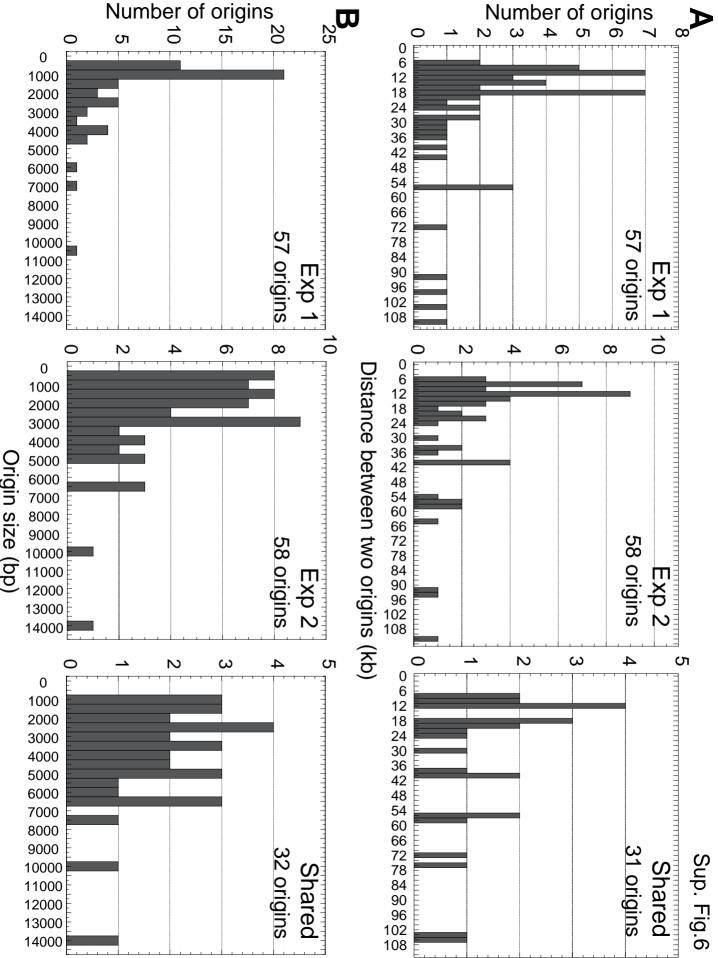
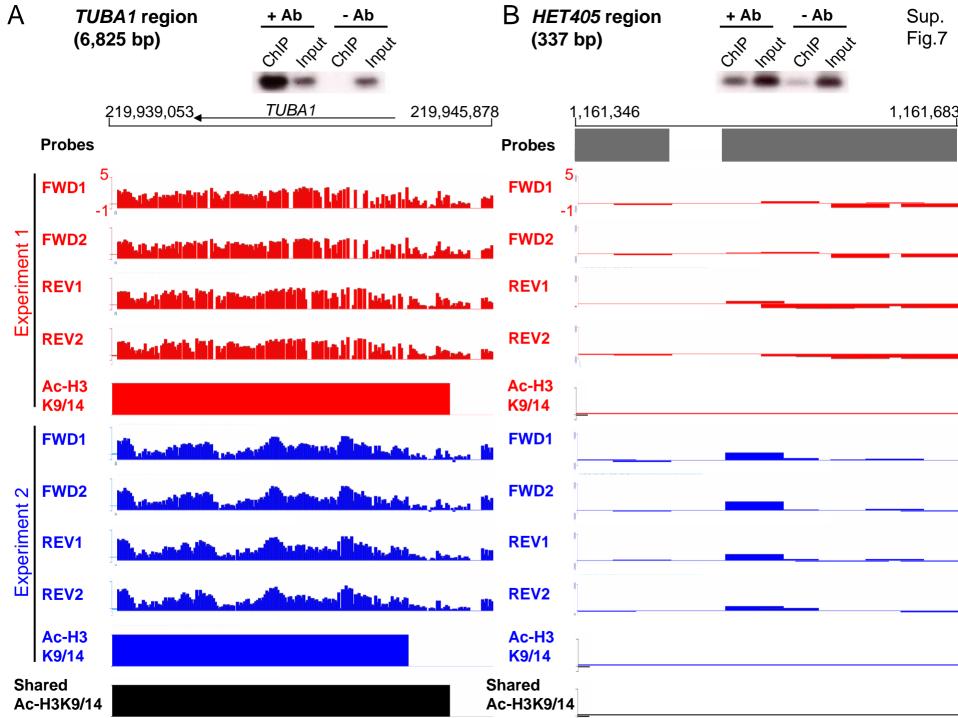
