
Data for the B. subtilis metabolic network

Supplementary Figure 4 Bacillus subtilis central metabolic network

The numbers in the figure are those of reactions shown in **Supplementary Table 1**. The gene name is representative of the genes related to the reaction. The metabolites indicated by squares, e.g., B (biomass), Glc_ext (environmental glucose) and Ac_ext (environmental acetate), are external. All other metabolites, enclosed by rounded rectangles, are internal.

B. subtilis is an important model microorganism in the field of metabolic engineering for the production of riboflavin or acetoin [1]. A typical biochemical network was reconstructed where there are 30 metabolites and 31 reactions for *B. subtilis* grown on glucose. The *pta*(-) knockout and acetolactate synthase (*als*) overexpressing mutant of *B. subtilis* RH33::[pRB63] was denoted as *B. subtilis* RH36 which was constructed from parental strain *B. subtilis* RH33 [2]. The flux distributions and enzyme activities of wild type (*B. subtilis* RH33) and mutant (*B. subtilis* RH36) were presented (**Supplementary Table 2**).

- 1. Sauer U, Cameron DC, Bailey JE: Metabolic capacity of *Bacillus subtilis* for the production of purine nucleosides, riboflavin, and folic acid. *Biotechnol Bioeng* 1998, **59**(2):227-238.
- 2. Zhu Y, Chen X, Chen T, Zhao X: Enhancement of riboflavin production by overexpression of acetolactate synthase in a *pta* mutant of *Bacillus subtilis*. *FEMS Microbiol Lett* 2007, **266**(2):224-230.

Supplementary Table 1 Reactions from the *B. subtilis* central metabolic network for the production of riboflavin and acetoin

Abbreviation: GLC Glucose; G6P Glucose-6-phosphate; F6P Fructose-6-phosphate;T3P Glyceraldehyde-3-phosphate; PGA 3-phosphoglyceric acid; PEP Phosphoenol pyruvate; SED7P Seduheptulose-7-phosphate; E4P Erythrose-4-phosphate; RIBO Riboflavin; GLY Glycine; SER Serine; PYR Pyruvate; ACA Acetyl coenzyme; AC Acetate; Cit Citrate; OAA Oxaloacetate ; MAL Malate; FUM Fumarate ; C1 Methyl group bound to tetrahydrofolate ; P5P Pentose-5-phosphate; LAC Lactate; Glc xt External glucose; RIBO ext Riboflavin external; Acetoin ext Acetoin external; LAC ext Lactate external; AC ext Acetate external.

Reaction	Gene name	Enzyme	Chemical reaction
1	glk	Glucokinase	$GLC \Rightarrow G6P$
2	pgi	Phosphoglucoisomerase	G6P <==> F6P
3 pfkA, pfkB		Phosphofructokinase	
	fba	Fructose-16-bisphosphatate aldolase	F6P => 2 T3P
	tpi	Triphosphate isomerase	
4 gapA pgk		Glycelaldehyde-3-phosphate	
		dehydrogenase	$T3P \iff PGA$
	gpmA	Phosphoglycerate kinase	ISP <> PGA
		Phosphoglycerate mutase I	
5	eno	Enolase	$PGA \iff PEP$
6	pyk	Pyruvate kinase	$PEP \Longrightarrow PYR$
7	lpd	Pyruvate dehydrogenase	PYR => ACA + CO2
8	pta, ackA	Acetyl-CoA synthetase	ACA => AC
9	gltA	Citrate synthase	$OAA + ACA \implies CIT +$
			CO2
10	<i>icdA</i>	Isocitrate dehydrogenase	
	suc, lpd	2-ketoglutarate dehydrogenase	CIT => FUM + CO2
	sdhC	Succinyl-CoA synthetase	
		Succinate dehydrogenase	
11	fum	Fumarate hydratase	FUM <==> MAL
12	mdh	Malate dehydrogenase	MAL <==> OAA
13	pck	Phosphoenolpyruvate carboxykinase	OAA => PEP + CO2
14	тае	Malic enzyme	MAL => PYR + CO2
15	gnd	6-phosphoglycononate dehydrogenase	$G6P \Rightarrow P5P + CO2$
16	rpi	Ribose-5-phosphate isomerase A	
	rpe	Ribose phosphate 3-epimerase	$2 P5P \iff S7P + T3P$
	tptA	Transketolase I	
17	talB	Transaldolase B	$S7P + T3P \iff F6P +$
10	1.5		E4P
18	tktB	Transketolase II	$P5P + E4P \iff F6P + T2P$
10			T3P
19	ser	3-phosphoglyceric acid dehydrogenase	$PGA \Rightarrow SER$
20	gly	Serine hydroxymethyltransferase	$SER \iff GLY + C1$
21	gcv	Glycine synthase	$C1 + CO2 \iff GLY$
22	rib	Riboflavin kinase	3 P5P + GLY => RIBO
23	als	Acetolactate synthase	2 PYR => Acetoin
24	pyc	Pyruvate carboxylase	$PYR + CO_2 \Rightarrow OAA$
25	ldh	Lactate dehydrogenase	$PYR \Rightarrow LAC$
26	-	Glucose uptake	Glu ext => GLC
27	-	Materials are used for biomass synthesis.	=> Biomass
28	-	Membrane transport reaction	RIBO => RIBO_ext
29		Membrane transport reaction	Acetoin => Acetoin_ext
30		Membrane transport reaction	LAC => LAC_ext
31	<u> </u>	Membrane transport reaction	$AC \Rightarrow AC_ext$

Supplementary Table 2 Experimental data of flux and enzyme activities in wild type and the mutant in *B. subtilis*

The glucose uptake flux was normalized to 100. The relative enzyme activities in the mutant were normalized by those in the wild type. Enzymes were extracted from the cultured cells and their activities were measured *in vitro*.

