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1. What Makes a Map a Map?

A good way to think about the goal of our work is to think of an electronic map. We need
new tools to analyze and represent the information embedded inside a complex network in a
scalable manner, in the same manner that a map does. Current representations of, say, metabolic
networks (Fig. 5) do not provide information about which are the relevant nodes and how the
different nodes are organized. With our methods we are able to extract the relevant scales in the
network, which opens the door to a scalable representation of complex systems.

2. Hierarchies in Complex Networks

We focus on the detection of “inclusion hierarchies” in complex networks, that is, those hierar-
chies in which a module at a given level splits into several submodules at the following level in
the hierarchy. We assume that the organization of nodes into modules at any level is defined by
the different connectivity densities between groups of nodes; so that, a group of nodes that are
more interconnected between themselves than they are to other nodes in the network comprise
a module in the network organization.

Additionally, in the same way that electronic maps work, we assume that information at
different levels does not mix. That is, when we zoom within a certain state of the United States,
we see a more local information about different cities included in that state. However, we do
not see the information regarding boundaries of the state itself, because that information is
not relevant for the organization at that scale. In the same spirit, we assume that the internal
organization of a module solely depends on the network of connections within the module.

First, we formally define the concept of inclusion hierarchies in complex networks, and then
we introduce a ensemble of networks (hierarchically nested random graphs) with which to test
the accuracy if our algorithm at detecting the network organization.

2.1. Inclusion Hierarchies

Consider the ensemble of networks composed of
�

nodes, � �������
	��������������� ���
, that

hold membership in a set of nested groups, �����������! �"#"#"$�&%('�	*)+�,���!-.����� � , where ) is the level at
which the group is defined, and the labels /10
�����2/436570 indicate the groups at higher levels in the
hierarchy within which the group is nested. For instance, group �10&0&0 is a group defined at )8�:9
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that is nested inside group � 0&0 defined at ) � - , which in turn is a subgroup of group ��0 defined
at ) � � .

Let � � � � be the set of groups in which node �2� holds membership. Here, we consider that
node � � holds membership in only one group per level, and that membership to groups follows
a nested hierarchy. Therefore, for node � � to hold membership in group � 0&0 , node � � must also
hold membership in group � 0 .

We assume that the probability �7��� of the edge �$� � � ����� being present in a network is a
function solely of the set of comemberships 	 �
� � � ������ of the two nodes. Note that our
assumptions imply that: (i) 	 ��� obeys transitivity, so that if 	 �����	 � � , then 	 ��� ��	�� � ;
and (ii) node memberships in groups � � �! ��� � at the second level are uniquely and completely
defined by the subnetwork of connections of all nodes holding membership in group � �! , that is,
information at deeper levels in the hierarchy is totally decoupled from the information at higher
levels in the hierarchy.

In the simplest scenario, �7��� is a nondecreasing function of the cardinality � of 	 ��� , which
implies that groups of nodes holding membership in the same groups will be more densely
connected than a randomly selected group of nodes. This is precisely the underlying assumption
in many algorithms aiming to detect the top level community structure of complex networks
assuming a flat organization of the nodes (1, 2, 3).

2.2. Hierarchically Nested Random Graphs

Let us now introduce an ensemble of random networks which are constructed following hier-
archical node membership assignment: hierarchically nested random graphs. We restrict our
ensemble to networks with a homogeneous hierarchical organization of the nodes (see Sec-
tion 3.4. for other kinds of hierarchical organization) that have the same degree distribution as
Erdős-Rényi graphs (4).

To illustrate the model, consider a network composed of 640 nodes that hold membership
in a set of groups � with a three-level homogeneous nested organization. We assign group
memberships so that the number � 3 of nodes holding membership in each group for ) � ���!- ,
and 9 is � 0 � ����� , ���.����� , and ���.� ��� , respectively. For ) �,� , nodes can hold membership
in one of four different groups ��� �  	 /�0+� ������������� � . For )
� - , nodes holding membership
in group � �! can hold membership in one of four groups ��� �! ��� 	 /�� � ��������� ��� � . Finally, for
)
�,9 , nodes holding membership in groups � �! and � �! ��� can hold membership in one of four
groups ��� �! � � �"! 	 /�� ���*������� ��� � .

