
 

Network modeling. To build the BN we used a popular Bayesian approach that was 
developed by Cooper and Herskovitz[2] and is implemented in the program Bayesware 
Discoverer (www.bayesware.com). The program searches for the most probable 
network of dependency given the data. To find such a network, the program explores a 
space of different network models, scores each model by its posterior probability 
conditional on the available data, and returns the model with maximum posterior 
probability. This probability is computed by Bayes' theorem as 

)()|()|( MpMDpDMp ∝ , 
where )|( MDp is the probability that the observed data are generated from the network 
model M, and )(Mp is the prior probability encoding knowledge about the model M 
before seeing any data. We assumed that all models were equally likely a priori, so that 

)(Mp  is uniform and the posterior probability )|( DMp  becomes proportional 
to )|( MDp , a quantity known as marginal likelihood. The marginal likelihood averages 
the likelihood functions for different parameters values and it is calculated as 

∫= θθθ dpDpMDp )()|()|(  

where )|( θDp  is the traditional likelihood function and p(θ) is the parameter prior 
density. The set of marginal and conditional independences represented by a network M 
imply that, for categorical data in which p(θ) follows a Dirichlet distribution and with 
complete data, the integral ∫= θθθ dpDpMDp )()|()|(  has a closed form solution[3] 
that is computed in product form as: 

∏= i ii MDpMDp )|()|(  

where iM  is the model describing the dependency of the ith variable on its parent nodes 
– those node with directed arcs pointing to the ith variables-- and iD  are the observed 
data of the ith variable[3]. Details of the calculations are in [4]. 
The factorization of the marginal likelihood implies that a model can be learned locally, 
by selecting the most probable set of parents for each variable, and then joining these 
local structures into a complete network, in a procedure that closely resembles standard 
path analysis. This modularity property allows us to assess, locally, the strength of local 
associations represented by rival models. This comparison is based on the Bayes factor 
that measures the odds of a model iM  versus a model iM~  by the ratio of their posterior 

probabilities )|~(/)|( iiii DMpDMp  or, equivalently, by the ratio of their marginal 

likelihoods )~|(/)|( iiii MDpMDp=ρ . Given a fixed structure for all the other 
associations, the posterior probability )|( ii MDp  is )1/()|( ρρ +=ii MDp  and a large 
Bayes factor ρ  implies that the probability )|( ii MDp  is close to 1, meaning that there 
is very strong evidence for the associations described by the model iM versus the 

alternative model iM~ . Note that, when we explore different dependency models for the 
ith variable, the posterior probability of each model depends on the same data iD . 
 
Even with this factorization, the search space is very large and to reduce computations, 
we used a bottom-up search strategy known as the K2 algorithm[2].The space of 
candidate models was reduced by first limiting attention to diagnostic rather than 
prognostic models, in which we modeled the dependency of SCD complications and 



 

laboratory variables on death. We also ordered the variables according to their variance, 
so that less variable nodes could only be dependent on more variable nodes. 
Simulations results we have carried out suggest that this heuristic leads to better 
networks with largest marginal likelihood. As in traditional regression models, in which 
the outcome (death) is dependent on the covariates, this inverted dependency structure 
can represent the association of independent as well as interacting covariates with the 
outcome of interest [3]. However, this structure is also able to capture more complex 
models of dependency [5] because, in this model, the marginal likelihood measuring the 
association of each covariate with the outcome is functionally independent of the 
association of other covariates with the outcome. In contrast, in regression structures, 
the presence of an association between a covariate and the outcome affects the 
marginal likelihood measuring the association between the phenotype and other 
covariates, reducing the set of regressors that can be detected as associated with the 
variable of interest. 
The BN induced by this search procedure was quantified by the conditional probability 
distribution of each node given the parents nodes. The conditional probabilities were 
estimated as 
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where ikx  represents the state of the child node, ijπ  represents a combination of states 

of the parents nodes, ijkn  is the sample frequency of ( ikx , ijπ ) and ijn  is the sample 

frequency of ijπ . The parameters ijkα  and ∑= k ijkij αα  encode the prior distribution 

with the constrain αα =∑ j ij  for all j, as suggested in[3]. We chose 16=α  by 

sensitivity analysis[3]. 
 
The network highlights the variables that are sufficient to compute the score: these are 
the variables that make the risk of death independent of all the other variables in the 
network and appear in red in Figure 1. These variables are the “Markov blanket” of the 
node death as defined in [3]. 
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