
 
 

SI Appendix 1 
 

Design of the Model 
 
This Supplemental Information is intended to describe in some detail the design of the model 
and the rationale for the particular computational methods that were used. The lobster model 
is an agent-based model. It simulates how Maine lobster fishers, the agents in the model, 
make their everyday decisions concerning where to put their traps and how they decide 
whether to cut or ignore the traps of others. The model is based on a map drawn on a 70 x 70 
grid. The map describes a patchy biophysical environment, i.e., lobster distribution, depths, 
bottom types, and other factors important to fishers. Fishers move their traps from place to 
place in this environment in order to catch lobsters.  
 
The difference between the lobster model and other agent-based models typically used in 
ecology (1) and in social science (2) is that the decision rules of agents in the model evolve 
instead of being specified by the programmer. Fishers adapt their fishing strategies through 
continuous interaction with one another and their surrounding biophysical environment.  
 
In the following sections, Holland’s (3) learning classifier system (LCS), the computing 
mechanism that allows agents/fishers to learn how to fish, is explained. Then, the 
implementation of the classifier system (CS) in the lobster model is shown. Last, the 
architecture of the model is illustrated. 
 
1. Classifier system with genetic algorithm: the learning mechanism 
 
Since Holland (3) introduced LCS, the idea has inspired much research into “genetics-based” 
machine learning (4). The CS mimics human beings’ learning process. When a person sets 
out to accomplish a certain task in an unknown environment, his/her mental model of the new 
world is blank at first. Initially, in the absence of knowledge or experience in the environment 
the actions the person takes may be almost random. Quickly, however, he/she receives 
feedback from the environment and adjusts his/her mental model accordingly. The LCS 
mimics this process. It integrates a rule-based system with reinforcement learning and genetic 
algorithm-based rule discovery. In an LCS, an agent learns how to take actions by interacting 
with a partially known environment. For each action, the agent gets feedback in the form of 
numerical rewards; these are used to guide the evolution of the agent’s behavior. In an LCS, 
the agent’s behavior is represented by a set of rules, the classifiers. Because of the diversity of 
the classifiers, genetic algorithms are used to discover new rules by recombining better 
classifiers or alternating some blocks of existing classifiers.  
 
Since the original framework (5) was complex and people found it difficult to realize the 
envisaged behavior (6), Wilson (7) presented the “zeroth” classifier system (ZCS). The ZCS 
keeps much of Holland’s (5) original idea but simplifies it by removing several elements: the 
message list, rule bid, and # sign in action part (all described below). ZCS is easier to 
understand and the performance is improved. Thus, in our model, the daily decision-making 
system of fishers is implemented using the basic framework of ZCS. 
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1.1 Logic of classifier system in reference to Wilson’s ZCS 
 
In this section, the logic of the CS, as implemented in Wilson’s ZCS, is introduced.  
 
When an agent receives an input from the environment, it encodes the input and sends it to 
the CS, which will in turn output an action to the agent. The agent performs that action and 
that action usually changes the environment.   
 
The CS has an internal working memory space ([N] in SI Fig. 10), called its rule-base, which 
consists of a population of n condition-action rules or classifiers. Each rule is a string of 0s, 
1s, and #s, and consists of a triplet in the form of “condition : action : weight.” The # sign 
acts as a wildcard, which allows generalization such that 0#1 matches both 001 and 011. A 
rule that uses no #s is very specific to a particular set of circumstances; a rule that uses many 
#s tends to be general and might apply to a broad set of circumstances. For any particular set 
of conditions, several rules, some general and one or two particular, might match. The action 
part of a rule is similar to the condition except no #s are included. Both condition and action 
are initialized randomly. A numerical weight that represents how fit the rule/classifier is, i.e., 
how well it has performed in the past, is attached to each rule/classifier. (“Rule,” “decision 
rule,” and “classifier” are used interchangeably.) 
 
 

Classifiers [N] 

011 : 01 : 50 
11# : 00 : 31 
#0# : 11 : 14 
01# : 01 : 21 
0#1 : 11 : 17 
#11 : 10 : 25 

... 

Environment 

Match List [M] 

011 : 01 : 50 
#11 : 10 : 25 
01# : 01 : 21 
0#1 : 11 : 17 

Action List [A] 
011 : 01 : 50 
01# : 01 : 21 

Old Action List [A]-1 

11# : 00 : 31 

Encode environment input (011) 

Compare (011)  
to rules in [N] and 
form a match list [M] 

Apply action (01) 

Select 
action 

Pay old action rules (implicit 
bucket brigade) 

Reinforce 
rules in [A] 

GA / Covering 

Generate new 
rules by genetic 
algorithm (GA) or 
covering 

SI Fig. 10. Schematic of ZCS (modified from ref. 8) 

Note: Classifier format is condition : action : weight.  