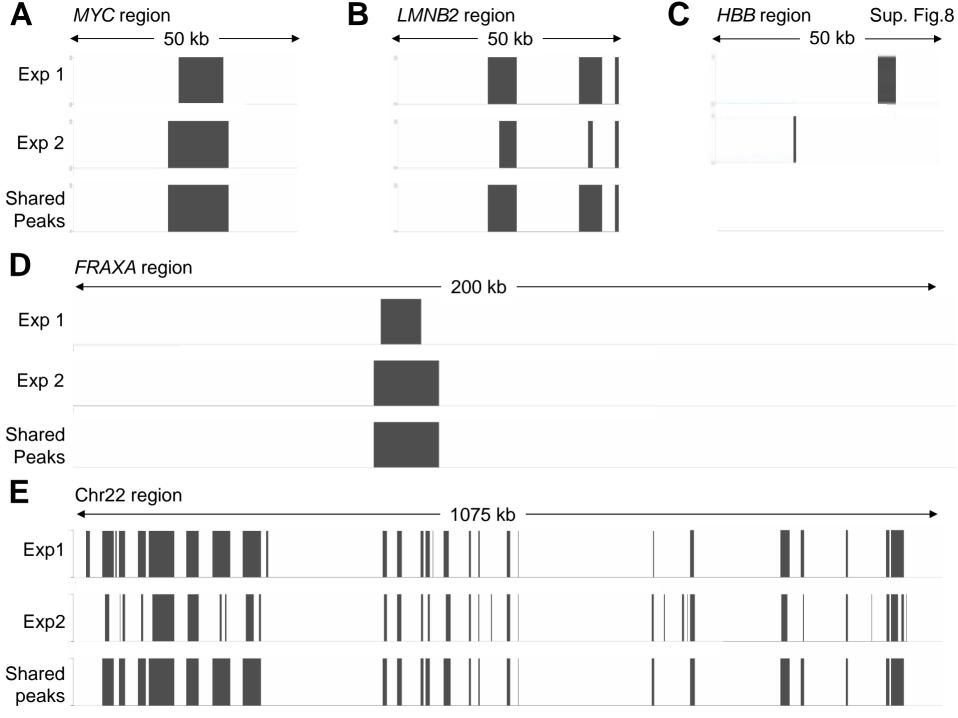


