

Supplemental materials.

Table S1. The sensitivity analyses were based on varying one specific parameter while keeping all others unchanged and observing the effect on Q_{NO} at t = 10 s at steady state. The NOS1 concentration was 0.9 μ M, the O_2 concentration was 100 μ M, and the arginine concentration was 100 μ M.

	k ₁		k ₁		k ₂		k ₃		k ₄		K ₄	
	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}
	· (μΜ ⁻¹ · s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)	(µM ⁻¹ · s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)
Original	6.6	1.16	6.6	1.16	20.8	1.16	20.8	1.16	6.6	1.16	6.6	1.16
Test 1	0.66	1.16	0.66	1.16	2.08	1.15	2.08	0.66	0.66	1.16	0.66	1.16
Test 2	33.0	1.16	33.0	1.16	104.0	1.17	104.0	1.24	33.0	1.16	33.0	1.16
Test 3	66.0	1.16	66.0	1.16	208.0	1.19	208.0	1.26	66.0	1.16	66.0	1.16
	k ₅		k ₅		k ₆		k ₇		k ₈		k ₈ '	
	parameter (µM ⁻¹ · s ⁻¹)	Q _{NO} (µM/s)	parameter (s ⁻¹)	Q _{NO} (µM/s)	parameter (s ⁻¹)	Q _{NO} (µM/s)	parameter (s ⁻¹)	Q _{NO} (μM/s)	parameter (s ⁻¹)	Q _{NO} (μM/s)	parameter (µM ⁻¹ · s ⁻¹)	Q _{NO} (µM/s)
Original	8.5	1.16	215.6	1.16	175.6	1.16	20.8	1.16	13.2	1.16	13.2	1.16
Test 1	0.85	1.10	2.16	1.16	17.6	1.01	2.08	0.58	1.32	1.16	1.32	1.18
Test 2	42.5	1.16	21.6	1.16	878.0	1.17	104.0	1.27	66.0	1.16	66.0	1.10
Test 3	85.0	1.16	2156.0	1.12	1756.0	1.17	208.0	1.28	132.0	1.17	132.0	1.04
	k ₉		k ₉ '		k ₁₀		k ₁₁		k ₁₂		k ₁₃	
	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}	parameter	Q_{NO}
	(µM ⁻¹ · s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)	(µM ⁻¹ · s ⁻¹)	(µM/s)	(s ⁻¹)	(µM/s)
Original	8.6	1.16	399.2	1.16	39.1	1.16	20.8	1.16	0.01	1.16	39.9	1.16
Test 1	0.86	0.86	3.99	1.20	3.91	0.65	1.04	4.36	0.001	0.16	3.99	0.14
Test 2	43.0	1.20	39.9	1.20	195.5	1.25	2.08	3.80	0.1	2.93	199.5	3.25
Test 3	86.0	1.20	3992.0	0.88	391.0	1.26	208.0	0.15	1.0	3.46	399.0	4.21

Figure S1. NO production by NOS1 when the binding rates of L-arginine to the ferric (k_1) and ferrous (k_4) forms of NOS1 and the dissociation rates of L-arginine from the ferric (k_1) and ferrous (k_4) forms of NOS1 varied. Total NOS1 concentration was 0.9 μM, L-arginine concentration was 100 μM, and O_2 concentration was 100 μM. The apparent binding rate $(k_1 + k_4)$ of L-arginine to NOS1 heme was 2.5 μM⁻¹·s⁻¹ and the apparent dissociation rate $(k_1 + k_4)$ was 2.5 s⁻¹ at 15 °C. In (A), Case 1: k_1 was taken as 10% and k_4 was taken as 90% of the apparent binding rate; Case 2: k_1 and k_4 were each taken as 50% of the apparent binding rate. In (B), Case 1: k_1 was taken as 10% and k_4 was taken as 90% of the apparent dissociation rate; Case 2: k_1 and k_4 were each taken as 50% of the apparent dissociation rate; Case 2: k_1 and k_4 were each taken as 50% of the apparent dissociation rate; Case 2: k_1 and k_4 were each taken as 50% of the apparent dissociation rate; Case 3: k_1 was taken as 90% and k_4 was taken as 10% of the apparent dissociation rate. All other kinetic parameters were listed in Table 1. In all cases, the NO production was virtually the same.