 
 
SI Fig. 10 shows the work flow of the ZCS. When receiving an encoded input from the 
environment, ZCS scans all rules in the rule-base, [N]. Any rules in [N] that match the input 
from the environment form a match list, [M]. It is important to note that the use of the # sign 
means that multiple rules, some very specific, some more general, may match any given set 
of environmental circumstances. From [M], one rule with relatively high weight is picked 
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using a weighted random choice (roulette), and all rules in [M] that propose the same action 
as the one picked form the action list, [A]. Internally, a fixed fraction (β in SI Table 6) of the 
weight of each classifier in [A] is deducted and the total amount of the fraction is put into a 
“bucket.” The system records all action rules in the previous time step and puts them into the 
old action list, [A]-1. If [A]-1 is not empty, all rules in [A]-1 will share equally (are equally 
rewarded with) the proportion (γ in SI Table 6) of weights in the bucket. Externally, the 
chosen action will be applied to the environment. Later a numerical reward, positive or 
negative, from the environment is sent back to the CS, and this time it is evenly distributed to 
all rules in [A]. Then a “tax” is imposed on all rules in [M] but not in [A]; i.e., the weight of 
all matching rules not chosen in [A] is deducted by a fixed proportion (τ in SI Table 6). This 
“tax” gives the fitter classifiers a greater chance of being chosen the next time. Finally, rules 
in [A] are moved to [A]-1. 
 
In Wilson’s ZCS, two mechanisms generate new rules, a covering operator and a genetic 
algorithm (GA) (9). On the receipt of the environmental input, if the CS finds no matching 
rules in the rule-base, or the matching rules are too weak, i.e., if the total weight of the 
matching rules is below some proportion (θ in SI Table 6) of weight of all rules in the rule-
base, the covering operator generates a new rule by randomly sprinkling a certain number of 
#s (wildcards) into the condition string. This rule is then combined with a randomly 
generated action, yielding a new, general rule. The weight of the new rule is the average 
weight of all rules. 
 

SI Table 6. Summary and explanation of parameters of ZCS 
 
Symbol Description 

β (β * (the weight of classifiers in [A])) is deducted from classifiers in [A] and goes to the 
bucket 

γ (γ * bucket) is shared by classifiers in [A]-1
τ Tax rate that is imposed on classifiers in [M] but not in [A] 

ρ The probability of invoking cross-over 

θ Covering is triggered if the total weight of [M] is less than (θ * total weight of [N]) 

wildcard The percentage of the bit string that is changed to #s when covering 

mRate The probability that mutation is triggered 

mPercent The percentage of the bit string that is flipped when mutation is triggered 

n The total number of classifiers in [N] 

 
 
 
1.2 Genetic algorithm 
 
Holland created his famous GA in 1975. The GA is an evolutionary computing technique 
based on the mechanisms of natural selection and genetics; i.e., the GA applies Darwin’s 
principle of the survival of the fittest among computational structures with the stochastic 
processes of gene mutation, recombination, etc. The central idea of GA is to search a problem 
space by evolving a population of solutions such that better, or fitter, solutions are generated 
over time. Eventually the population of candidate solutions adapts to the problem. 
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In GA, two major genetic operators are applied, cross-over and mutation. SI Fig. 11 shows 
how they work. The first is cross-over, which is also called recombination. The genetic 
materials (bits) are directly exchanged between two parents to produce two new 
individuals. The chromosome (bit string) is transposed between the two parents. The genetic 
information of children has some of the characteristics of each parent. Cross-over can happen 
at any random site along the bit string. The second major operator is mutation, which flips 
bits at random points along the bit string. The number of bits that are flipped is predetermined 
by a parameter (mPercent in SI Table 6). 

 

1001000##0000111#11110000110

001001111#000011110##1110111

x 

1001000##0000111#11110010111

0010011111000011110##1100110

Cross-Over 

SI Fig. 11. Genetic algorithm’s operators: cross-over and mutation 

Mutation 

1001000##0000111#11110000110 

1001000##0000111#11111000110 

 
 
In a CS, when the GA is triggered, two classifiers are used as parents to do cross-over and 
one classifier as single parent to do mutation. The parents are identified based on a roulette 
selection based on their weights from [N] (SI Fig. 10). The weight of a child generated by 
cross-over is the average weight of its parents. An offspring from mutation inherits the weight 
of its parent. The offspring replace the weak classifiers in the population that are chosen via 
roulette selection on the inverse of their weights. In this way, the population size remains 
constant (n in SI Table 6), and favorable classifiers have a greater chance to reproduce. 

 
The GA plays a very important role in the CS. After each input-output cycle, the CS decides 
whether to apply a GA to [N]. The frequency of use of the GA is determined by two 
parameters, ρ and mRate (SI Table 6). Once a GA is invoked, it generates new rules, and 
weeds out weak rules. Thus the system gets a chance to try new rules, and evolves through 
the trial-and-error processes.  
 

2.The design of the trap placement classifier system of the lobster model 
 
Section 2.1 describes the environmental information that agents need to make decisions, and 
section 2.2 describes all possible actions they might take. The architecture of the CS is 
discussed in section 2.3. The calculation of feedbacks that enforce rules in CSs is discussed in 
section 2.4. 
 