Sup. Fig.2




Sup. Fig.3



Sup. Fig. 5

Lucas et al.

Supplementary Figure Legends

Supplementary Figure 1. Zscore analysis of the microarray data. (A) Distribution of the Z score values obtained for the forward (FWD, in black) and reverse (REV, in grey) duplicated probe sets for the chr22 region. Less than 1% of the FWD and REV probes had a Z score \geq 4. (B) The percentage of data points excluded from the analysis for the FWD (black) and REV (grey) duplicated probe sets when using a cut-off of 3 for the Z score. Of note, ~88% of the Z score values were below 1 (C) (1) Chromosome coordinates along the 50 kb *MYC* region represented on the array. (2) Example of the microarray results for the *MYC* region before the Z score analysis, and (3) after removing all data points with a Z score >3. (4) Location of the data points removed. In panel 2, the arrowheads mark the location of two known origins in the *MYC* region. The different programs developed in this study for Z score transformation as well as for the subsequent analyses are available upon request.

Supplemental Figure 2. Distribution of all of the peaks for experiments 1 and 2 with an FPR \leq 10% present in one (light gray), two (medium gray), three (dark grey), or four (black) of the data sets, for each percentage of qualifying probes (40%-100%) within the 625 nt sliding window used in the analysis. The percentage of peaks found in four of the data sets is indicated above each black bar. The cumulative percentage of peaks present in both three and four of the data sets, which we considered as potential origins, is given in parenthesis. Of note, more than 90% of the putative origins were found when 40% was used as the cut-off for the number of qualifying probes. The remaining 10% were only observed with an FPR \leq 10% at a higher cut-off. As expected, the total number of peaks, as well as the number of peaks found in at least three data sets, decreased with the increasing cut-off value. To examine the impact of the density of probes on the feasibility of mapping origins, we decreased the number of probes on our array

1

in silico from a density of 30 nt from the start of one probe to the start of the next probe, to 120 nt by increments of 30 nt, and applied the peak finding method. This analysis revealed that the number of known origins that were not detected increased with decreasing density of probes (data not shown).

Supplementary Figure 3. Location of the putative origins for the four data sets for the *MYC* region. (A) The upper panel shows the chromosome coordinates, as well as the location of the probes present on the microarray. (B) Each track (FWD1, FWD2, REV1, and REV2) displays the location of the origin peaks found in experiment 1, using a cut-off of 40% of qualifying probes within the sliding window, for each of the data sets after applying the "2 kb-rule" merging method. (C) The track indicates the location of the origin peaks that are shared by the four data sets.

Supplemental Figure 4. Location of origins, chromatin acetylation peaks and genes, replication timing and AT content maps for the chr22 region. (A) Chromosome coordinates and location of the probes present on the microarray. (B) location of origins identified in the two independent experiments 1 and 2, and shaed origins. (C) location of the acetylated chromatin loci (histone H3 K9/14) shared between two independent ChIP experiments. (D) Location of the annotated genes. (E) Timing of replication analysis (Early vs. Late replication) using microarray analysis (White et al., 2004). (F) Percentage of chromosomal AT content. In panel E, the log₂ ratio of (early/late newly-replicated DNA hybridization signals) is plotted on the y axis. In panel F, the AT content is plotted as a 500 bp-sliding window along the region, and 50% AT content is indicated by a horizontal white bar. The open arrowheads in (B) indicate the putative origins tested by real-time PCR analysis.

2

Lucas et al.

Supplemental Figure 5. Specificity of the high-throughput origin mapping method. (A) The upper panel indicates the chromosome coordinates, and the location of the probes for the *MYC* region. The microarray results (FWD1, FWD2, REV1, and REV2, Z score \leq 3) as well as the origin peaks detected are shown for the following three experiments: (B) a test experiment (purple) using nascent strand highly-enriched for Okazaki fragments (smallest fragments <100 bp), (C and D) two independent nascent strand isolations using larger nascent strand DNAs (300-1000 bp). Of note, the nascent strand population used in experiment 2 (blue) was slightly larger in size than the one used in experiment 1 (green). (E) The last track (black) indicates the positions of the origins shared between the two independent experiment 1 only; based on the microarray results, this origin may be a false-negative origin in experiment 2. The right-most dashed line rectangle indicates the position of a peak detected in the test experiment and the experiment 1, but not in experiment 2. This result suggests that this origin is likely a false-positive origin in the experiment 1.

Supplemental Figure 6. (A) Distribution of the average distance between adjacent origins (center-to-center) for all five regions combined, for the two independent experiments 1 and 2 and the shared origins. The very large inter-origin distance (377 kb) on chr22 was not plotted on the graph for the shared peaks. In summary, 86% and 84% of the shared origins of experiment 1 and 2 respectively were \leq 50 kb apart. (B) Distribution of the size of the origins from all five regions combined, for the two independent experiments 1 and 2, and the shared origins. The total number of origins analyzed is indicated in each graph.

