treated with either 0.5% DMSO carrier solvent (a) or 100 µM of LM11 (b). Cell sheet migration after scratch wounding was analyzed by time-lapse videomicroscopy as described in the Materials and Methods.





Table 1

. Experimental HSQC 15N-1H chemical shifts for [Δ17]Arf1-GDP

Residue type

Residue number

N

HN

HA

HA2

New or corrected chemical shift

MET

18

 

 

 

 

 

ARG

19

124.12

9.007

4.885

 

 

ISO

20

124.47

8.67

4.801

 

 

LEU

21

127.17

8.142

5.203

 

 

MET

22

125.42

9.124

5.77

 

 

VAL

23

113.74

8.502

5.222

 

 

GLY

24

101.42

6.537

3.896

2.886

 

LEU

25

123.52

10.19

4.709

 

 

ASP

26

118.35

8.796

4.082

 

 

ALA

27

121.54

10.72

3.947

 

 

ALA

28

122.06

7.518

3.803

 

 

GLY

29

101.53

8.633

3.94

4.074

 

LYS

30

121.44

9.735

3.784

 

 

THR

31

120.52

9.12

4.309

 

 

THR

32

118.15

8.85

4.16

 

 

ISO

33

120.96

7.972

3.211

 

C

LEU

34

116.59

7.879

3.513

 

C

TYR

35

115.13

8.156

4.034

 

 

LYS

36

120.29

8.278

4.025

 

C

LEU

37

115.31

7.697

3.94

 

C

LYS

38

113.03

7.465

3.924

 

C

LEU

39

117.84

8.138

3.946

 

C

GLY

40

103.09

7.344

3.77

4.07

C

GLU

41

119.49

8.304

4.2

 

 

ISO

42

123.06

8.224

4.145

 

 

VAL

43

117.54

7.444

4.14

 

N

THR

44

116.07

7.964

4.717

 

 

THR

45

120.42

9.203

4.529

 

 

ISO

46

122.01

8.43

5.139

 

 

PRO

47

 

 

 

 

 

THR

48

107.45

7.438

4.4

 

 

ISO

49

122.74

7.888

3.691

 

 

GLY

50

112.91

8.755

4.245

4.715

 

PHE

51

121.81

8.258

5.141

 

 

ASN

52

120.72

7.827

4.986

 

C

VAL

53

123.26

8.722

4.565

 

 

GLU

54

125.26

8.815

5.158

 

C

THR

55

112.67

8.944

5.57

 

C

VAL

56

118.14

8.261

4.548

 

C

GLU

57

124.76

8.435

5.274

 

 

TYR

58

124.61

9.054

4.714

 

 

LYS

59

122.9

8.756

3.504

 

 

ASN

60

115.59

8.4

4.58

 

C

ISO

61

121.04

8.664

4.463

 

 

SER

62

119.65

8.368

5.157

 

N

PHE

63

124.38

9.314

5.39

 

 

THR

64

118.39

8.297

4.917

 

 

VAL

65

125.93

9.402

5.53

 

 

TRP

66

121.42

7.65

4.95

 

 

ASP

67

115.85

8.788

5.121

 

 

VAL

68

112.98

7.86

4.91

 

 

GLY

69

106.24

8.253

4.38

3.8

 

GLY

70

109.02

8.735

3.98

4.102

 

GLN

71

118.15

8.532

4.303

 

 

ASP

72

119.75

8.518

 

 

 

LYS

73

 

 

 

 

 

ISO

74

 

 

 

 

 

ARG

75

 

 

 

 

 

PRO

76

 

 

 

 

 

LEU

77

114.98

7.564

3.996

 

 

TRP

78

115.83

7.399

4.07

 

 

ARG

79

114.32

7.08

 

 

 

HIS

80

114.93

9.04

4.23

 

 

TYR

81

114.61

7.444

4.346

 

 

PHE

82

114.62

7.7

4.775

 

 

GLN

83

117.01

7.584

4.139

 

 

ASN

84

116.84

8.89

4.494

 