2.1 The environment of the model 

 
Fishers interact within a complex social-ecological system. Seasons, lobster habitats, and the 
spatial heterogeneity in the distribution of fishing efforts affect the distribution of lobster, 
which in turn affects fishers’ behaviors. On the basis of extensive experience on the part of 
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two of the authors and informal conversations with fishers in the Gulf of Maine (GOM), we 
listed all environmental conditions that are important to fishers’ decisions.  

 
Ecological environment 

 
In GOM, most lobster fishers actively fish in summer, fall, and early winter and take a break 
in late winter and spring. Water temperature changes with seasons and affects the catchability 
of lobsters. When the surface water is warm (late summer and early fall), lobsters are more 
likely to be caught near shore, because they are more active and feed more. In the model, 
there are eight months for each year, from July to the next February, and each month has 30 
days, so one year has 240 days. Lobster catchability is a function of water temperature, which 
is a function of month.  

 
The spatial-ecological information, such as water depth, bottom types, and orientation, 
determine lobster distribution and catchability as well. Water temperature is also a function of 
depth. In summer, the shallow water warms up more quickly than deep water, and in winter, it 
cools down more quickly. So the catchability is relatively high in shallow water in warm 
weather and in deep water in cold weather. Depth, bottom type (SI Fig. 12), and exposure to 
prevailing winds and seas (SI Fig. 13) play important roles in lobster distribution. Lobsters 
prefer a cobble to sandy to muddy bottom. The larvae of lobsters tend to settle in areas 
exposed to the south and southwest because of the currents and winds in GOM. Once they 
settle, they tend to be very sedentary until nearly mature and catchable. In the model, lobsters 
are assumed sedentary throughout their lives although it is known to be false, especially in 
larger, older lobsters. To the extent that migration patterns are known, catchable lobsters tend 
to move into deeper water in the winter. The model captures the resulting increase in 
catchability at that time by a different mechanism: the temperature-driven changes in 
metabolism described above. So in the model, we have four depths, three bottom types, and 
nine orientations (including None). These attributes are recorded for each cell on the grid. All 
of them contribute to the patchiness of the distribution of lobster.  
 

Typical Lobster Distribution Bottom Types 

Mud 

Hard Sand 

Depth 

 Land  

Deep to shallow Lobster density - high to lowCobble 

No lobsters - fished out 

Current location of traps - more to less 

 
 

SI Fig. 12. Maps of the biophysical environment (Screen shots are in year 10, with 
10 fishers and 20 traps.) 
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SI Fig. 13. Orientation (Water that is far away from land has no orientation.) 

 
SI Table 7 lists the weight of lobster distribution for each combination of the environmental 
information. The number of lobsters that will be put in one cell is calculated as follows. First, 
calculate the weight of the cell according to SI Table 7. For example, if the depth of the cell is 
1, the bottom type is sandy, and it faces southwest, then the weight of the cell is 2 (part a of 
SI Table 7) * 6 (part b of SI Table 7) = 12. After calculating all cells’ weights, we normalize 
them. The number of lobsters that will go to each cell is the normalized weight times the total 
number of lobsters on the map. The typical lobster distribution in SI Fig. 12 shows the result 
of the distribution calculation. 
 

SI Table 7. Weights of lobster distribution. (a) The lobster distribution weight 
for each combination of depth and bottom types: 1 is the shallowest and 4 is 
the deepest. (b) The lobster distribution weight for each orientation. 

a 
Depth Cobble Sandy Muddy

1 4 2 2 

2 3 4 3 

3 2 3 4 

4 1 2 4 
 

b 
N NW W SW S SE E NE None 

2 3 5 6 5 4 3 2 1 
 

 
At the end of each year, lobsters are replenished on the map mainly by two methods, which 
can be switched by a parameter. One uses a logistic model to calculate the number of lobsters 
recruited every year. In this circumstance, lobsters could be overfished if fishing efforts go 
beyond the limit that the system can sustain. Except in the case of the Gordon-Schaefer 
model (11), the logistic recruitment function is not used in this article because our focus is on 
the fine-scale, short-run aspects of competition. In the other scenario, the total number of 
lobsters at the beginning of every year is kept constant in order to allow fishers to have stable 
mental models of the fishing environment. The other reason to keep the lobster recruitment 
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constant is that there is no obvious evidence in GOM that the distribution of lobsters or size 
of the population changes from year to year in response to its own population size. 
 
