-Supplementary Material for-Synthesis and biological evaluation of (–)-dictyostatin and stereoisomers

Youseung Shin,^a Jean-Hugues Fournier,^a Arndt Brückner,^a Charitha Madiraju,^b Raghavan

Balachandran,^b Brianne S. Raccor,^a Michael C. Edler,^d Ernest Hamel,^d Rachel P. Sikorski,^c

Andreas Vogt,^cBilly W. Day,^{a,b}* and Dennis P. Curran^a*

^aDepartment of Chemistry, ^bDepartment of Pharmaceutical Sciences, and ^cDepartment of

Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261 USA, and ^dToxicology and

Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and

Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD

21702 USA

Emails: curran@pitt.edu, bday@pitt.edu

Table of Contents

Synthesis of 6,16- <i>bis,epi</i> -dictyostatin	. 2
Synthesis of 6,14-bis,epi-dictyostatins.	. 13
Copies of NMR spectra of compounds submitted to biological testing	. 32

Synthesis of 6,16-bis, epi-dictyostatin

$\{3(R)-[2-(4-Methoxyphenyl)-5(S)-methyl[1(S),3]dioxan-4-yl]-2-oxobutyl\}phosphonic acid dimethyl ester (7).$

BuLi (4.5 mL, 1.6 M solution in hexane) was added dropwise to a stirred solution of dimethyl methanephosphonate (0.77 mL, 7.1 mmol) in THF (7 mL) at -78 °C. After 1 h, a solution of 6 (0.46 g, 1.42 mmol) in THF (1 mL) was added. After 30 min, the reaction was then allowed to warm to 0 °C, quenched by pouring into brine (10 mL) and extracted with EtOAc (2 x 5 mL) the combined extracts were washed with brine (10 mL), dried and chromatographed (EtOAc/hexane 1:1) gave 7 (0.47 g, 85%) as a colorless oil: IR (CHCl₃) 3469, 2957, 2850, 1715, 1615, 1518, 1461, 1393, 1302, 1251, 1173, 1031, 828 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (m, 2H), 6.89 (m, 2H), 5.50 (s, 1H), 4.14 (dd, *J* = 11.3, 4.7, Hz, 1H), 4.06 (dd, *J* = 10.0, 2.7 Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.74 (s, 3H), 3.59 (t, *J* = 11.1 Hz, 1H), 3.38 (dd, *J* = 22.6, 14.5 Hz, 1H), 3.17 (dd, *J* = 21.6, 14.5 Hz, 1H), 3.02 (dq, *J* = 2.8, 7.0 Hz, 1H), 2.06 (m, 1H), 1.26 (d, *J* = 7.0 Hz, 3H), 0.85 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.5, 159.5, 130.4, 126.9, 113.1, 100.5, 82.1, 72.4, 54.9, 52.6, 48.6, 39.3, 37.6, 30.6, 11.6, 8.7; LRMS (EI) 386 (M⁺⁺), 263, 193, 151, 137, 135, 124; HRMS (EI) calcd for C₁₈H₂₇O₇P (M⁺⁺) 386.1494, found 386.1482; [α]²⁰_D+4.2 (*c* 1.5, CHCl₃).

4(*R*)-Benzyl-3-[4-(2,2-dimethyl[1,3(*S*)]dioxolan-4-yl)-3(*S*)-hydroxy-2(*R*)-methylbutyryl]-oxazolidin-2-one (10).

Diisopropylethylamine (13 mL) was added to a solution of propionyloxazolidinone (13.1 g) in anhydrous CH₂Cl₂ (250 mL) at 0 °C, followed by dropwise addition of *n*-Bu₂BOTf (1.0M in CH₂Cl₂, 68 mL). The solution was stirred for 1 h at 0 °C. A solution of crude aldehyde derived from **9** (8.9 g) in anhydrous CH₂Cl₂ (10 mL) was added slowly at -78 °C. After addition, the reaction mixture was warmed to 0 °C and stirred for 1 h, then quenched with pH7 phosphate buffer (20 mL). A solution of hydrogen peroxide (30 %, 40 mL) in MeOH (80 mL) was added at 0 °C and the mixture was stirred for 1 h. The reaction mixture was extracted with CH₂Cl₂ (50 mL x 2) and dried over MgSO₄ followed by flash chromatography (EtOAc/hexane 1:1) to yield 20.7 g of **10** (98%) as a colorless oil: IR (CHCl₃) 3434, 2956, 2929, 2858, 1724, 1472, 1463, 1257, 1097, 836, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.33 m, 3H), 7.22 (m 2H), 4.72 (ddd, *J* = 10.2, 7.0, 3.2 Hz, 1H), 3.61 (t, *J* = 7.7 Hz, 1H), 3.25 (dd, *J* = 13.4, 3.3 Hz, 1H), 2.82 (dd, *J* = 13.4, 9.4 Hz, 1H), 1.80 (ddd, *J* = 14.2, 9.7, 4.6 Hz, 1H), 1.68 (ddd, *J* = 10.8, 7.8, 3.0 Hz, 1H), 1.43 (s, 3H), 1.38 (s, 3H), 1.30 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 152.9, 134.9, 129.3, 128.8, 127.3, 108.6, 73.4, 69.5, 68.5, 66.0, 54.9, 42.4, 37.6, 37.5, 26.8, 25.6,10.8; [α]²⁰_D -28.1 (*c* 4.1, CHCl₃).

