
100 200 300 400 500 600

100

200

300

400

500

600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Classical scaling Hierarchical clustering Ordering via SA 

A 

B 

Figure S-3: Performance of ordering algorithms. We show the ordered affinity matrices ob
tained for (A) a three-level hierarchical network and (B) the UCSD reconstruction of the 
metabolic network for E. coli15 using three different algorithms: classical scaling, hierarchi
cal clustering, and our ordering algorithm using simulated annealing. The values of the cost 
function 

� 
(Eq. 6) associated to each ordering are: A, classical scaling: 

� � � � � � , hierar� � � � ���� ��
chical clustering: � ����������� , and ordering via SA � ����������� ; and B, classical scaling: � � ��������� � , hierarchical clustering: 

� � ��������� � , and ordering via SA 
� � ��������� � 

There are two challenges in finding the best set of remaining parameters. The first challenge 
is the extraordinarily large number of possible parameter combinations. For given � and set of 
break points, one can estimate the other parameters simply by calculating average values for the 
elements of the affinity matrix inside the boxes. The limiting step in considering all combina
tions of parameters is the supra-exponential increase with � of the number of combinations of 
break points. 

To overcome this problem, we use a greedy algorithm for partitioning the matrix in the 
spirit of the segmentation algorithms used for time series analysis 16,17. Specifically, we start by 
setting � ��� and by computing � � for a single box. Next, we assume � � � , we calculate 
� for � � � � � � � . We select the value of �� for which � is the smallest. We denote the �������� � 
minimum of � for 

�
� � � by � � . 

We then consider the case � ��� . We do not consider all possible partitions of the matrix 
into three boxes but only those in which there are already two break points defined � �� and � � . 
We calculate the minimum value of � for ����� and denote it � � . If ����� ��� , we accept 
the new break point; otherwise, we stop. In principle, one should iterate the same procedure 

8