C

THR

85

115.43

8.002

4.072

 

 

GLN

86

122.94

8.525

4.55

 

N

GLY

87

103.45

7.676

5.03

3.26

 

LEU

88

124.77

9.268

5.191

 

 

ISO

89

123.71

9.573

5.441

 

 

PHE

90

128.16

9.163

5.23

 

 

VAL

91

127.28

8.414

4.614

 

 

VAL

92

122.03

8.799

4.28

 

 

ASP

93

122.9

9.137

4.712

 

 

SER

94

122.52

8.463

4.02

 

 

ASN

95

116.62

9.135

4.739

 

 

ASP

96

118.16

6.959

4.744

 

 

ARG

97

122.98

8.089

3.83

 

 

GLU

98

117.38

8.45

4.16

 

 

ARG

99

113.13

7.402

4.85

 

N

VAL

100

120.17

7.068

3.87

 

 

ASN

101

118.36

8.342

4.45

 

 

GLU

102

121.7

7.719

4.123

 

 

ALA

103

120.65

8.07

4.015

 

 

ARG

104

115.65

8.154

3.52

 

 

GLU

105

116.6

8.096

3.873

 

 

GLU

106

116.03

8.307

4.261

 

 

LEU

107

121.53

8.416

3.522

 

 

MET

108

114.09

8.49

4.038

 

 

ARG

109

118.21

7.986

4.036

 

 

MET

110

117.53

7.697

4.237

 

 

LEU

111

112.91

8.015

3.834

 

 

ALA

112

118.77

7.16

4.28

 

 

GLU

113

117.46

7.37

4.29

 

 

ASP

114

128.04

9.217

4.708

 

N

GLU

115

115.32

9.619

4.19

 

C

LEU

116

113.74

7.395

4.636

 

N

ARG

117

121.65

7.496

4.136

 

 

ASP

118

113.74

8.466

4.924

 

 

ALA

119

121.19

7.238

4.096

 

 

VAL

120

121.48

7.553

4.322

 

 

LEU

121

125.77

8.533

5.525

 

 

LEU

122

127.62

9.243

5.129

 

 

VAL

123

124.75

9.071

5.165

 

N

PHE

124

124.37

8.718

5.818

 

 

ALA

125

127.92

8.685

4.5

 

 

ASN

126

120.57

8.731

5.664

 

 

LYS

127

115.55

7.659

4.56

 

 

GLN

128

111.41

8.014

3.59

 

 

ASP

129

112.62

9.78

4.31

 

 

LEU

130

121.16

7.288

4.508

 

 

PRO

131

 

 

 

 

 

ASN

132

113.72

8.541

4.893

 

 

ALA

133

120.77

7.335

3.813

 

 

MET

134

121.47

8.244

4.188

 

 

ASN

135

117.62

8.726

4.77

 

 

ALA

136

118.21

8.89

3.708

 

 

ALA

137

122.57

8.4

4.033

 

 

GLU

138

120.28

8.343

4.16

 

 

ISO

139

118.09

8.45

3.53

 

 

THR

140

115.89

8.216

3.32

 

 

ASP

141

119.19

7.381

4.415

 

 

LYS

142

117.69

8.592

3.993

 

 

LEU

143

113.74

8.367

4.02

 

 

GLY

144

102.89

7.379

3.68

3.8

 

LEU

145

114.79

7.29

3.085

 

 

HIS

146

111.04

7.997

4.555

 

C

SER

147

111.94

7.564

4.398

 

 

LEU

148

121.38

7.295

4.272

 

 

ARG

149

 

 

 

 

 

HIS

150

 

 

 

 

 

ARG

151

117.35

7.793

4.658

 

 

ASN

152

125.76

9.238

4.96

 

 

TRP

153

120.02

7.899

6.654

 

 

TYR

154

120.35

8.135

3.848

 

 

ISO

155

122.04

7.087

5.167

 

 

GLN

156

125.15

8.878

4.439

 

 

ALA

157

132.16

9.025

4.75

 

 

THR

158

114.78

8.701

5.074

 