Supplemental Figure 7. Specificity of the high-throughput chromatin acetylation mapping method. (A) The hyperacetylated region, *TUBA1*, and (B) the hypoacetylated region, *HET405*

3

Lucas et al.

were used as positive and negative controls, respectively, for our ChIP-on chip experiments. The specificity of the ChIP of Ac-H3 K9/14 verified by PCR, the chromosome coordinates, the location of the arrayed probes, the results (FWD1, FWD2, REV1, and REV2, Z score \leq 3) of the microarray data, the shared Ac-H3 K9/14 peaks for each independent ChIP experiment (1 and 2), and the shared Ac-H3 K9/14 peaks between the two independent ChIP experiments 1 and 2 are shown for each region. The control PCR was illustrated at the top performed on an equal volume of ChIP DNA and input DNA to amplify *HET405* (Forward primer: 5'-

CAGAACTGTTTGTGATGTG-3', reverse primer: 5'-TGTAGTATCTGCAAGAGGAC-3', 35 cycles at 60 °C) and *TUBA1* (Forward primer: 5'-CAGATGCCCAGTGACAAGAC-3', reverse primer: 5'-AGTGTGAGAGAAACCCAGAC-3', 35 cycles at 60 °C). PCR products were resolved on a 1% agarose gel and transferred to the HybondTM-N+ membrane. Southern blot probes were produced by PCR amplification of the *TUBA1* and *HET405* sequences from genomic DNA, and subsequent gel purification and radioactive labeling. Band intensity was quantified by phosphor-imaging. The acetylation ratio was calculated as ChIP Intensity/(Input Intensity*100) since the input DNA was extracted from 1% of the starting lysate.

Supplemental Figure 8. Location of the Ac-H3 K9/14 peaks within the (A) *MYC*, (B) *LMNB2*, (C) *HBB*, (D) *FRAXA*, and (E) Chr22 regions for the independent ChIP experiments 1 and 2, as well as the Ac-H3 K9/14 peaks that are shared by both experiments.

Region Chromosome		Start (bp)	Stop (bp)	Size (bp)	
МҮС	8	128,790,835	128,840,835	50,000	
LMNB2	19	2,354,000	2,404,000	50,000	
HBB	11	5,183,000	5,233,000	50,000	
FRAXA	Х	146,630,000	146,830,000	200,000	
Chr 22	22	28,925,000	30,000,000	1,075,000	
TUBA1	2	219,939,053	219,945,878	6,825	
<i>HET405</i>	9	1,161,346	1,161,683	337	

Supplementary Table 1. Chromosomal Regions Covered on the Microarray Platform

Region	Origins		Origin start (bp)	Origin end (bp)	
			128,803,756	128,804,765	
	Found in Experin	nent 1	128,811,558	128,812,118	
			128,815,174	128,817,331	
			128,832,515	128,833,477	
			128,809,111	128,812,058	
	Found in Experin	nent 2	128,815,102	128,818,705	
			128,822,431	128,825,027	
MYC	Shared by Experimer	at 1 and 2	128,809,111	128,812,118	
			128,815,102	128,818,705	
		STS-EP11 ori (700-850 bp)	128,810,453	128,810,768	
		MYC ori	128,815,936	128,816,304	
	Previously mapped origins	STS-I ori (615-850 bp)	128,818,950	128,819,106	
		STS-J-M ori (615-1500 bp)	128,821,862	128,822,989	
			2,361,076	2,365,214	
	Found in Experin	nent 1	2,379,134	2,380,114	
			2,394,621	2,397,191	
LMNB2	Found in Experin	nent ?	2,374,564	2,384,805	
			2,394,471	2,395,121	
	Shared by Experimer	nt 1 and 2	2,374,564	2,384,805	
			2,394,471	2,397,191	
	Previously mapped origin LMNB2 ori		2,379,085	2,379,352	
	Found in Experin	nent 1	5,209,792	5,210,818	
	r ound in Experim		5,219,144	5,223,314	
			5,184,279	5,187,132	
	Found in Experin	nent 2	5,202,479	5,206,232	
		lient 2	5,210,198	5,211,028	
HBB			5,217,893	5,221,058	
пъъ	Shared by Experimer	nt 1 and 2	5,209,792	5,211,028	
		it 1 and 2	5,217,893	5,223,314	
	Draviously manned ariging	HBB ori 1	5,205,800	5,210,392	
	Previously mapped origins HBB ori 2 (<650-850 bp)		5,225,895	5,226,050	
FRAXA	Found in Experin	nent 1	146,633,555	146,636,361	
			146,643,636	146,646,229	