6-(2,2-Dimethyl[1,3(S)]dioxolan-4-yl)-5(S)-hydroxy-4(R)-methylhex-2-enoic acid ethyl ester (11).

The aldol product **10** (5.39 g, 14.3 mmol) in 20 mL THF was added slowly to RED-Al (4.6 mL, 15.7 mmol) in 10 mL of THF at -78 °C. The solution was stirred for 10-15 min at -78 °C, then warmed to -50 °C and stirred between -55 and -40 °C for 1 h. The reaction was quenched at -50 °C with 20 mL of EtOAc and 2 mL of MeOH, then poured into a mixture of a saturated aqueous solution of Rochelle's salt (10 mL) and Et₂O (12 mL) and stirred at -20 °C for 10 min. The aqueous layer froze as a gel. The organic layer was separated and the aqueous layer was rinsed quickly with Et₂O (2 x 10 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude aldehyde was used without purification. Dry THF (40 mL) was was treated with triethylphosphonoacetate (3.26 mL, 16.4 mmol) and potassium *tert*-

butoxide (1.86 g, 17.4 mmol). The mixture was stirred at room temperature for 10 min before cooling to -78 °C. The crude aldehyde was added in THF (10 mL) and stirred overnight while warming to room temperature. The mixture was poured into brine (10 mL), extracted with Et₂O (3 x 20 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Flash silica gel chromatography (hexane/EtOAc 3:2) provided **11** (2.02 g, 52 % for 2 steps) as a colorless oil: IR (CHCl₃) 2984, 2938, 1719, 1651, 1370, 1270, 1183, 1060, 989 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ6.88 (dd, *J* = 15.8, 8.0 Hz, 1H), 5.83 (d, *J* = 15.8 Hz, 1H), 4.28 (m, 1H), 4.14 (q, *J* = 7.1 Hz, 1H), 4.03 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.76 (m, 1H), 3.53 (t, *J* = 8.0 Hz, 1H), 2.48 (brs, 1H), 2.41 (m, 1H), 1.72-1.56 (m, 2H), 1.37 (s, 3H), 1.31 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.07 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 150.3, 121.6, 108.6, 73.5, 71.3, 69.3, 60.2, 42.8, 37.2, 25.8, 25.5, 14.5, 14.1; LRMS (EI) 257 (M–CH₃)⁺ 211, 169, 128, 87; HRMS (EI) calcd for C₁₃H₂₁O₅257.1389 (M–CH₃)⁺ found 257.1382; [α]²⁰_D –25.7 (*c* 1.6, CHCl₃).

(5S,7S,8)-tris(tert-Butyldimethylsilanyloxy)-(4R)-methyloct-2-enoic acid ethyl ester (12).

Dowex HCR-W2 ion-exchange resin (2.0 g, activated by aqueous 1N HCl for 24 h then filtered, MeOH as eluent) was added to a stirred solution of conjugated ester 11 (1.73 g) in MeOH (20 mL). After stirring for 24 h, the resin was filtered and filtrate was concentrated and dried for 2 h in vacuo. The triol was then used in next step without further purification. A stirred solution of triol and 2,6-lutidine (3.3 mL, 28.6 mmol) in CH₂Cl₂ (30 mL) at 0 °C was treated with TBSOTf (5.1 mL, 22.2 mmol) and the reaction mixture was stirred for 1 h at 0 °C. The reaction mixture was quenched by the addition of H_2O (25 mL). The reaction mixture was extracted by CH_2Cl_2 and dried over MgSO₄ followed by the evaporation of the solvent under reduced pressure. The residue was purified by short column chromatography (hexane/EtOAc 9:1) whereupon the 12 (2.96 g, 81 % for 2 steps) was obtained as a colorless oil: IR (CHCl₃) 2956, 2930, 2858, 1724, 1652, 1472, 1463, 1362, 1256, 1097, 836, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.04 (dd, J =15.9, 6.7 Hz, 1H), 5.75 (dd, J = 15.9, 1.5 Hz, 1H), 4.16 (dq, J = 1.3, 7.1 Hz, 2H), 3.84 (quint, J = 1.3, 7.1 Hz, 3.84 (quint, 3.6 Hz, 1H), 3.71 (m, 1H), 3.49 (dd, J = 10.1, 5.4 Hz, 1H), 3.36 (dd, J = 10.1, 5.8 Hz, 1H), 2.48 (m, 1H), 1.59-1.40 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.85 (m, 27H), 0.056 (s, 3H), 0.049 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H), 0.01 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 151.7, 120.8, 72.8, 71.4, 68.0, 60.0, 42.2, 39.5, 25.9, 25.7, 18.3, 18.1, 14.2, 13.3, -3.0, -3.6, -4.2, -4.5, -5.4; LRMS (EI) 517 (M^{-t}Bu)⁺ 385, 315, 271, 231, 147; HRMS (EI) calcd for $C_{25}H_{53}O_5Si_3 517.3201 (M^{-t}Bu)^+$ found 517.3179; [α]²⁰_D -29.6 (*c* 0.92, CHCl₃).