 

CYS

159

119.25

8.298

4.96

 

 

ALA

160

131.27

9.455

3.801

 

 

THR

161

102.05

7.1

3.662

 

 

SER

162

113.97

7.574

4.555

 

 

GLY

163

111.11

8.304

4.41

3.252

 

ASP

164

122.66

7.871

4.473

 

 

GLY

165

112.16

8.657

4.714

3.73

C

LEU

166

116.5

7.162

3.691

 

N

TYR

167

115.93

8.47

4.069

 

C

GLU

168

120.98

9.64

3.73

 

C

GLY

169

105.51

8.183

4.053

3.817

 

LEU

170

120.76

8.295

4.07

 

 

ASP

171

120.47

8.901

4.386

 

C

TRP

172

119.51

7.57

3.895

 

N

LEU

173

118.57

8.097

4.091

 

 

SER

174

112.31

8.759

3.854

 

 

ASN

175

117.47

7.797

4.28

 

 

GLN

176

116.08

7.564

3.662

 

 

LEU

177

115.94

7.419

4.185

 

C

ARG

178

 

 

 

 

 

ASN

179

 

 

 

 

C

GLN

180

119.1

7.863

4.292

 

 

LYS

181

126.52

7.938

4.11

 

 

All chemical shifts are reported in ppm. N and C (last column) indicate that the assignment for the residue has been added (N) or corrected (C) compared to that published in ref 1.





Table 2. Experimental chemical-shift variations induced by LM11 for [Δ17]Arf1-GDP.

 

Residue

H1

N1

H2

N2

D

1H

D

15N

L21

8.174

127.467

8.187

127.423

0.013

0.044

M22

9.147

125.616

9.145

125.533

-

0.083

L34

7.876

116.575

7.9

116.628

0.024

0.053

Y35

8.145

115.122

8.159

115.106

0.014

-

L37

7.691

115.455

7.685

115.338

0.006

0.117

K38

7.462

113.177

7.441

112.876

0.021

0.301

L39

8.154

117.959

8.158

117.796

-

0.163

I42

8.243

123.011

8.256

123.117

0.013

0.106

V43

7.505

117.425

7.524

117.383

0.019

0.042

V53

8.747

123.33

8.768

123.464

0.021

0.134

T55

8.955

112.496

8.954

112.638

-

0.142

V56

8.261

117.843

8.293

118.07

0.032

0.227

E57

8.415

124.632

8.423

124.706

0.008

0.074

Y58

9.024

124.537

9.009

124.559

0.015

-

I61

8.558

120.618

8.574

120.666

0.016

0.048

F63

9.287

124.039

9.273

124.082

0.014

0.043

Q83

7.656

117.066

7.646

117.062

0.01

-

N84

8.885

116.57

8.902

116.633

0.017

0.063

G87

7.747

103.671

7.728

103.64

0.019

0.031

L88

9.261

124.765

9.264

124.923

-

0.158

I89

9.562

123.703

9.569

123.871

0.007

0.168

F90

9.127

128.109

9.139

128.119

0.012

-

L166

7.137

116.458

7.146

116.532

0.009

0.074

Y167

8.481

115.893

8.508

115.946

0.027

0.053

E168

9.704

121.275

9.692

121.092

0.012

0.183

D171

8.862

120.349

8.869

120.443

0.007

0.094

W172

7.588

119.506

7.565

119.411

0.023

0.095

L173

8.095

118.587

8.086

118.613

0.009

-

S174

8.756

112.384

8.741

112.311

0.015

0.073

N175

7.803

117.436

7.788

117.31

0.015

0.126

Q176

7.551

116.057

7.545

116.003

-

0.054

Chemical shifts are given in the absence (H1, N1) or in the presence (H2, N2) of LM11. All chemical shifts are reported in ppm. Resolution is 0.006 ppm and 0.03 ppm for 1H and 15N chemical shifts, respectively.

1.

Seidel RD, 3rd, Amor JC, Kahn RA, Prestegard JH (2004) J Biol Chem 279:48307-48318.