Assay components						Activity*								
Li	ne													
	$\mathrm{Av1}^\dagger$	NifZ Av2 ^w		ATP	FeMoco	C ₂ H ₄ formation		H ₂ formation		NH ₃ formation		H ₂ formation		Average,
						under C ₂ H ₂ /Ar		under Ar		under N ₂		under N ₂		%
1	$\operatorname{Avl}^{\Delta nifB}$	_	_	_	+	1,014 <u>+</u> 29	(100)	998 <u>+</u> 31	(100)	633 <u>+</u> 6	(100)	223 <u>+</u> 34	(100)	100
2	$\operatorname{Av1}^{\Delta nifZ\Delta nifB(+Av2/A)}$	ГР) <u> </u>	_	_	+	491 <u>+</u> 6	(48)	514 <u>+</u> 15	(52)	320 <u>+</u> 6	(51)	100 <u>+</u> 5	(45)	49
3	$\operatorname{Av1}^{\Delta nifZ\Delta nifB(+Av2/A)}$	^(P) +	—	_	+	470 <u>+</u> 25	(46)	479 <u>+</u> 20	(48)	287 <u>+</u> 2	(45)	106 <u>+</u> 9	(48)	47
4	$\operatorname{Av1}^{\Delta nifZ\Delta nifB(+Av2/A)}$	^(P) +	_	+	+	466 <u>+</u> 16	(46)	470 <u>+</u> 15	(47)	310 <u>+</u> 22	(49)	112 <u>+</u> 4	(50)	48
5	$\operatorname{Av1}^{\Delta nifZ\Delta nifB(+\mathrm{NifZ})}$	_	_	_	+	518 <u>+</u> 28	(51)	523 <u>+</u> 66	(52)	330 <u>+</u> 32	(52)	106 <u>+</u> 6	(48)	51
6	$\operatorname{Av1}^{\Delta nifZ\Delta nifB(+\mathrm{NifZ})}$	_	+	_	+	479 <u>+</u> 35	(47)	526 <u>+</u> 10	(53)	324 <u>+</u> 12	(51)	94 <u>+</u> 21	(42)	46
7	$\operatorname{Avl}^{\Delta nifZ\Delta nifB(+\mathrm{NifZ})}$	_	+‡	$+^{\$}$	+	803 <u>+</u> 17	(79)	772 <u>+</u> 42	(77)	585 <u>+</u> 37	(92)	201 <u>+</u> 10	(90)	85

Table 5. Determination of the sequence of events in P-cluster maturation

Activities of C_2H_4 formation under C_2H_2/Ar , H_2 formation under Ar, NH_3 formation under N_2 , and H_2 formation under N_2 are expressed as nmol per min per mg of protein. Percentages relative to $Av1^{\Delta nifB}$ (line 1) are given in parentheses. Average activities are expressed as percentages only.

*The lower detection limits were 0.01, 0.02, 0.001, and 0.02 nmol per min per mg of protein for C_2H_4 formation under C_2H_2/Ar , H_2 formation under Ar, NH₃ formation under N₂, and H₂ formation under N₂, respectively

[†]Note that both $Av1^{\Delta nifZ\Delta nifB (+Av2/ATP)}$ and $Av1^{\Delta nifZ\Delta nifB (+NifZ)}$ can be activated in assays containing NifZ, $Av2^{wt}$, and MgATP to an average substrate reduction activity of 82% and 87%, respectively.

[‡]No P-cluster formation was observed if $Av2^{wt}$ was replaced by $Av2^{M156C}$; whereas $Av2^{E146D}$ was fully competent as a replacement for $Av2^{wt}$ in P-cluster formation. These results are consistent with those from Table 3 (lines 8-9).

[§]No P-cluster formation was observed if ATP was replaced by ADP, AMPPNP, or ATPγS. These results are consistent with those from Table 3 (lines 3-5).