(5S),7S)-bis(tert-Butyldimethylsilanyloxy)-8-hydroxy-4(R)-methyloct-2-enoic acid ethyl ester (13).

A solution of TBS ether **12** (7.4 g, 12.9 mmol) in THF (10 mL) was slowly treated with HFpyridine in pyridine (40 mL, prepared by slow addition of 12 mL pyridine to 3 mL HF-pyridine complex followed by dilution with 25 mL THF). The mixture was stirred overnight at room temperature and quenched with saturated aqueous NaHCO₃ (100 mL). The aqueous layer was separated and extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with saturated aqueous CuSO₄ (3 x 50 mL), dried over MgSO₄, filtered and concentrated. Flash column chromatography (EtOAc/hexane 1:4) afforded 3.86 g (65%) of the alcohol **13** as a colorless oil: IR (CHCl₃) 3492, 2956, 2930, 2857, 1722, 1472, 1367, 1256, 1092, 1039, 836, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.01 dd, *J* = 15.9, 6.7 Hz, 1H), 5.75 (dd, *J* = 15.9, 1.5 Hz, 1H), 4.15 (dq, *J* = 1.2, 7.2 Hz, 2H), 3.75 (m, 1H), 3.56 (m, 1H), 3.40 (m, 1H), 2.44 (m, 1H), 1.85 (t, *J* = 5.9 Hz, 1H), 1.61 (ddd, *J* = 11.5, 6.4, 5.0 Hz, 1H), 1.50 (ddd, *J* = 13.0, 7.2, 5.8 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 3H), 0.99 (d, *J* = 6.9 Hz, 3H), 0.86 (s, 9H), 0.85 (s, 9H), 0.60 (s, 6H), 0.34 (s, 3H), 0.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 151.1, 121.1, 72.8, 71.0, 66.9, 60.1, 41.8, 38.7, 25.8, 18.0, 14.2, 13.3, -4.2, -4.3; LRMS (ESI) 461 $[M+H]^+$; HRMS (ESI) calcd for $C_{23}H_{49}O_5Si_2461.3119 [M+H]^+$, found 461.3091; $[\alpha]^{20}_{D}-24.3$ (*c* 5.9, CHCl₃).

(5*S*,7*S*)-*bis*(*tert*-Butyldimethylsilanyloxy)-(4*R*)-methyl-8-oxooct-2-enoic acid ethyl ester (14). Alcohol 13 (3.86 g, 8.34 mmol) in CH₂Cl₂ (20 mL) was treated with the Dess-Martin periodinane (5.3 g, 12.5 mmol). After 1 h, the mixture was quenched with saturated aqueous NaHCO₃ (50 mL). The aqueous layer was extracted with Et₂O (2 x 20 mL) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography (hexane/EtOAc 4:1) to remove the residue from the Dess-Martin reagent provided the aldehyde 14 as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 9.53 (d, *J* = 1.5 Hz, 1H), 7.02 dd, *J* = 15.9, 6.6 Hz, 1H), 5.77 (dd, *J* = 15.9, 1.4 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 4.07 (ddd, *J* = 7.7, 4.8, 1.4 Hz, 1H), 3.84 (ddd, *J* = 8.6, 6.8, 4.4 Hz, 1H), 2.52 (m, 1H), 1.75-1.56 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 0.99 (d, *J* = 6.9 Hz, 3H), 0.89 (s, 9H), 0.86 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H), 0.03 (s, 6H).

5(*S*),7(*S*)-*bis*(*tert*-Butyldimethylsilanyloxy)-10(*S*)-[2-(4-methoxybenzyl)-5(*S*)-methyl-[1,3(*R*)]dioxan-4-yl]-4(*R*)-methylundeca-2,8-dienoic acid ethyl ester (15).

NaHMDS (1.0 M in THF, 12.3 mL, 12.3 mmol) was slowly added to a solution of the salt 8 (8.72 g, 13.7 mmol) in dry THF (13.7 mL) at 0 °C. The resulting red solution was stirred at room temperature for 20 min. The mixture was cooled to -78 °C and a solution of the aldehyde 14 (5.03 g, 10.9 mmol) in THF (2.0 mL) was added dropwise. The mixture was stirred for 20 min at -78 °C and then warmed to room temperature. After 4 h at room temperature, the mixture was quenched with saturated NH₄Cl (20 mL) and extracted with diethyl ether (3 x 30 mL). The combined organic layers were dried over anhydrous MgSO₄, evaporated and the residue was purified by column chromatography (hexane/EtOAc 9:1) to yield 15 (5.65 g, 75 %) as a colorless oil: IR (CHCl₃) 2957, 2929, 2856, 1720, 1650, 1617, 1518, 1463, 1370, 1250, 1158, 1073, 1032, 836, 774 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.34 m, 2H), 6.99 (dd, J = 15.8, 6.9 Hz, 1H), 6.82 (m, 2H), 5.72 (dd, J = 15.8, 1.5 Hz, 1H), 5.36 (s, 1H), 5.32 (dd, J = 11.1, 8.6 Hz, 1H), 5.18 (t, J = 10.8 Hz, 1H), 4.55 (ddd, J = 12.6, 8.6, 4.1 Hz, 1H), 4.12 (m, 2H), 3.99 (d, J = 7.2, 2.1 Hz, 1H), 3.91 (m, 1H), 3.77 (s, 3H), 3.52 (dd, J = 9.3, 2.1 Hz, 1H), 2.64 (m, 1H), 2.37 (m, 1H), 1.64 (m, 11H), 1.46 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H), 1.15 (d, J = 6.9 Hz, 3H), 0.93 (d, J = 6.8 Hz, 6H), 0.86 (s, 18H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 159.7, 151.9, 133.8, 132.7, 131.3, 120.8, 113.4, 101.7, 83.6, 73.8, 71.9, 66.4, 60.0, 55.1, 43.6, 42.9, 34.2, 29.8, 26.0, 25.9, 18.1, 15.6, 14.2, 13.5, 11.2, -3.0, -3.8, -4.1, -4.5; LRMS (API-ES) 729.4 $[M+K]^+$; HRMS (ESI) calcd for $C_{36}H_{66}O_7Si_2K$ 729.3984 $[M+K]^+$, found 729.4013; $[\alpha]^{20}$ = -8.7 (c 6.8, CHCl₃).