Supplementary Table 2. Origin Identified by Microarray Analysis

	•			
		146,696,368	146,700,876	
		146,707,372	146,708,160	
			146,717,549	146,719,069
			146,728,517	146,731,718
			146,743,855	146,747,268
			146,751,581	146,753,686
			146,780,483	146,781,523
			146,811,457	146,812,372
		146,816,470	146,819,096	
			146,643,636	146,647,759
			146,696,368	146,702,766
			146,706,006	146,706,896
	Found in Experim	nent 2	146,714,362	146,719,459
			146,740,713	146,747,268
			146,780,483	146,782,891
			146,816,470	146,820,884
			146,643,636	146,647,759
			146,696,368	146,702,766
			146,706,006	146,708,160
	Shared by Experiment	146,714,362	146,719,459	
		146,740,713	146,747,268	
			146,780,483	146,782,891
			146,816,470	146,820,884
	Previously mapped origin	FMR1 ori	146,698,529	146,699,029
Chr22	Found in Experim	nent 1	28,968,247	28,969,137
	1		28,994,037	28,994,976
			29,024,407	29,024,995
			29,039,147	29,040,692
			29,059,018	29,059,818
			29,072,440	29,076,714
			29,142,437	29,143,897
			29,150,302	29,150,986
			29,166,462	29,166,999
			29,203,620	29,204,447
			29,311,351	29,312,264
			29,311,351 29,337,477	29,312,264 29,338,217
			29,337,477	29,338,217
			29,337,477 29,426,404	29,338,217 29,427,354
			29,337,477 29,426,404 29,432,393	29,338,217 29,427,354 29,433,043

	_	_
	29,525,829	29,528,037
	29,530,187	29,531,047
	29,543,826	29,545,057
	29,547,524	29,551,472
	29,603,147	29,603,767
	29,622,826	29,625,126
	29,645,234	29,645,884
	29,650,788	29,657,772
	29,660,345	29,661,603
	29,666,419	29,672,302
	29,674,829	29,678,687
	29,688,494	29,698,952
	29,708,952	29,711,233
	29,811,125	29,811,805
	29,816,089	29,817,039
	29,912,611	29,913,356
	29,916,302	29,917,072
	29,970,575	29,971,015
	29,978,784	29,979,581
	29,990,586	29,992,034
Found in Experiment 2	28,957,459	28,959,388
	28,962,630	28,969,047
	28,977,343	28,978,040
	29,039,387	29,040,752
	29,044,824	29,046,432
	29,048,888	29,049,598
	29,053,497	29,055,863
	29,061,887	29,065,916
	29,073,129	29,073,749
	29,104,370	29,107,594
	29,142,437	29,145,612
	29,155,004	29,155,683
	29,211,414	29,212,124
	29,263,324	29,264,544
	29,292,486	29,297,403
	29,384,317	29,385,760
	29,415,895	29,416,875
	29,524,374	29,526,584
	29,543,406	29,545,027
	29,547,524	29,548,384
	29,603,147	29,605,216
	29,623,006	29,627,974