In the example, we assign membership to groups so that the number of member nodes ��3
for groups defined at levels )8�����!- , and 9 is ��0�������� , ���.�#��� , and ��� �,��� , respectively.

Let � � be the set of groups in which node �2� holds membership. Then, the probability that
an edge between nodes �$� �%$&� exists is a monotonically increasing function of the cardinality of
	 ��� � � �'� ��� .

Let ��( be the probability of an edge existing between � � and the set � ��� 	*)+) 	 ���,)+)��-� � ;
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then the expected number of connections is

/�( �
� ��(&� � (�� � � ��� �

��(�� ( � � � � (1)

where ��� is the number of nodes that do not hold membership in any of the groups � � holds
membership in ( ��� ��9��:����� ). Therefore, the expected total average degree of � � is / �	

( /,( . We construct the model networks such that the ratio 
 � /���3��/ 3 is constant, where
/���3�� 	 3�����3 / 3 .

Given 
 and / , the analytical expression for � ( is

�1��� � �(���� ��
� %������! #"

� 0%$ � ' %������& #"�'  �( " 570 � � � ����������� )*),+.-� %������* /"
� 0%$ � ' % �����  #" �( " � � � ���

0 �1�2 �

where )3),+.- � 9 in the example. Note that, by construction, there is a lower bound to the value
of 
 since � 3 ����� � /4�� �657
&�8�� � 3 ����� � � �:9 � .

In the example network, for 
 � � and / � ��� , we obtain the following values for � 3 : for
) �:9 we have modules of 10 nodes ( � � �,��� ), so that � � �<;�>= and /�� �?; ; for )8� - , ��� � ��� ,
therefore, � �.�#�@*9A= and /��.�#� ; finally, for )+�,� , �20 �:-A �CBD= and ��� � -A49���� .

3. Uncovering the Organization of Complex Networks

We present here a detailed explanation of our method to extract the organization of complex
networks. We impose that our method fulfills two requirements: (i) it must not be network
specific, (ii) it must identify the different levels in the hierarchy as well as the composition of
the modules at each level.

Our method consists in two main steps: (i) the construction of an affinity matrix between all
pairs of nodes and (ii) the extraction of the hierarchical tree.

3.1. The Affinity Matrix

Our aim is to obtain a measure of the likelihood that two given nodes belong to the same module.
Our strategy is to define a measure of similarity by looking at the network as a whole. Thus, a
natural candidate is to study the modularity of the network.

Following Girvan and Newman, we define the modularity E of a partition F of a network
as (5, 6) E��%F � � G

�IH 0KJ LNMAO �P?�RQTS �- PVU �8W
� (2)

where
P

is the total number of links, O � is the number of links within module � , S � is the sum of
degrees of all the nodes inside module � , and the sum is over all the X modules in partition F .
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Traditionally, the “best” partition is thought to be that for which the modularity has the largest
value. One would argue then that the organization of a network into modules is that given by
the “best” partition. However, for some model networks, the “best” partition of the network
does not correspond to the top level organization (see Fig. 3C).

The answer to this problem comes from realizing that the task of finding the partition with
the largest modularity is a hard optimization problem, since the modularity landscape is very
rugged and has many local maxima (7, 8). Thus, there are many partitions that have large
modularity and yet they may be quite different from one another.

In defining affinity between a pair of nodes, one wants nodes that are close in the hierarchy
to have a large affinity and to be classified in the same module in partitions with large modu-
larity. We formalize this requirement by defining the affinity � ��� of a pair of nodes �$� � $'� as the
probability that the two nodes are classified in the same module for partitions F that are local
maxima of the modularity landscape � �F���� ),+.- � . Partition

�F is a local maxima if neither the
change of a single node from one community to another nor the merging of two communities
yields a larger modularity. Following Stillinger and Weber’s decomposition of rugged land-
scapes (9), in computing � ��� we let partitions corresponding to local maxima whose basin of
attraction � �

�F � is larger yield a larger contribution to � ��� (see Fig. 1A). That is, for a pair of
nodes �$� �%$&� , the partition in each visited local maxima contributes � ��� � �F �+� ����� to �8��� . Thus,
if partition

