
SI Materials and Methods 

 

Energy Function. The effective energy of a membrane protein is calculated as follows. 
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As described previously (1), the W, weights that scale each energy term, were determined 

by optimizing the recovery of the native amino acid identities of membrane proteins in a 

set of 18 high-resolution membrane protein crystal structures (see SI Table 5). 

 

The functional forms of the potential energy terms Erot, Eatr, Erep, and Epair describing 

rotamer self-energies, attractive, repulsive portions of the Lennard–Jones potential 

energies and knowledge-based electrostatic pair energies, respectively, are identical to 

those used in the Rosetta full-atom energy function for water-soluble proteins (1). 

 

Esolv is the change in solvation energy of an atom upon burial in the protein and is 

calculated by using the implicit solvent model IMM1, an extension of EEF1 for 

membrane proteins developed by Lazaridis (2). 
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dij is the distance between two atoms i and j, rij is the sum of their van der Waals radii, 

ΔGfree is the solvation free energy of the isolated atom i and λ the correlation length. As 

described below, ΔGfree is a function of the position of each atom in the membrane. 

 

Embenv represents the change in solvation free energy of isolated atoms when transferred 

from pure water (which is the reference state in our solvation model) to the membrane 

bilayer at position z along the membrane normal (see description below). 
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Our membrane model is very similar to that described in IMM1 (2). It represents the 

membrane bilayer with three different planar phases: two isotropic phases (pure water 

and pure hydrocarbon for the nonpolar core of the membrane) and one anisotropic phase 

for the hydrocarbon-polar headgroup interface region. The membrane bilayer is 

considered to be parallel to the xy plane and centered at z = 0. The solvation energies of 

each atom i (ΔGfree and ΔGref) depends on its position z along the membrane normal 

(vertical z axis) as follows: 
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As described in ref. 2, the atomic solvation energies for the water phase (ΔGfree,water and 

ΔGref,water) are derived from transfer free energies of amino acid side-chain analogs from 

vacuum to water. The atomic solvation energies (ΔGfree,chex and ΔGref,chex) for the 

membrane core are derived from transfer free energies of amino acid side-chain analogs 

from vacuum to cyclohexane (chex). 

 

z′ = |z|/(T/2) with T corresponding roughly to the thickness of the nonpolar core of the 

membrane. The function f(z′) describes the transition between the two isotropic phases, 

i.e., the anisotropic phase: 
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n controls the steepness of the transition and therefore the thickness of the anisotropic 

phase. Based on native amino acid sequence recovery tests, optimal values for T and n 

were found to range from 12.5 to 15 Å and from 9 to 11, respectively. 

 



The previously developed ROSETTA hydrogen-bond potential (3) was modified to 

model the effect of the membrane environment on the strength of the hydrogen bonds. 

Liquid water has high-dielectric properties. Water molecules are strong hydrogen bond 

donors and acceptors and can compete with solvent-exposed hydrogen bonds between 

protein atoms. Therefore, the strength of hydrogen bonds between protein atoms in the 

water phase depends on the atomic burial in the protein (see Eq. 8). Unlike water, the 

acyl chains of the lipids have no polar groups to compete with solvent-exposed hydrogen 

bonds and the dielectric properties of the solvent in the hydrophobic core of the 

membrane are close to those of protein interiors. At the center of the membrane, the 

effect of the solvent on the strength of the hydrogen bonds is therefore negligible and 

buried or lipid-exposed hydrogen bonds have the same energies in our model. As 

described by Eq. 7, the effect of the solvent on the strength of hydrogen bonds in the 

anisotropic phase is interpolated from the values in water and at the membrane center 

based on the depth of the donor and acceptor atoms in the membrane. 

 

Equation 6 describes the effective hydrogen-bonding energy 
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Whbond
 is the global weight optimized by amino acid sequence recovery and 
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Egeo

hbond
d,",#( ) is the geometrical dependent hydrogen-bond energy (see below for further 

description) 
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W burial
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DA

' ,nb)  represents the weight that scales the hydrogen bond energy based on the 

atomic burial in the protein [measured by the number of neighbors (nb) around the donor 

(D) and acceptor (A) atoms] and on the averaged atomic depth of the donor (D) and 

acceptor (A) atoms in the membrane z′DA. Wburial ,water

hbond (nb)  and Wburial ,membrane

hbond  are the weights 



in pure water and at the membrane center, respectively. In our model, Wburial ,membrane

hbond  is 

considered to be independent of the atomic burial in the protein and set to its maximal 

value (0.5). Wburial ,water

hbond  is a simple function of the number of atom neighbors (nb) within 

10 Å from the beta carbon of the atom considered and has the following functional form: 
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The hydrogen-bond potential was also further developed to explicitly model weak  

CH—O and bifurcated side-chain/backbone hydrogen bonds that play important roles in 

inducing helical distortions and stabilizing polar residues in membrane proteins. 

Bifurcated hydrogen-bonds are non-pairwise factorable interactions (SI Fig. 3, where one 

oxygen accepts two hydrogens) and are generally weaker by 15–20% than normal 

hydrogen-bonds (4). An efficient pairwise approximation to these interactions was 

defined by Eq. 9: 
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A weak hydrogen-bond potential was developed based on ab initio calculation of the 

interaction energies between aliphatic protons covalently bound to polarized carbons and 

oxygens in model compounds (5). Distance and angular dependencies of these 

interactions were fitted with polynomials calibrated so that the energy of an optimal weak 

hydrogen bond would equate one half of an optimal normal hydrogen bond (5-7): 
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where dHA is the distance in angstroms between hydrogen and acceptor atoms, 
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" is the 

angle between the acceptor base, the acceptor atom and the hydrogen atom and 
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" is the 

angle between the acceptor atom, the hydrogen atom and the donor atom. Optimal values 

for these parameters are given in brackets. SI Fig. 9 represents the variations of the 

energy of a weak hydrogen bond as a function of the distance dHA and angles 
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" and 
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Side-Chain Conformation and Amino Acid Sequence Recovery. From the database of 

18 membrane protein crystal structures (resolution better than 3.5 Å), two data sets of 

nine structures were created. Each data set was used to optimize the weights of the energy 

function and, then, to cross-validate the energy function optimized with the other data set. 

Most membrane proteins considered in our recovery tests were too large to design all 

positions simultaneously with our expanded side-chain rotamer library. For each 

membrane protein structure, two regions were defined, i.e., the “core” region facing the 

membrane hydrophobic core and the “interface” region facing the membrane interface. In 

conformation recovery experiments, the backbone structure was kept fixed to the 

crystallographic coordinates and all side-chains belonging either to the “core” or to the 

“interface” region were repacked simultaneously. Side-chain dihedral angles were 

considered correctly predicted if they were within 40° of the crystallographically 

determined values. In sequence recovery experiments, the backbone structure was also 

held constant and sequence space was searched simultaneously at all positions belonging 

either to the “core” or the “interface” region for the combination of amino-acids that 

minimizes the free energy of the system. Residues lining channels or pore regions as well 

as residues binding cofactors were excluded from these experiments. 
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