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Nested KS-Tests: A Procedure to Test Whether a Procedure is Valid

The false discovery rate (FDR) has been discussed extensively and it has been pointed out that

the distribution of the null p-values must be “correct” or conservative for FDR estimation or any

other standard statistical significance measure to behave properly. What is meant for distribution

of the null p-values to be correct is that they are Uniformly distributed in the interval (0,1).

The null p-values are have a conservative distribution or they are pushed towards 1 relative to

the Uniform(0,1). P-values are constructed to have the Uniform distribution property under the

null hypothesis, and if this cannot be done exactly the conservative version is calculated [1]. In a

simulation study where the right answer is known, there is no off-the-shelf approach to test whether

the null p-values have a proper distribution.

In this study, we use a Kolmogorov-Smirnov (KS) test on the set of null p-values for deviation

from the Uniform. However, we want to test whether this is true over many repeated simulations to

avoid “getting lucky” on one particular simulated data set. If the set of null p-values are Uniform,

then the p-value resulting from the KS test should also follow the Uniform distribution. Therefore,

by examining the KS test p-values over all simulations, we can again apply a KS test to verify that

these are Uniformly distributed. Here we have employed this nested KS test to compare the relative

behavior of each multiple testing procedure discussed. If the quantiles of the KS test p-values follow

the diagonal line in a quantile-quantile plot against the quantiles of the Uniform distribution, then

this is very strong evidence that the p-values resulting from the procedure are “correct.”
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On Capturing EH at the P-value or Test-statistic Level

As described in the main text, it appears that methods that adjust for multiple testing dependence

by modifying p-values or test-statistics [2–6] are not capable of addressing EH at a sufficient level

of generality. A heuristic argument was given in the main text; here, we present a more theoretical

argument. Consider the scenario where m p-values are calculated p1, p2, . . . , pm, corresponding to

m hypothesis tests. Figure 5 of the main text provides a graphical motivation for the counter-

example. The histogram present in this figure is actually composed of p-values all corresponding

to true null hypotheses. These p-values should therefore be Uniformly distributed. However, the

unmodeled factors manifested as EH have biased their distribution towards zero. At the same

time, it is straightforward to simulate a mixture of m0 correctly distributed Uniform null p-values

and m − m0 correctly distributed alternative p-values pushed towards zero, which as a set are

indistinguishable in distribution from those in Figure 5.

The reason for this is that it is mathematically impossible to identify a signature of the umodeled

factors causing the EH from a one-dimensional summary of each test’s data, whether it be a p-value

or a test-statistic. The actual set of data itself has to be examined, as is done in the SVA approach.

That is, EH can only be in general at the level of the original observed data. To simplify the

mathematical argument (although the argument easily extends to general assumptions), assume

that the p-values either follow a null probability density function g0 (which would be Uniform(0,1)

for p-values when no EH is present) or an alternative probability density function g1. Therefore, a

randomly selected p-value follows the mixture distribution g = π0g0 + (1 − π0)g1, where π0 is the

proportion of null hypotheses that are true.

It is impossible to de-convolute this mixture in general. Without specifying π0 or g0, there are

an infinite number of configurations of π0, g0, and g1 that yield our observed g. This can be seen

by noting that g1 = (g−π0g0)/(1−π0). As we vary g0 and π0, we see an infinite number of possible

g1. If we assume that g0 is known, then one can use the entire set of p-values to estimate g. It

then becomes possible to obtain conservative estimates of π0 and g1 based on knowledge of g0 and

the estimate of g [7]. However, if there is EH, then it is not possible to assume anything a priori

about g0. The p-values or test-statistics therefore cannot be utilized to deconvolute the mixture

g = π0g0 + (1 − π0)g1. In this case, there is not sufficient information to distinguish the null and

alternative distributions because the parameters of the mixture are unidentifiable. Therefore, one

cannot adjust for EH based only on p-values or test-statistics.

The method in Efron (2004, 2007) [2,3] is an example of a test-statistic only based approach to

correct for multiple testing dependence. Efron (2004, 2007) recognizes that when there is large-scale

dependence among tests, this may distort the assumed “theoretical null” g0, and therefore proposes

the use of an empirical null distribution g̃0 to correct for this distortion. The goal is to identify the



correct g̃0 by only considering the observed statistics and the theoretical null. Efron (2004, 2007)

first transforms the observed statistics so that the theoretical null g0 is a N(0, 1) distribution. The

empirical null is calculated by scaling and shifting g0 into the estimated g̃0 so that in an interval

around zero, g̃0 ≈ g. This empirical null can then be utilized in place of the theoretical null for

calculating the significance of each statistic. Due to the argument given above, in general it will

not be possible to obtain a correct null distribution from methods such as this that are based only

on test-statistics or p-values. We implemented the method of Efron (2004, 2007) [2, 3] and used

that proposed empirical null distribution to calculate p-values for the same thousand simulated

studies we described in the main text and compared the p-values corresponding to true nulls to

the Uniform(0,1) distribution. The results, shown in Supplementary Figure 11 indicate that the

null distribution is not accurately estimated using the empirical null, as we would expect from the

theoretical result described above.

The fact that the method of Efron (2004, 2007) does not estimate the true underlying null

distribution in this example can also be understood from Figure 5. Working with transformed

observed statistics, so that the initial theoretical null is N(0, 1), is equivalent to calculating p-values

from the observed statistics so that their theoretical null is Uniform(0,1). The transformation

he makes on the Normal distribution scale to obtain g̃0 is equivalent to transforming the set of

observed p-values (calculated from the theoretical null) so that this set is approximately Uniformly

distributed in some interval [λ, 1]. It can be seen from Figure 5 that for most intervals of the form

[λ, 1] where λ ≥ 0.4, the p-values are already indistinguishable from the Uniform distribution before

any transformation has taken place. Therefore, the method of Efron (2004, 2007) does not properly

capture and correct for EH in this example.
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