5(*S*),7(*S*)-*bis*(*tert*-Butyldimethylsilanyloxy)-10(*S*)-[2-(4-methoxybenzyl)-5(*S*)-methyl-[1,3(*R*)]dioxan-4-yl]-4(*R*)-methylundeca-2,8-dien-1-ol (16).

Aqueous KOH (1N, 45 mL) was added to a stirred solution of ester **15** (3.13 g, 4.53 mmol) in EtOH (20 mL), THF (2 mL) and the mixture was refluxed gently until the ester disappeared (about 6 h) as determined by TLC. The ethanolic solution was concentrated and then diluted with EtOAc (50 mL). After the solution was acidified to pH3 with 1N HCl solution, the organic phase was separated and the aqueous phase was extracted with EtOAc (2 x 10 mL). The combined organic phases were dried with MgSO₄, concentrated and used next step without further purification. The carboxylic acid was treated with NEt₃ (1.5 mL) and ethyl chloroformate (0.67 mL) in dry THF (50 mL) at -10 °C. After 15 min, the mixture was warmed to 0 °C and a solution of NaBH₄ (1.2 g) in H₂O (10 mL) was added. After 4 h, the reaction was quenched by addition of sat'd Rochelle's salt solution and Et₂O. The layers were separated and the organic layer was

washed with H₂O, sat'd NaHCO₃ solution and brine, dried with MgSO₄. Rotary evaporation and silica column chromatography (hexane/EtOAc 4:1) gave product **16** (1.79 g, 61 %) as a colorless oil: IR (CHCl₃) 3433, 2957, 2929, 2856, 1617, 1518, 1462, 1388, 1250, 1074, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (m, 2H), 6.84 (m, 2H), 5.63 (dd, *J* = 15.7, 6.2 Hz, 1H), 5.48 (dt, *J* = 16.0, 5.6 Hz, 1H), 5.37 (t, *J* = 10.6 Hz, 1H), 4.59 (m, 1H), 3.99 (m, 2H), 3.93 (m, 1H), 3.87 (m, 2H), 3.77 (s, 3H), 3.49 (dd, *J* = 9.6, 2.0 Hz, 1H), 2.68 (m, 1H), 2.31 (m, 1H), 1.79 (brs, 1H), 1.64 (m, 1H), 1.44 (m, 2H), 1.15 (d, *J* = 6.9 Hz, 3H), 0.92 (d, *J* = 6.9 Hz, 3H), 0.88 (m, 21H), 0.09 (s, 3H), 0.06 (s, 3H), 0.05 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 134.4, 134.3, 132.4, 131.5, 129.1, 127.4, 113.4, 101.5, 83.5, 73.8, 72.8, 66.5, 63.7, 55.2, 42.2, 34.1, 29.8, 26.1, 25.9, 18.14, 18.10, 15.5, 15.2, 11.3, -2.9, -4.1, -4.2; LRMS (API-ESI) 671.3 [M+Na]⁺; HRMS (ESI) calcd for C₃₆H₆₄O₆Si₂Na 671.4139 [M+Na]⁺, found 671.4141; [α]²⁰_D -14.0 (*c* 1.5, CHCl₃).

4-[4(*S*),6(*S*)-*bis(tert*-Butyldimethylsilanyloxy)-1(*S*),7(*R*)-dimethyl-10-trityloxydeca-2,8-dienyl]-2-(4-methoxybenzyl)-5(*S*)-methyl[1,3(*R*)]dioxane (17).