�F has a probability � �
�F � of being visited

� ��� � G�	�
� ����� � � �F ��� �
� � �F � � (3)

We find the local maxima of the modularity landscape by performing Monte Carlo simula-
tions at zero temperature using the algorithm of Guimerà and Amaral (8). Specifically, we first
generate a random partition of the nodes into modules. We then perform a hill-climbing search
until we reach a local maximum of the modularity. After completing these two steps, we update
a matrix recording the fraction of times each pair of nodes is classified in the same module. We
repeat these steps until the matrix has converged to its asymptotic value (Fig. 1B). In fact, we
obtain the same coclassification matrix regardless of whether we start each run from a different
random configuration, or from the same configuration putting each node in a separate commu-
nity. The number of runs necessary for convergence depends, in general, on both the size and
the connectivity of the network. For all the networks we study, we find that a number of runs of
the order of the size of the network is sufficient.

3.2. Uncovering the Hierarchical Tree

3.2.1. Statistical Significance of the Hierarchical Structure

In order to assess whether the network under analysis has an internal organization, one needs
to compare the structure of its modularity landscape with that of an appropriate null model,
which in this case is an ensemble of “equivalent” networks with no internal organization. These
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equivalent networks have the same number of nodes and an identical degree sequence as the
network under consideration. Note that connections between nodes are drawn at random, so
that these networks have no internal structure.

We construct the null model networks by randomizing the original network following a link
swapping protocol (10, 11). Despite their having no structure, random structureless networks
have many partitions with non-zero modularity (6); therefore, for a network to have a significant
internal structure, the local maxima in the landscape must have larger modularities than the local
maxima of the corresponding ensemble of equivalent random networks.

To quantify the significance of the internal structure of any network, we first compute the
average modularity of the local maxima in the landscapeE +�� � G�	�
� ����� � � �F ��E��

�F �
)+) � ),+.- )+) (4)

Then, we generate � randomizations of the network ( � ����� for the results shown in the
main manuscript), and we compute the average modularity E �+�� for the local maxima in the
landscape of each randomized network �.� �*������� � � . For each randomization we compute the
average over X � � ��� local maxima. In virtue of the central limit theorem, the set of average
modularities for the whole ensemble � E �+�� � is a normally distributed variable with mean E���+��	�
and variance 
 ��� ����� . For Gaussian variables, a simple way to quantify statistical significance is
to compute the � -score (SI Fig. 6),

�� E +����7E���+��	�

 � � ����� � (5)

In our analysis, we have used threshold values for � of �*� �,��B and - ��9 - � � , which correspond to
significance levels of B�� and ��� , respectively. In the manuscript, we show results for the ���
significance level, since it is more accurate at finding the exact number of levels for hierarchi-
cally nested random graphs. Nevertheless, results at the 5% significance level are the same for
all the real networks studied.

3.2.2. Ordering the Affinity Matrix

The goal of this procedure is to order the nodes in such a way that nodes with highest affinity are
closest in the ordering. This is analogous to finding the ordering for which the largest elements
in the affinity matrix � ��� are closest to the diagonal. To find an ordering close to the optimal
ordering, we use simulated annealing (12) with a cost function that weights each element by its
distance to the diagonal (13)

� � ��
�G
� J �8H 0 � ����) � � $�)�� (6)

where
�

is the order of the affinity matrix.
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For every iteration in the simulated annealing search, we propose � � � � � moves in which
segments of contiguous nodes attempts to change positions in the ordering. We accept or reject
each attempted move following a standard Metropolis algorithm. For each attempt, we ran-
domly pick: (a) a segment of contiguous nodes and (b) a new position for the first node—the
remaining nodes will be placed keeping the relative distance to the first node. The first node
and its new position are picked from a uniform distribution; the width of the segment is picked
from a Gaussian distribution whose variance depends linearly on both the temperature � and
the size of the network

�
—for low temperatures only changes of single nodes are proposed.

We compute the value of the cost function for the new order
���

and we accept the change with
probability � �����	��
 � � � � � � ��� .