L			
		29,645,534	29,646,154
		29,655,172	29,658,162
		29,666,419	29,669,523
		29,676,987	29,679,764
		29,685,712	29,699,547
		29,709,372	29,711,353
		29,802,008	29,802,996
		29,807,018	29,808,988
		29,811,155	29,813,830
		29,823,896	29,826,960
		29,839,028	29,840,388
		29,843,726	29,845,474
		29,897,875	29,900,021
		29,916,302	29,917,582
		29,925,441	29,926,806
		29,930,773	29,932,712
		29,967,694	29,971,195
		29,978,904	29,979,761
		29,987,590	29,988,300
		29,995,421	29,999,992
		28,962,630	28,969,137
		29,039,147	29,040,752
		29,072,440	29,076,714
		29,142,437	29,145,612
		29,524,374	29,528,037
		29,543,406	29,545,057
		29,547,524	29,551,472
		29,603,147	29,605,216
	Shared by Experiment 1 and 2	29,622,826	29,627,974
		29,645,234	29,646,154
		29,650,788	29,658,162
		29,666,419	29,672,302
		29,674,829	29,679,764
		29,685,712	29,699,547
		29,708,952	29,711,353
		29,811,125	29,813,830
		29,916,302	29,917,582
		29,967,694	29,971,195
		29,978,784	29,979,761

Supplementary Table 3. Sequence, Chromosomal Coordinates and Amplification Conditions of the Real-Time PCR Primer Sets

Region	Primer	Sequence	Start (bp)	End (bp)	Annealing Temp (⁰ C)	
	-6.8p forward	gagttggcaacccttgatgt	128,808,885	128,808,904	אר ו	2
	-6.8p reverse	gttaggatttcccgcctttc	128,809,139	128,809,158		2
	-0.9p forward	cagcagtttcagaggcaaag	128,814,762	128,814,781	- 61	3
МҮС	-0.9p reverse	cagcagaaggtgatgggtat	128,815,065	128,815,084		5
MIC	orip forward	tacagactggcagagagcag	128,816,612	128,816,631	59/60	2
	orip reverse	atgtatgcacagctatctgg	128,816,805	128,816,824	39/00	2
	+7p forward	ggttctaagatgcttcctgg	128,823,018	128,823,037	59	2
	+7p reverse	tggttgtgaaggcagcagaa	128,823,287	128,823,306	39	2
	-5.9p forward	gctgcgctcaggttaagaag	2,372,931	2,372,950	68	2
	-5.9p reverse	gtgctcacggcagataaggt	2,373,161	2,373,180	00	2
	orip forward	gcgtcacagcacaacctgc	2,379,333	2,379,352	62	3
LMNB2	orip reverse	gaggcagaacctaaaatcaaa	2,379,153	2,379,173	02	3
LIVIINDZ	+3.6p forward	gttaacagtcaggcgcatgggcc	2,383,142	2,383,164	66	3
	+3.6p reverse	ccatcagggtcacctctggttcc	2,382,924	2,382,946	00	3
	+5.5p forward	ctcctcgatgctgacgctac	2,384,872	2,384,891	C 0	3
	+5.5p reverse	taccagtcccaccttccttg	2,385,116	2,385,135	68	3
	-7.7p forward	ctgggcatggaagtcaagtt	146,688,379	146,688,398	63	2
	-7.7p reverse	gagtgccagtttccaagctc	146,688,633	146,688,652	, 03	2
	-1.1p forward	actgtaggggaggagggaga	146,695,034	146,695,053	0.2	2
	-1.1 reverse	tcttttccatggctcaaacc	146,695,287	146,695,306		
	orip_1 forward	acaacagcttacacttggag	146,697,411	146,697,430	0/	2
	orip_1 reverse	ctaatagcactgagttggca	146,697,711	146,697,730		
	orip_2 forward	gcgcgtctgtctttcgaccc	146,698,804	146,698,823	64	2
FRAXA	orip_2 reverse	ccctccaccggaagtgaaacc	146,699,009	146,699,029	04	Z
ГЛАЛА		aggtctcctttggcttctct	146,699,760	146,699,779	63	2
	orip_3 reverse	atggttttagacgctgaagc	146,700,045	146,700,064	05	2
	orip_4 forward	ttggggtcaaccacattttt	146,702,529	146,702,548	58	2
		cgatcccaatcttctcagga	146,702,742	146,702,761	50	2
	+1.5 forward	gagcagtggttcctgttggt	146,704,269	146,704,288	68	4
	+1.5 reverse	ctagcaactgggccaaagag	146,704,450	146,704,469	08	4
	+4.9 forward	aaacctgacaccaccctcag	146,707,695	146,707,714	68	3
	+4.9 reverse	ggcctctctccattccttct	146,707,920	146,707,939	08	3
OSPB2	-2.1 forward	gcaacaagggatgtgaggat	29,600,765	29,600,784	60	3
	-2.1 reverse	tggtccaggctaggaaactg	29,600,991	29,601,010	00	5
	orip_1 forward	cagaatcagcaggagggttt	29,603,144	29,603,163	3	2
	orip_1 reverse	agagggaaagatgaccagag	29,603,420	29,603,439	63	2
		gcagccagataggcaagaac	29,603,693	29,603,712	65	2