Location is another piece of important information for fishers. In the real world, fishers have 
global positioning systems (GPSs) and know exactly where they are fishing. However, their 
memory of past fishing is not nearly as specific as a GPS; nor would memory that specific be 
useful, given variations in very local lobster abundance due to both recruitment and fishing. 
Additionally, but not as important, if the 4900 cells were built into the CS, the system would 
need much more memory for calculation, which would slow down the performance of the 
simulation and may make the model infeasible for a typical desktop or portable computer. So, 
in the model, the map is divided into 24 ecological zones (SI Fig. 14), in which most cells 
share the same ecological characteristics. Fishers in the model know in which ecological 
zones they are fishing and are able to decide in which zone to put their traps next. The total 
number of lobsters that are put in the whole map is constant every year, and the lobster 
distribution is relatively stable. In order to consider the movement of lobsters, the lobster 
distribution weight of each ecological zone is changed slightly every year; i.e., the weight 
shifts around the value calculated as above by a certain percentage, e.g., ±20%, which is a 
parameter of the model. Then we normalize their values and distribute the lobsters. 
 
In summary, the explicit ecological information in the model consists of month, depth, 
bottom type, and ecological zone. Additionally, the orientation of the area to prevailing winds 
and water temperature are implicit in this information. For example, time of year includes 
information about water temperature, and ecological zones include information about 
orientation. But fishers do not know the relationship between lobster distribution and the 
ecological information. They learn it by fishing in different situations. In other words, their 
mental models of the distribution of lobster are adjusted gradually by feedback from the 
environment. They do not keep detailed information about the historical abundance in each 
cell because it is burdensome and because those data age rapidly. 
 
 

 
SI Fig. 14. Twenty-four ecological zones of the model. Ecological zones are divided by red 
lines. Single and double gray lines show the contours of different bottom types. Green areas 
are land. 
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Social Environment 
 
In the real world, experienced fishers have very good knowledge about lobster habitats and 
the way season affects lobster behavior; so in the model, fishers are assumed to have perfect 
information about these longer-term “constants” in the ecological environment. They are not 
given perfect knowledge about the current location of lobsters because the patchy distribution 
of lobsters changes from year to year due to recruitment variability and, especially in the 
short term, in response to fishing activity. Fishers’ knowledge of other fishers is especially 
incomplete. Fishers are able to guess other fishers’ performance by monitoring their neighbor 
fishers, chatting with fishers in coffee shops, etc. A global message board does not exist to 
broadcast all fishers’ catch rates and the locations where they put their traps. In the model, 
this information flow among fishers is controlled by a parameter. In order to compare 
different situations, one option gives fishers perfect information of others’ catch rates. The 
other option is closer to the real world, namely fishers know their neighbors or friends better 
than others who are far away from them, either in social or geographical distance. In the 
model, fishers broadcast their catch rates every day to everybody else. When fishers receive 
the broadcast, they discount the catch rate by a percentage, which indicates how much they 
trust the fisher who sends it. In the real world, fish and deceive is often the rule. The 
percentage is a function of the number of times two fishers encounter when they fish. Thus 
social information is not symmetric and far from perfect; i.e., individuals have access to 
different information about one another and they interpret the information they do share in 
different ways. 
 
When fishers in the model make decisions, the social/competitive conditions they need to 
consider are as follows:  

“Is the catch of the current trap the best among all his or her traps?”  
“Is the catch of his or her own best trap better than other fishers’ best?”  
“Is the catch of his or her current trap better than other fishers’ best?”  
“Has his or her own average catch rate changed?” 
“Has the average catch rate of all fishers changed?”   

 
2.2 Possible actions of fishers 

 
SI Table 8 lists all possible actions after a fisher hauls a trap. 
 

SI Table 8. Possible actions for trap placement 

Actions Meaning 
Stay Put current trap near where it was, i.e., within a 3 x 3 

neighborhood around its current location 

Own best Put current trap near own best trap, i.e., within a 3 x 3 
neighborhood 

Imitate Put current trap near a trap of the fisher thought to be the best, 
also within a 3 x 3 neighborhood 

Explore Put current trap in another area that was historically productive 
at this time of the year 
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When trap A is put near trap B, the nearest vacant cell around B will be searched, usually 
within a 3 x 3 range. If there is no vacancy found in the small range, a larger range of area 
will be searched. When a fisher decides to imitate another’s best, he/she has no idea of the 
location of the best trap and puts his/her current trap next to the nearest trap of the best fisher.  

 
Imitation makes the learning mechanism of the model different from other LCS models in 
which agents develop new rules (learn) only through a reinforcement mechanism and or 
through cross-over and mutation carried out in the GA. By imitating, fishers are able to 
improve their mental models and their ability to adapt to a complex environment. Imitation is 
a critical modification of the usual mechanisms of an LCS and is the principal source of the 
social arrangements that emerge in the fishery. 
 
Fishers acquire experience by imitating. That experience is translated into a new rule with the 
current conditions of the trap he/she hauls as the condition part, and the current action, i.e., 
where he/she put it, as the action part. The weight of the new rule is assigned later as the 
number of lobsters caught using this rule. Next time, when the fisher meets the same 
condition, the new classifier will show up on the match list and compete with other matching 
rules. In other words, the fisher could imitate again or explore using the new rule. (See SI 
Fig. 15 for more information.) 
 