We start from a random initial ordering at temperature � . After every iteration we decrease
the temperature by a factor in the range 
���� =�B � ��� =A=A=� . The process stops when

�
has not changed

for 20 iterations.
This stage is the most time consuming. We have tried to use other faster algorithms to

rank nodes in one dimension, such as classical scaling (14) and hierarchical clustering. Both
methods, however, give a considerably less accurate ordering than our algorithm (SI Fig. 7),
especially for real-world networks.

3.2.3. Uncovering the Top-Level of the Hierarchy

To identify the best partition at the top-level, we assume the following ansatz for the matrix
structure: The matrix has a block-diagonal organization, with � boxes bound by � � � break
points ��� , for � � - ������� � � , note that ��0 � � . The matrix elements inside box � are assumed
equal to � �� . In general, if ������ � , then � �� �� � � �� . The matrix elements outside the boxes are
assumed equal to � � .

The goal then is to find the set of parameters � � � ��� ��� � � � ��� ��� ��� � 0� ��� � � � � � � � that best fits the
data. We quantify the closeness-of-fit of a given set of parameters by the sum � of the squared
deviations of the data to the model

� �?G
� � J � ' � � � ��� � � �� � ����� �$� �%$&� ����� �!�

� � ���6�"� � � � �$#&%'�)(+* ��, � (7)

For a given set �$��� � � ������� � �&��� , the best estimators for �-� � � � 0� ������� � � � � � are as follows.

.
� �� � G

� � J � ' 
0/21 (43 � ���� � where
� � � G

� � J � ' 
0/21 (43 �6587'9 � �,��������� � � (8)

.� � � G
� � J � ';:
=<?>32@  /21 (�A � �
��CB where

�CB � G
� � J � ';:
D<E>32@  /21 ( 3 � (9)

There are two challenges in finding the best set of remaining parameters. The first challenge
is the extraordinarily large number of possible parameter combinations. For given � and set of
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break points, one can estimate the other parameters simply by calculating average values for the
elements of the affinity matrix inside the boxes. The limiting step in considering all combina-
tions of parameters is the supra-exponential increase with � of the number of combinations of
break points.

To overcome this problem, we use a greedy algorithm for partitioning the matrix in the spirit
of the segmentation algorithms used for time series analysis (15, 16). Specifically, we start by
setting � � � and by computing � 0 for a single box. Next, we assume � � - , we calculate
� for � �
��- ��� � � � � � � . We select the value of � � for which � is the smallest. We denote the
minimum of � for � � - by � � .

We then consider the case � � 9 . We do not consider all possible partitions of the matrix
into three boxes but only those in which there are already two break points defined �40 and � � .
We calculate the minimum value of � for � � 9 and denote it �*� . If � ��� � � , we accept
the new break point; otherwise, we stop. In principle, one should iterate the same procedure
until � � �

and then select the best fit the set of parameters for which � is minimal: as
� )�� � ��� � 7 � � �:� �80!������� �&� � � � . In practice, for the type of matrices we analyze, � ( has a
minimum for small values of � ( �  � ��� � ); therefore, one does not need to explore the whole
range of � to find the global minimum.

The second challenge arises from the fact that the partition one obtains following the greedy
algorithm may over-fit the data. Indeed, it is a well-known fact that models with a larger num-
ber of parameters will yield better “fits” to data. However, those models will not necessarily
provide better descriptions of the data, in same way that � data points that approximately obey
a linear relationship will be reproduced without deviation by a polynomial of degree � �,� .
To avoid over-fitting, we use the Bayesian information criterion (BIC) (17) to obtain the set of
boxes that better fits our model without introducing unnecessary parameters. BIC measures the
likelihood of the model given the data set, so that, the model with a larger likelihood is taken to
be the model that best describes the data. When the model parameters of the model have been
estimated by least-squares minimization, the BIC is defined as

���
	 � X�� �� Q �X U 5 /�� �� � X � � (10)

where X is the total number of data points, � is the residual sum of squares, and / is the number
of parameters. We select the set of boxes that yields the smallest BIC.