Trityl chloride (0.094 g) and DMAP (0.041 g) were added to a solution of alcohol **16** (0.11 g) in pyridine (1.6 mL). The mixture was then refluxed for 18 h, cooled to ambient temperature and added to a solution of sat'd CuSO₄ (20 mL). The mixture was extracted with Et₂O (2 x 20 mL), washed sat'd CuSO₄ (2 x 20 mL). The organic layer was separated, dried (MgSO₄), filtered, and concentrated *in vacuo*. Flash column chromatography (EtOAc/hexane 1:9) provided product **17** (0.14 g, 99 %) as a pale yellow oil: IR (CHCl₃) 2956, 2926, 2855, 1616, 1517, 1462, 1378, 1249, 1073, 835, 773, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (m, 6H), 7.51 (m, 2H), 7.40 (m, 9H), 6.93 (m, 2H), 5.91 (dd, *J* = 15.7, 6.5 Hz, 1H), 5.66 (dt, *J* = 15.5, 5.2 Hz, 1H), 5.55 (m, 1H), 5.53 (s, 1H), 5.39 (t, *J* = 10.2 Hz, 1H), 4.78 (dt, *J* = 3.1, 8.9 Hz, 1H), 4.10 (m, 3H), 3.80 (s, 3H), 3.70 (m, 3H), 2.85 (m, 1H), 2.45 (m, 1H), 1.78 (m, 1H), 1.65 (m, 2H), 1.31 (d, *J* = 6.9 Hz, 3H), 1.08 (m, 24H), 0.28 (s, 3H), 0.27 (s, 3H), 0.25 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 146.8, 144.3, 135.0, 134.1, 132.4, 131.3, 128.6, 127.8, 127.6, 127.3, 127.1, 126.7, 126.3, 113.3, 101.5, 86.6, 83.4, 73.8, 72.7, 66.6, 65.0, 55.0, 43.5, 42.8, 34.2, 29.9, 26.1, 25.9, 18.1, 15.7, 14.5, 11.3, -2.9, -3.8, -4.1, -4.3; LRMS (API-ESI) 929.5 [M+K]⁺; HRMS (ESI) calcd for C₅₅H₇₈O₆Si₂K 929.4969 [M+K]⁺, found 929.5008; [α]²⁰D -7.3 (*c* 1.1, CHCl₃).

7(S),9(S)-bis(tert-Butyldimethylsilanyloxy)-3-(4-methoxybenzyloxy)-2(S)(S),10(R)-

trimethyl-13-trityloxytrideca-5,11-dien-1-ol (18). DIBALH (21 mL, 21 mmol, 1.0 M solution in hexane) was added to the PMB acetal 17 (3.75 g, 4.21 mmol) in CH₂Cl₂ (20 mL) at -78 °C dropwise and then reaction mixture was warmed up to 0 °C and stirred for 1 h. The reaction mixture was quenched by EtOAc (10 mL) and sat'd sodium potassium tartrate solution (50 mL) followed by vigorously stirring for 4 h. The aqueous phase was extracted with CH_2Cl_2 (3 x 20 mL) and the combined organic layers were washed with brine (30 mL). After drying over MgSO₄ and evaporation under vacuum, flash column chromatography (hexane/EtOAc 4:1) provided 18 (2.78 g, 74 %) as a colorless oil: IR (CHCl₃) 3434, 2956, 2928, 2856, 1612, 1514, 1471, 1249, 1073, 836, 774, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (m, 6H), 7.29 (m, 11H), 6.84 (m, 2H), 5.84 (dd, J = 15.7, 6.2 Hz, 1H), 5.57 (dt, J = 15.7, 5.4 Hz, 1H), 5.44 (t, J = 15.7, 5.4 (t, J = 15.7, 5.4 Hz, 1H), 5.44 (t, J = 15.7, 5.4 (t, J = 15.8.7 Hz, 2H), 4.63 (m, 1H), 4.53 (d, J = 10.9 Hz, 1H), 4.46 (d, J = 10.9 Hz, 1H), 3.94 (m, 1H), 3.80 (s, 3H), 3.57 (d, J = 4.8 Hz, 2H), 3.48 (m, 1H), 3.31 (m, 2H), 2.80 (m, 1H), 2.42 (m, 1H), 1.84 (m, 2H), 1.55 (ddd, J = 14.2, 10.1, 1.9 Hz, 1H), 1.40 (ddd, J = 13.9, 8.6, 2.0 Hz, 1H), 1.07 $(d, J = 6.8 \text{ Hz}, 3\text{H}), 0.97 \text{ (m, 12H)}, 0.93 \text{ (s, 9H)}, 0.87 \text{ (d, } J = 7.0 \text{ Hz}, 3\text{H}), 0.16 \text{ (s, 3H)}, 0.15 \text{ (s, 3H)$ 3H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 144.3, 134.0, 133.7, 131.5, 130.9, 129.3, 128.6, 127.9, 127.7, 127.2, 126.8, 126.5, 113.6, 86.7, 84.0, 73.9, 73.0, 66.2, 65.8, 65.1, 55.2, 42.3, 42.2, 38.0, 35.1, 26.0, 25.9, 18.5, 18.2, 18.1, 14.8, 12.0, -2.9, -4.0, -4.19, -

4.23; LRMS (API-ESI) 931 $[M+K]^+$; HRMS (ESI) calcd for C₅₅H₈₀O₆Si₂K 931.5125 $[M+K]^+$, found 931.5152; $[\alpha]^{20}{}_{D}$ –21.4 (*c* 0.52, CHCl₃).

9(S),11(S)-bis(tert-Butyldimethylsilanyloxy)-5(R)-(4-methoxybenzyloxy)-4(S),6(S),12(R)-trimethyl-15-trityloxypentadeca-2,7,13-trienoic acid ethyl ester (19).