2.3 The architecture of classifier systems  
 
Lessons we learned from the design 
 
Once we listed all the conditions and actions that were relevant to the conduct of the real 
fishery, we expected the design of the LCS to be straightforward. We created a large classifier 
that was able to contain all possible combinations of conditions and actions. SI Table 9 lists 
the first design. 
 

SI Table 9. The original format of the classifiers 
 

Condition Action 
(1) Time  
(2) Bottom  
(3) Depth  
(4) Orientation  
(5) Performance Comparisons, i.e., the 

competitive comparisons listed above 
(6) Ecological zone  
(7) Steaminga

(8) Spread of own trapsa

(1) Stay  
(2) Imitate 
(3) Own best  
(4) Go to a specific bottom type and depth 

in a specific ecological zone 

a These two conditions were added in the first design to consider the steaming (travel) 
costs of each move, but they are not used in later versions of the model. 

 
 
The number of combinations of all conditions and all actions is a huge number, 14 trillion; the 
search space defined this way is too large to make an effective search even given the frequent 
number of tests (trap hauls) each fisher conducts. As a result, we did not observe learning on 
the part of agents. Consequently, we modified the model in order to reduce the search space. 
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A hierarchical approach to the trap-placement classifier systems 
 
When we, human beings, make decisions in a complicated situation, we normally consider 
first the range of relevant conditions and give higher priority to major decisions. After that, 
other conditions are considered. The new design was inspired by this idea (10). When a fisher 
hauls a trap, he/she knows how many lobsters were caught, and how that number compares to 
(at least some) other fishers. If satisfied with the catch, the fisher might stay there for several 
days or put the trap near his/her own best trap; otherwise, he/she can imitate another fisher’s 
trap or go to another location that was historically productive in similar circumstances. 
 
SI Fig. 15 shows the different levels of decision making. Fishers use the first-level CS, the 
Strategy CS, to consider social conditions to decide what fishing strategy to use, imitation, 
exploration, stay, or move to own best trap. If imitation, stay, or move to own best trap is 
decided, fishers search locally around the other trap looking for a vacant spot to put their 
traps. If exploration is chosen, fishers use the second-level Area CS, in which they use time 
and current ecological zone as inputs to decide what ecological zone to move their traps to 
next. This CS connects the season with different ecological zones and accumulates experience 
of what zone is more productive in each month. Then the third-level Location CS is triggered. 
At this point, the fisher considers the bottom type and depth to go to within the chosen 
ecological zone. The Location CS connects the season with different bottom types and depths. 
 

Strategy ZCS 

Area ZCS 

Location ZCS 

Social Environment Explore StayOwn Imitation 

Condition Action 

Current Area & Time Area

Ecological Environment Bottom & Depth

SI Fig. 15. Hierarchical decision making 
 

 
 
SI Table 10 gives a detailed design of each CS and number of bits of the classifiers. 
 

SI Table 10. Detailed design of each classifier system in the hierarchical approach 
 

CS#1 – Strategy CS: 
 

a1 
Conditions Results # of bits 
(1) Current catch vs. own best 0~1 1 
(2) Current catch vs. other’s best 0~1 1 
(3) Own best vs. other’s best 0~1 1 
(4) Own current avg. CR – own previous avg. CR 0~1 1 
(5) Avg. coffee shop CR vs. own avg. CR 0~1 1 
(6) Current avg. coffee shop CR vs. previous coffee shop CR 0~1 1 

Total # of bits  6 
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a2 
Actions  
(1) Stay  
(2) Own best  
(3) Imitate  
(4) Explore  

Total # of bits 2 
 

CS#2 – Area CS: 
 

b1 
Conditions Results # of bits 
(1) Current location 0~23 (totally 24 ecological zones) 5 
(2) Month 0~7 (totally 8 months) 3 
 Total # of bits 8 

 
b2 

Actions Results # of bits 
Ecological zone 0~23 (totally 24 ecological zones) 5 

 
 

CS#3 – Location CS: 
 

c1 
Conditions Results # of bits

(1) Time 0~7 3 

(2) Depth 0~3 2 

(3) Bottom type 0~2 2 

Total # of bits 7 
 

c2 
Actions  

(1~12) Combinations of different depths and bottom types  

(13) Go deeper & other bottom type  

(14) Go shallower & other bottom type  

(15) Same depth & other bottom type  

Total # of bits 4 
 
 

SI Table 11 lists the number of possible rules of each CS. Most trap-placement decisions only 
search the first-level Strategy CS, because once the fisher has decided to move to his/her own 
best trap or to imitate or to simply keep the trap where it is, any further decisions about area, 
depth, and bottom type are irrelevant. As a result, the search space for all these strategies has 
only 2916 possible rules. Generally, far less than 25% of decision making needs to search all 
three levels of the hierarchy. Thus, the hierarchical approach reduces the search space 
dramatically (compared with 14 trillion, for example) and allows the rapid evolution of 
effective rules. 
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SI Table 11. Number of possible rules in each classifier system 