1 100.0 100.0 1 2 40.8 43.8 1 3 71.7 72.9 1 4 157.3 158.9 1 5 148.0 149.9 1 6 143.9 146.0 1 7 108.0 34.5 1 8 83.7 0.0 0.0001 9 11.9 22.7 3.3 10 5.7 16.8 2.3 11 5.7 16.8 1 12 5.7 16.7 1 13 0.0 0.1 1 14 0.0 0.1 1 15 58.3 55.3 0.8 16 16.8 15.9 1 17 16.9 15.9 1 18 15.1 14.2 1 19 1.3 1.2 1 20 1.3 1.2 1		Flux in the wild type	Flux in the mutant	Relative enzyme activities in the mutant
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	100.0	100.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	71.7	72.9	1
6 143.9 146.0 1 7 108.0 34.5 1 8 83.7 0.0 0.0001 9 11.9 22.7 3.3 10 5.7 16.8 2.3 11 5.7 16.8 1 12 5.7 16.7 1 13 0.0 0.0 1 14 0.0 0.1 1 15 58.3 55.3 0.8 16 16.8 15.9 1 17 16.9 15.9 1 18 15.1 14.2 1 19 1.3 1.2 1 20 1.3 1.2 1 21 0.4 0.4 1 22 1.6 1.6 1 23 0.6 39.1 4.9 24 17.3 16.7 1 25 0.4 0.4 0.8 26 100.0 100.0 1 27 5.8 5.5 1 28 1.6 1.6 1 29 0.6 39.1 1 30 0.4 0.4 0.4				1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	148.0	149.9	1
8 83.7 0.0 0.0001 9 11.9 22.7 3.3 10 5.7 16.8 2.3 11 5.7 16.8 1 12 5.7 16.7 1 13 0.0 0.0 1 14 0.0 0.1 1 15 58.3 55.3 0.8 16 16.8 15.9 1 17 16.9 15.9 1 18 15.1 14.2 1 19 1.3 1.2 1 20 1.3 1.2 1 21 0.4 0.4 1 22 1.6 1.6 1 23 0.6 39.1 4.9 24 17.3 16.7 1 25 0.4 0.4 0.8 26 100.0 100.0 1 27 5.8 5.5 1 28 1.6 1.6 1 29 0.6 39.1 1	6	143.9	146.0	1
9 11.9 22.7 3.3 10 5.7 16.8 2.3 11 5.7 16.8 1 12 5.7 16.7 1 13 0.0 0.0 1 14 0.0 0.1 1 15 58.3 55.3 0.8 16 16.8 15.9 1 17 16.9 15.9 1 18 15.1 14.2 1 20 1.3 1.2 1 21 0.4 0.4 1 22 1.6 1.6 1 23 0.6 39.1 4.9 24 17.3 16.7 1 25 0.4 0.4 0.8 26 100.0 100.0 1 27 5.8 5.5 1 28 1.6 1.6 1 29 0.6 39.1 1	7	108.0	34.5	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	83.7	0.0	0.0001
11 5.7 16.8 1 12 5.7 16.7 1 13 0.0 0.0 1 14 0.0 0.1 1 15 58.3 55.3 0.8 16 16.8 15.9 1 17 16.9 15.9 1 18 15.1 14.2 1 19 1.3 1.2 1 20 1.3 1.2 1 21 0.4 0.4 1 22 1.6 1.6 1 23 0.6 39.1 4.9 24 17.3 16.7 1 25 0.4 0.4 0.8 26 100.0 100.0 1 27 5.8 5.5 1 28 1.6 1.6 1 29 0.6 39.1 1 30 0.4 0.4 1	9	11.9	22.7	3.3
12 5.7 16.7 1 13 0.0 0.0 1 14 0.0 0.1 1 15 58.3 55.3 0.8 16 16.8 15.9 1 17 16.9 15.9 1 18 15.1 14.2 1 19 1.3 1.2 1 20 1.3 1.2 1 21 0.4 0.4 1 22 1.6 1.6 1 23 0.6 39.1 4.9 24 17.3 16.7 1 25 0.4 0.4 0.8 26 100.0 100.0 1 27 5.8 5.5 1 28 1.6 1.6 1 29 0.6 39.1 1 30 0.4 0.4 1	10	5.7	16.8	2.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	5.7	16.8	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	5.7	16.7	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	0.0	0.0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	0.0	0.1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	58.3	55.3	0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	16.8	15.9	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	16.9	15.9	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	15.1	14.2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1.3	1.2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	0.4	0.4	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	1.6	1.6	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	0.6	39.1	4.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		17.3	16.7	1
27 5.8 5.5 1 28 1.6 1.6 1 29 0.6 39.1 1 30 0.4 0.4 1	25	0.4	0.4	0.8
28 1.6 1.6 1 29 0.6 39.1 1 30 0.4 0.4 1		100.0	100.0	1
29 0.6 39.1 1 30 0.4 0.4 1	27	5.8	5.5	1
30 0.4 0.4 1				
	29	0.6	39.1	1
31 83.7 0.0 1				
	31	83.7	0.0	1