The alcohol 18 (2.01 g, 2.25 mmol) in CH₂Cl₂ (20 mL) was treated with Dess-Martin periodinane (1.43 g, 3.4 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (20 mL). The aqueous layer was extracted with ethyl ether (25 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography (hexane/EtOAc 3:1) to remove the residue from the Dess-Martin reagent provided crude aldehyde as a colorless oil, which was used for the next reaction without further purification. To a stirred solution of triethyl phosphonoacetate (0.51 mL, 2.6 mmol) in THF (20 mL) cooled to -78 °C was added dropwise potassium tert-butoxide (0.29 g, 2.5 mmol) and stirred for 30 min. Thereafter the above aldehyde in THF (5 mL) was added and the solution was stirred for 1 h at -78 °C, then 2 h at 0 °C. The reaction mixture was guenched by addition of a sat'd NH₄Cl solution (5 mL) and diluted with diethyl ether (20 mL). The layer was separated and organic phase was washed with brine (20 mL) and dried with MgSO₄, filtered, and concentrated. The residue was purified by flash chromatography (EtOAc/hexane 1:9), yielding 2.01 g of unsaturated ester 19 (93 % for 2 steps) as a colorless oil: IR (CHCl₃) 2956, 2929, 2856, 1718, 1650, 1612, 1514, 1448, 1250, 1180, 1074, 836, 774, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.55 (m, 6H), 7.34 (m, 11H), 7.09 (dd, J = 15.8, 7.1 Hz, 1H), 6.89 (m, 2H), 5.89 (dd, J = 15.7, 5.8 Hz, 1H), 5.78 (d, J = 15.8 Hz, 1H), 5.66 (dt, J = 6.0, 15.7 Hz, 1H), 5.45 (m, 2H), 4.66 (m, 1H), 4.51 (m, 2H), 4.23 (m, 2H), 3.99 (m, 1H), 3.83 (s, 3H), 3.66 (d, J = 5.3 Hz, 2H), 3.29 (t, J =4.7 Hz, 1H), 2.79 (m, 1H), 2.65 (m, 1H), 2.49 (m, 1H), 1.60 (m, 1H), 1.48 (m, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.12 (d, J = 6.7 Hz, 3H), 1.11 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 1.01 (s, 9H), 1.00 (s, 9H), 0.20 (s, 3H), 0.19 (s, 3H), 0.17 (s, 3H), 0.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) & 166.5, 158.9, 152.2, 144.3, 134.3, 133.9, 131.0, 130.5, 129.3, 128.6, 127.6, 126.7, 126.4, 120.2, 113.5, 107.0, 86.6, 85.5, 73.4, 72.8, 66.3, 65.1, 59.9, 55.1, 42.2, 38.9, 35.2, 26.0, 25.9, 18.2, 18.1, 14.6, 14.2, 13.7, -3.0, -4.1, -4.2, -4.3; LRMS (API-ESI) 999.5 [M+K]⁺; HRMS (ESI) calcd for $C_{59}H_{84}O_7Si_2K$ 999.5393 $[M+K]^+$, found 999.5387; $[\alpha]^{20}D + 4.6$ (c 3.1, CHCl₃).

9(S),11(S)-*bis*(*tert*-Butyldimethylsilanyloxy)-5(R)-(4-methoxybenzyloxy)-4(S),6(S),12(R)-trimethyl-15-trityloxypentadeca-7,13-dienoic acid ethyl ester (20).

 $NiCl_2 \cdot 6H_2O$ (0.25 g) then portionwise $NaBH_4$ (0.16 g) were added to a stirred solution of unsaturated ester 19 (2.02 g, 2.10 mmol) in MeOH (10 mL), THF (1 mL) at 0 °C. After 1 h, the reaction mixture was evaporated and filtered through celite eluting with Et_2O (5 mL). The organic phase was concentrated and the residue was purified by flash chromatography (EtOAc/hexane 1:9) to yield 1.96 g (2.04 mmol) of product 20 (97 %) as a colorless oil: IR (CHCl₃) 2956, 2929, 2856, 1735, 1613, 1514, 1479, 1448, 1374, 1249, 1174, 1072, 836, 773, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.53 (m, 6H), 7.33 (m, 11H), 6.84 (m, 2H), 5.81 (dd, J = 15.7, 6.1 Hz, 1H), 5.65 (m, 1H), 5.45 (m, 2H), 4.65 (m, 1H), 4.56 (d, J = 10.9 Hz, 1H), 4.45 (d, J = 10.9 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.96 (m, 1H), 3.80 (s, 3H), 3.62 (m, 2H), 3.14 (m, 1H), 2.79 (m, 1H), 2.43 (m, 1H), 2.23 (m, 1H), 1.72 (m, 2H), 1.54 (m, 3H), 1.28 (t, J = 7.1 Hz, 3H), 1.06 (d, J = 6.7 Hz, 3H), 1.01 (d, J = 6.9 Hz, 3H), 0.97 (s, 18H), 0.93 (d, J = 6.4 Hz, 3H), 0.17 (s, 3H), 0.154 (s, 3H), 0.151 (s, 3H), 0.14 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 158.8, 144.4, 134.6, 133.6, 132.1, 131.2, 129.1, 128.7, 127.7, 126.8, 126.4, 103.4, 86.6, 86.1, 73.8, 72.8, 66.5, 65.2, 60.0, 55.1, 42.8, 42.3, 35.4, 35.1, 32.3, 29.4, 26.0, 25.9, 18.4, 18.1, 14.6, 14.2, 13.9, -2.9, -4.0, -4.1; LRMS (API-ESI) 1001.5 [M+K]⁺; HRMS (ESI) calcd for $C_{59}H_{86}O_7Si_2K \ 1001.5549 \ [M+K]^+$, found 1001.5586; $[\alpha]^{20}D - 9.8 \ (c \ 0.95, CHCl_3)$.