 # of possible conditions # of actions # of possible rules 

Strategy CS 3^6 = 729, 3 ~ (0,1,#) 4 2,916 
Area CS 25*9 = 225, 25 ~ (24 ecological zones, #), 

9 ~ (8 months, #) 24 5,400 
Location CS 9*4*5 = 180, 9 ~ (8 months, #), 4 ~ (3 bottom 

types, #), 5~(4 depths, #) 15 2,700 
 
 
SI Fig. 16 shows how learning through imitation, i.e., outside the GA learning mechanism, 
fits in the model. When imitation happens, fishers put their current traps near others’ best 
traps. Once they find a vacancy, they know the characteristics of the location where they put 
the traps, i.e., the ecological zone, bottom type, and depth. They use that information to create 
two new classifiers, which are added into Area CS and Location CS, respectively. When 
exploration takes place, fishers consult the second and third levels of CS and get the location, 
the ecological zone, the bottom type, and the depth. Then they bring their traps, go to the 
specified ecological zone, and try to locate the proper bottom type and depth. Sometimes they 
cannot find a certain bottom type and depth in that ecological zone. In this case, they drop 
their traps randomly in that zone and test if they can catch anything. At the same time, they 
create a new rule with the location information in the third-level CS. 
  

 
 

SI Fig. 16. The architecture of the classifier systems of the model. Red lines indicate the flow 
of decision making, and blue lines indicate how learning, except genetic algorithm, happens in 
the model. 
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2.4 Feedbacks 
 
The calculation of feedback is important for the CS. Feedback determines whether the system 
can evolve or not and should be a function of all elements in the condition part. Otherwise, 
the effectiveness of classifiers cannot be differentiated through feedback. For example, we 
have two classifiers, c1c2c3:a and c1c2c4:a. If the feedback = f (c1, c2), the third condition in 
both classifiers will be ignored and both classifiers can be combined into c1c2:a.  

 
In the model, the number of lobsters fishers catch is the principal feedback from the 
environment. It reflects the lobster distribution and the fishing effort, which is a function of 
time, bottom type, depth, ecological zone, and trap distribution. But sometimes, it is not 
sufficient. For example, the purpose of Area CS is to differentiate which ecological zone is 
more productive in each month. The total catch in ecological zones with deep water is much 
less than catches with shallow water, but in the winter, catchability in deep water is better 
than in shallow water. In this case, feedbacks that only consider the number of lobsters caught 
are not correct. Instead, how good the seasonal catch is in each ecological zone at a certain 
time needs to be considered. The feedback used in each CS is as follows: 
 
FStrategy = n – C / N, [1] 

FArea (a) = n – (Cnot in a / Nnot in a – Cin a / Nin a), [2] 

FLocation (d, b) = n – (Cnot in d or not in b / Nnot in d or not in b – Cin d and b / Nin d and b), [3] 

where n is the number of lobsters caught by the current trap, C is the total catch, N is the total 
number of trap hauls, and a is the ecological zone, d is the depth, and b is the bottom type. 
 
 
3. The design of the trap-cutting classifier system 
 
In addition to the trap-placement decision, fishers make another daily decision about how to 
deal with competitors’ traps that are located near theirs. They can cut those traps or they can 
ignore them. When they make this decision, the information they need to consider is whether 
the owner of the trap is their neighbor, whether the ecological zone they are in is their own 
territory, and whether the zone is productive. Incorporation of this decision in the model 
opens the door for fishers to compete by directly interfering in the actions of their 
competitors. The design of the Trap-Cutting CS is illustrated in SI Table 12. 
 

SI Table 12. The design of the trap-cutting classifier system 

Conditions Description Results # of bits

(1) Current 
frequency of 
encounters 

The frequency of encounters. Indicates whether the fisher 
who is encountered is a neighbor or not. Because 
information flow among fishers is based on frequency of 
encounters, fishers know the performance of those who are 
close to them much better. They tend to imitate them, which 
increases even more the number of their encounters. We use 
this condition to determine if the other fisher is a neighbor. 

0~1 1 

(2) Area Includes information about territory and productivity of the 
area 

0~23 5 

(3) Action to me Did the other fisher cut my trap the last time we met? 0~1 1 

(4) Action to 
neighbors 

Did the other fisher cut the trap of one of my neighbors last 
time he/she met one of them? 

0~1 1 

Total # of bits  8 
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Actions  
(1) Cut  
(2) Ignore  
Total # of bits 1 

 
 
The feedback of the CS is discussed in the article. Retaliation is implicitly built into the pay-
off matrix. SI Tables 13a1 and 13a2 give the description of the pay-off matrix, SI Table 13b 
gives the example values for variables that could be used for the model, and SI Tables 13c1 
and 13c2 show the instantiate matrix used in the model. 
 