A different criterion that also balances the goodness-of-fit with the parsimony of the model
is Akaike’s information criterion (18), which measures how close the description given by the
model is to the “real” description. When the model parameters of the model have been estimated
by least-squares minimization, the AIC is defined as:

����	 � X�� �� Q �X U 5 -�/ � (11)

Again, the model with lowest AIC is taken to provide the best description of the model. We
prefer BIC over AIC because of how � behaves upon increasing the number of parameters (19).
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In practice, both criteria give the same answer for the analyzed networks, which in the majority
of cases is that the set of boxes corresponding to � )�� � is the one with the lowest BIC and AIC.
The reason for that is that the number of boxes ��� that we find for the best fit is much smaller
than the total number of rows in the matrix

�
.

3.2.4. Construction of the Hierarchical Tree

The result of the application of the algorithm described in the two previous section is an affinity
matrix that comprises � boxes, which can be identified with � modules. Let

� � be the set of
nodes in module � . We define the affinity matrix A � as the affinity of the nodes in

� � .
As we say in the main text, we surmise that for inclusion hierarchies the information at

deep levels in the hierarchy is decoupled from the information at levels higher in the hierarchy.
Therefore, once the algorithm finds the modules at the top level in the hierarchy, in order to find
the submodules in modules � , we only need to consider the subnetwork of connection between
nodes in

� � in order to define A � . Then, iterate the same algorithm for each of the subnetworks
defined by each of the � modules.

Accuracy of the Method: Application of the Method to Model
Networks

3.3. Hierarchically Nested Random Graphs

In the main text, we have already shown the performance of our method for hierarchically
nested random graphs. In figure 2A, we compare the performance of our method at detecting
the organization of a three-level hierarchical random graph compared to other standard methods
to measure node affinity (topological overlap) and for extracting the hierarchical organization
given a measure of affinity (hierarchical clustering). In SI Fig. 8, we show the same analysis
for a network for a hierarchically nested random graph with a “flat” organization of the nodes.

3.4. Other Model Networks

In the main text, we have already analyzed the performance of our method in finding the organi-
zation of the nodes in hierarchical random graphs (see Fig. 2C). These networks, as explained
in Section 2.2. have, by construction, a homogeneous hierarchical organization of the nodes.
Here, we analyze model networks without hierarchical organization and with a heterogeneous
hierarchical organization to see whether our method can differentiate both classes of networks.

First, we analyze two networks which we know lack a community structure and, therefore,
a hierarchical organization: the random graph (20) and the preferential attachment model (21).
Second, we analyze a network which is hierarchical by construction but is constructed differ-
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ently from the ones considered so far and has a heterogeneous structure (that is, nodes are
organized into modules of different sizes and each module has a different number of modules).

As expected, for the first two model networks, our method does not detect any structure
in the organization of the nodes. In both cases, we find that the most statistically significant
partition is to group all the nodes in the same box (SI Fig. 9). Instead, for the networks with a
built-in heterogeneous hierarchy, our method does identify the heterogeneity in the hierarchical
organization of the different modules (SI Fig. 10).

4. Method Validation: Application of the Method to Real-
World Networks

4.1. Air-Transportation Network

In Fig. 3, we show the results obtained with our method for the air-transportation network.
The reason for using such network is that we have an a priori intuition of how the network is
organized due to the politico-economical forces that have shaped the network. Our method is
able to extract such organization without any external input; it uses just a collection of nodes
and edges as shown in SI Fig. 11, in which the organization of the network is not apparent at
all.

4.2. Technological and Social Networks

In SI Fig. 8, we show the results of applying our method to two real networks: the transis-
tor implementation of an electronic circuit (A) and the e-mail exchange network of a Catalan
university (B).

4.3. Metabolic Networks

In the main text, we show the hierarchical trees obtained the UCSD reconstruction of the
metabolic network of E. coli. Here, we show the coclassification matrices and hierarchical
trees obtained at the 1% significance level for the Ma-Zeng reconstruction of the metabolic net-
work of E. coli (22), the reconstruction of the metabolic network of E. coli according to the
KEGG database, and for the UCSD reconstruction of the metabolic network obtained for H.
pylori (23). Note that both networks share common features with those shown in Fig. 4. Mod-
ules at the top level have heterogeneous sizes, some of them having an internal organization and
some of them not.
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