4(*R*)-Benzyl-3-[9(*S*),11(*S*)-*bis(tert*-butyldimethylsilanyloxy)-5(*R*)-(4-methoxybenzyloxy)-4(*R*),6(*S*),12(*S*)-trimethyl-15-trityloxypentadeca-7,13-dienoyl]oxazolidin-2-one (21).

1N aqueous KOH solution (17 mL) was added to a stirred solution of ester 20 (1.61 g, 1.67 mmol) in EtOH (20 mL) and THF (2 mL). The mixture was refluxed gently until the ester disappeared (about 6 h) as determined by TLC analysis. The ethanolic solution was concentrated and then diluted with EtOAc (20 mL). After the solution was acidified to pH3 with 1N HCl solution, organic phase was separated and aqueous phase was extracted with EtOAc (2 x 10 mL). The combined organic phases were dried with MgSO₄, concentrated and used as crude without further purification. A solution of the above acid and Et₃N (0.47 mL) in dry THF (17 mL) was cooled to -78 °C, treated dropwise with pivaloyl chloride (0.25 mL), stirred in the cold for 1 h, and warmed to 0 $^{\circ}$ C prior to the addition of the Evans (S)-oxazolidinone (0.30 g) and LiCl (0.21 g). This reaction mixture was stirred overnight at room temperature and diluted with water (10 mL). The separated aqueous phase was extracted with ether (2 x 10 mL) and the combined organic phase were dried and evaporated and flash column chromatography (EtOAc/hexane 1:4) gave the product 21 (1.52 g, 83 %) as a colorless oil: IR (CHCl₃) 2956, 2856, 1785, 1701, 1612, 1513, 1449, 1385, 1249, 1074, 910, 836, 774, 734, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (m, 6H), 7.30 (m, 10H), 7.24 (m, 6H), 6.78 (m, 2H), 5.75 (dd, J = 15.7, 6.2 Hz, 1H), 5.54 (dt, J = 15.5, 5.5 Hz, 1H), 5.41 (m, 2H), 4.62 (m, 2H), 4.55 (d, J = 11.0 Hz, 1H), 4.42 (d, J = 11.1 Hz, 1H), 4.16 (m, 2H), 3.91 (m, 1H), 3.75 (s, 3H), 3.56 (m 2H), 3.30 (dd, J = 13.4, 3.2 Hz, 1H), 3.15 (dd, J = 6.7, 2.2 Hz, 1H), 2.85 (m, 2H), 2.77 (m, 2H), 2.37 (m, 1H), 1.78 (m, 2H), 1.61 (m, 3H),1.44 (m, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 7.1 Hz, 3H), 0.92 (m, 21H), 0.12 (s, 3H), 0.10 (s, 3H), 0.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) & 173.1, 158.7, 153.2, 144.3, 135.3, 134.7, 133.6, 132.5, 131.2, 129.3, 129.1, 128.8, 128.6, 127.6, 127.2, 126.7, 126.2, 113.4, 86.5, 85.8, 73.7, 72.7, 66.4, 65.9, 65.1, 55.0, 42.8, 42.4, 37.8, 35.5, 34.9, 33.5, 28.7, 26.0, 25.9, 18.2, 18.1, 14.5, 13.9, -2.9, -4.0, -4.2; LRMS (API-ESI) 1132.4 [M+K]⁺; HRMS (ESI) calcd for $C_{67}H_{91}NO_8Si_2K$ 1132.5920 [M+K]⁺, found 1132.5874; [α]²⁰_D+14.8 (*c* 0.61, CHCl₃).