 

SI Table 13. Trap-cutting pay-off matrix 
 

a1. Feedback when trap is located in OWN neighborhood 

My 
action 

Other fisher 
is Other fisher cuts  Other fisher 

is Other fisher ignores  

benefits = minor decrease in 
competition 

benefits = minor decrease in 
competition 

neighbor 
costs = high probability of 
retaliation, loss of cooperation, loss 
of trap 

neighbor 

costs = high probability of retaliation, 
loss of cooperation 

benefit = larger competitive benefit 
because my action is likely to be 
reinforced by my colleagues 

benefit = larger competitive benefit 
because my actions are likely to be 
reinforced by colleagues 

Cut 

nonneighbor 

costs = loss of trap, lower 
probability of retaliation 

nonneighbor

costs = lower probability of retaliation

benefits = maintenance of 
cooperation benefits = maintenance of cooperation

neighbor 

costs = minor increase in 
competition, loss of trap 

neighbor 

costs = minor increase in competition 

benefits = none benefits = none 
Ignore 

nonneighbor 
costs = minor increase in 
competition, loss of trap 

nonneighbor

costs = minor increase in competition 
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a2. Feedback in OTHERS’ neighborhood 

My 
action 

Other fisher 
is Other fisher cuts  Other fisher 

is Other fisher ignores  

benefits = minor decrease in 
competition 

benefits = minor decrease in 
competition 

neighbor 
costs = high probability of 
retaliation, loss of cooperation, loss 
of trap 

neighbor 

costs = high probability of retaliation, 
loss of cooperation 

benefit = minor decrease in 
competition 

benefit = minor decrease in 
competition 

Cut 

nonneighbor costs = loss of trap, high 
probability of retaliation, members 
of other group will reinforce 
his/her actions 

nonneighbor
costs = high probability of retaliation, 
members of other group will reinforce 
his/her actions 

benefits = none benefits = maintenance of cooperation

neighbor 
costs = minor increase in 
competition, loss of trap 

neighbor 

costs = minor increase in competition 

benefits = none benefits = none 
Ignore 

nonneighbor 
costs = minor increase in 
competition, loss of trap 

nonneighbor

costs = minor increase in competition 

 
 

b. The following values to the variables determining the pay-off matrix 

Costs of gear destruction 20 
Change in competition ±30 
Cost of retaliation 20 
Change in cooperative benefits ±30 

Group reinforcement 40 
 

 
 

c1. Feedback when trap is located in OWN neighborhood 

  Other fisher is Cut Ignore 

neighbor -64 -44 
Cut 

nonneighbor 6 26 

neighbor 4 24 
Ignore 

nonneighbor -26 -6 
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c2. Feedback in OTHERS’ neighborhood 

  Other fisher is Cut Ignore 

neighbor -64 -44 
Cut 

nonneighbor -54 -54 

neighbor -26 24 
Ignore 

nonneighbor -26 -6 

 
 
4.Design issues  
 
Particular aspects of the lobster model required modifications in Wilson’s ZCS mechanism.  
 
Changes in the method of covering 
 
Covering occurs when there are no existing strong rules that match the current environment. 
For all CSs in the model, the action of new rules that are generated by covering is from the 
most similar existing rules. By similar, we mean a rule for which the bits reserved for the 
environment most closely match the current environment, which mimics a human being’s 
cognitive process (10). When we are in a new situation, we connect the new features to the 
similar ones that we met before and we will try what we did before.  

 
Cross-over on match list 
 
In Wilson’s ZCS, the GA does cross over on the rule-base [N] (SI Fig. 10). However, in the 
model, cross-over is done on the match list [M] in order to allow fishers to try new, closely 
related rules in every circumstance. In this case, rules in the CS converge much more quickly. 
When there are a large number of environmental variables and rules, [M] is more likely to 
contain relevant/related rules, leading to quicker convergence, whereas rules chosen from [N] 
are not likely to be relevant because of the breadth of environmental conditions in the model. 
Applying cross-over only to rules that appear in the match list limits the diversity of rules 
developed by cross-over. However, the process of imitation, not included in the ZCS, 
continually introduces new rules and tends to maintain diversity. 
 
A variable number of rules 
 
In Wilson’s ZCS, whenever new rules are added to the rule-base, the same number of old, 
weak rules will be deleted. But in our model, the total number of rules in [N] is not constant 
during a simulation year. New rules generated by the GA and social learning are simply added 
into the system. At the end of the simulation year, the rules in the system are sorted by weight, 
and the system only keeps the first n strong rules, where n is the total number of rules allowed 
by the CS. The approach addresses a problem that arises because of the seasonal changes built 
into the model and the need for rules to be adapted to those changes. At the beginning of the 
simulation year, only those rules for summertime are used. During that time they become 
relatively stronger than wintertime rules. If we delete weak rules at that time, i.e., in the 
summer, useful wintertime rules will tend to be deleted and would have to be relearned every 
year. Similarly, summertime rules would tend to be deleted in the winter and would require 
relearning at the start of the next year. Consequently, we allow the number of rules to vary 
over the course of a model year and only delete weak rules at the end of the year.   
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Do error checking  

 
All numbers in the bit strings of the CS are encoded into binary numbers, which yields a lot 
of invalid rules. For example, we use 5 bits to identify ecological areas. Five bits can be used 
to represent up to 32 areas but we only use 24 ecological zones plus a # sign, so there are 
possibly 7 invalid expressions. For this reason, the CS does error checking every time new 
rules are generated. At the beginning of the simulation, all rules are randomly generated, and 
the system only keeps valid, new random rules in the rule-base. Invalid rules generated by the 
GA are considered a miscarriage, and are discarded by the system. The covering process is 
repeated until it gets a valid rule.  
 