	orip_2 reverse	tctcaaggctcagagtgcaa	29,603,957	29,603,976		
	orip_3 forward	tagcccagaccttcaacacc	29,604,677	29,604,696	62	2
	orip_3 reverse	ctctgagcccacatcctctc	29,604,920	29,604,939		
	+0.4p forward	tgccacatcacctcctgata	29,605,623	29,605,642	60	2
	+0.4p reverse	aacctctggatttgcccttt	29,605,869	29,605,888	60	Z
	+2.9p forward	acccctccaagagcttcatt	29,608,136	29,608,155	FC	3
	+2.9p reverse	ggacagctgggctcattaaa	29,608,378	29,608,397	56	3
	-4.3p forward	tgccatgatttggggttatt	29,911,800	29,911,819	56	2
	-4.3p reverse	gtaggccaggacagtggaaa	29,912,007		56	3
		cttctccccttggatgtgaa	29,916,151	29,916,170	58	2
	orip_1 reverse	tggagcctctcctgctacat	29,916,389	29,916,408		
	orip_2 forward	caggatctgggtgactttgt	29,916,460	29,916,479	63	3
	orip_2 reverse	agaagttagaggagcaggtg	29,916,745	29,916,764		
DNE105	orip_3 forward	cacctgctcctctaacttct	29,916,745	29,916,764	63	2
KNF 185	orip_3 reverse	aacagagggtgggttgtcag	29,917,107	29,917,126	63	Z
	orip_4 forward	ctgacaacccaccctctgtt	29,917,107	29,917,126	62	2
	orip_4 reverse	cgaggaggggtcttctctct	29,917,474	29,917,493	02	
	+1.1p forward	tttggcaggttttccatgat	29,918,717	29,918,736	61	3
	+1.1p reverse	cagttgggcaacaagagtga	29,918,968	29,918,987	61	5
	+2.4p forward	ctggccttgttgaccaaagt	29,920,006	29,920,025	60	3
	+2.4p reverse	cttgggaaggtgcaattgtt	29,920,205	29,920,224		3

The FRAXA orip_2 primer set corresponds to the FraX-1d primer set used by Gray et al (2007). The numbers associated with the primer sets adjacent to the origins correspond to the distance in kb from the boundary of the closest origin. Two to four sets of primers (orip_1 to_4p) were used to verify each of the three novel origins.