Remember bad experiences 
 
Usually, rules in a traditional CS are reinforced in only one direction, i.e., the stronger the 
better. But in the Trap-Cutting CS, not only strong rules but also weak rules need to be 
remembered. For example, a rule allowing fishers to cut their neighbors’ traps always gets 
negative feedback because of later costly retaliation. In the traditional CS, rules like this will 
be eliminated and later, if the same situation happens again, a new rule, possibly the same bad 
rule, will be added into the system. In effect, agents repeatedly forget relevant experience and 
repeatedly make mistakes they learned to avoid earlier. Consequently, when the Trap-Cutting 
CS is updated at the end of a simulation year, trap-cutting rules with very negative weights 
are still kept in the system but their action component is switched to ignore. Thus, fishers 
learn from bad experiences.  

 
 

5. The architecture of the lobster model 
 
SI Fig. 17 shows the broad decision and action flows of the model. When a fisher goes to 
haul a trap, he/she checks the cell to see if the trap is still there. If it is there, he/she will haul 
it and consult the trap-placement CSs to decide where to put it next. If the fisher finds the trap 
has been cut by others, he/she will buy a new trap and consult the Area CS and Location CS 
to get a spot to drop the new trap. After placing the trap, the fisher will look around. If there 
is any other fisher’s trap around, he/she will decide whether to cut or ignore it. Then the 
fisher goes to haul the next trap. 
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Go to a trap

Check the cell 

Go to next trap

Interference Competition – CS #4 Trap-Cutting CS

Cut Ignore

If own trap is there

Scramble Competition – Trap-Placement CSs

CS #1 Strategy CS

CS #2 Area CS

CS #3 Location CS

Haul the trap

Move to a new spot

If own trap is not there

If nobody is found to pair up  

Update Frequencies

Buy a new trap 

Randomly find one fisher in the 
same area to make a decision 

whether to cut or not 

If somebody is found

Feedback 
(pay-off matrix) 

Feedback (lobsters caught) Feedback 
(trap lost) 

 
 

SI Fig. 17. The architecture of the model 
 
 
 
6. The exit and entry of fishers 
 
Fishers’ economic behavior is simulated as if they were a simple firm. They face fixed costs, 
daily operating costs, and steaming (travel) costs. These costs are uniform among fishers in 
the model. Revenues are a function of catch; product (lobster) prices are held constant.  
 
When the model addresses long-run issues, at the end of each year, fishers in the model are 
allowed to quit and new fishers are allowed to enter. Because learning is a significant 
problem for fishers and is time-consuming, each fisher is given a bank account that initially 
buffers entry costs and allows him/her to weather the costs of learning. Over the longer term, 
the fisher’s account tracks profits for the last three years. If, at any time, the account goes to 
zero, the fisher goes bankrupt and exits the fishery.  
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If the fishery is profitable, more fishers enter the fishery. At the end of year, the profits of all 
fishers are summed up. If they are greater than a threshold, a parameter of the model, fishers 
will enter the fishery. The number of new fishers entering is decided by how big the 
difference between the threshold and the total profits is. New fishers incorporate rules of their 
parents, which are randomly picked from the old fishers, into their own CSs. This system 
mimics apprentice processes and becomes another way that fishers acquire decision rules. 
 
 
7. The parameters that are important to the model 
 
In SI Table 14, all parameters that are important to the model are listed. 
 
 
 

SI Table 14. Parameters in the model 

Parameters Description 
fisherNum Total number of fishers if the population of fishers is a constant, or the initial 

number of fishers if entry and exit are allowed. 
maxLobsterPerCell Carrying capacity of lobsters in each cell  
trapCapacity The maximum number of lobsters each trap can catch 
shiftPercent The annual maximum range of variation in lobster numbers in each ecological 

area
numStringPerFisher The number of traps each fisher has 
numStrMovePerDay The number of traps each fisher moves every day 
unitRevenue The ex-vessel price of lobster 
maxStringPerCell The maximum number of traps each cell can hold 
birthThreshold If the total year profits of the fishery exceed the birthThreshold, new fishers 

will enter fishery 
dayFixedCost The fixed cost for each day 
maxNumCycle The maximum number of years the simulation will run 
gasPrice The gas cost of moving a trap one cell on the map 
info Indicates different types of social information  
startupFund The initial amount of money in the fisher’s bank account 
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