4(R)-Benzyl-3-[9(S),11(S)-bis(tert-Butyldimethylsilanyloxy)-5(R)-(4-methoxybenzyloxy)-2(S),4(S),6(S),12(R)-tetramethyl-15-trityloxy-pentadeca-7,13-dienoyl]oxazolidin-2-one (22). NaHMDS (1.0 M in THF, 1.68 mL) was added at -78 °C to a solution of 21 (1.67 g) in THF (4 mL). After 30 min, the reaction mixture was treated with MeI (0.29 mL) at -78 °C, stirred for an additional 4 h, quenched with sat'd aqueous NH_4Cl , and extracted with ether (2 x 10 mL). The combined organic layers were dried (MgSO₄), concentrated and purified by flash column chromatography (EtOAc/hexane 1:9) to give 22 (1.05 g, 62 %) as a colorless oil: IR (CHCl₃) 2957, 2929, 2856, 1783, 1697, 1513, 1449, 1385, 1249, 1074, 836, 774, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (m, 6H), 7.29 (m, 16H), 6.80 (m, 2H), 5.79 (dd, *J* = 15.6, 6.2 Hz, 1H), 5.56 (dt, J = 15.6, 5.7 Hz, 1H), 5.42 (m, 2H), 4.62 (m, 2H), 4.56 (d, J = 11.3 Hz, 1H), 4.37 (d, J = 11.311.1 Hz, 1H), 4.17 (m, 1H), 4.05 (m, 1H), 3.92 (m, 1H), 3.77 (s, 3H), 3.58 (d, J = 5.2 Hz, 1H), 3.27 (m, 1H), 3.08 (dd, J = 6.3, 2.5 Hz, 1H), 2.77 (m, 2H), 2.38 (m, 1H), 1.76 (m, 1H), 1.64 (m, 12H), 1.46 (m, 4H), 1.10 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.3 Hz, 3H), 0.98 (d, J = 6.7 Hz, 3H), 0.93 (m, 21H), 0.14 (s, 3H), 0.11 (s, 6H), 0.10(s, 3H); 13 C NMR (75 MHz, CDCl₃) δ 177.3, 158.7, 152.8, 144.4, 135.3, 134.9, 133.6, 132.3, 131.3, 129.4, 128.9, 128.8, 128.6, 127.6, 127.2, 126.7, 126.3, 113.5, 86.6, 86.5, 74.0, 72.8, 66.5, 65.8, 65.2, 43.0, 42.5, 37.8, 35.4, 35.3, 33.0, 26.3, 26.0, 25.9, 18.3, 18.1, 17.4, 14.5, 14.2, -2.9, -4.0, -4.1, -4.2; LRMS (API-ESI) 1146.4 $[M+K]^+$; HRMS (ESI) calcd for C₆₈H₉₃NO₈Si₂K 1146.6077 $[M+K]^+$, found 1146.6079; $[\alpha]^{20}$ _D +16.7 (*c* 1.1, CHCl₃).

9(S),11(S)-bis(tert-Butyldimethylsilanyloxy)-5(R)-(4-methoxybenzyloxy)-2(S),4(S),6(S),12(R)-tetramethyl-15-trityloxypentadeca-7,13-dien-1-ol (23).

MeOH (0.015 mL) and LiBH₄ (0.81 mL, 2.0 M soln in THF) were added to a stirred solution of 22 (0.41 g, 0.37 mmol) in THF (1.5 mL) at 0 °C dropwise. After stirring 2 h at 0 °C, saturated sodium potassium tartrate (10 mL) was added dropwise. The reaction mixture was warmed to room temperature and extracted with CH_2Cl_2 (10 mL x 2). The combined organic layers were washed with brine (10 mL), dried over anhydrous MgSO₄, and evaporated. The residue was chromatographed (hexane/EtOAc 4:1) to yield 23 (0.30 g, 87 %) as a colorless oil: IR (CHCl₃) 3400, 2956, 2928, 2856, 1613, 1514, 1449, 1377, 1249, 1074, 836, 774, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (m, 6H), 7.29 (m, 11H), 6.84 (m, 2H), 5.78 (dd, J = 15.7, 6.0 Hz, 1H), 5.58 (dt, J = 15.7, 5.2 Hz, 1H), 5.46 (m, 1H), 5.35 (m, 1H), 4.59 (t, J = 9.5, Hz, 1H), 4.48 (q, J = 10.9 Hz)Hz, 2H), 3.92 (m, 1H), 3.79 (s, 3H), 3.57 (d, J = 5.5 Hz, 2H), 3.25 (m, 2H), 3.03 (t, J = 4.5 Hz, 1H), 2.75 (m, 1H), 2.41 (m, 1H), 1.75 (m, 1H), 1.55 (m, 2H), 1.32 (m, 2H), 1.17 (m, 2H), 1.07 (d, J = 6.7 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.94 (s, 9H), 0.91 (m, 12H), 0.72 (d, J = 6.6 Hz), 0.91 (m, 12H), 0.72 (d, J = 6.6 Hz), 0.91 (m, 12H), 0.91 (3H), 0.13 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H), 0.07 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 144.4, 134.4, 133.4, 131.5, 131.4, 129.1, 128.7, 127.7, 126.8, 126.5, 113.6, 87.6, 86.8, 74.1, 73.0, 68.9, 66.5, 65.4, 55.2, 42.7, 42.4, 37.1, 35.0, 33.1, 26.0, 25.9, 18.9, 18.1, 15.8, 14.9, 14.7, -2.8, -4.0, -4.06, -4.10; LRMS (API-ESI) 973.5 $[M+K]^+$; HRMS (ESI) calcd for $C_{58}H_{86}O_6Si_2K$ 973.6301 $[M+K]^+$, found 973.6264; $[\alpha]^{20}_D$ –31.7 (*c* 1.3, CHCl₃).

13(S),15(S)-*bis(tert*-Butyldimethylsilanyloxy)-2-[2-(4-methoxybenzyl)-5(S)-methyl-[1,3(S)]dioxan-4-yl]-9(R)-(4-methoxybenzyloxy)-6(S),8(S),10(S),16(R)-tetramethyl-19trityloxynonadeca-4,11,17-trien-3-one (24).

The alcohol 23 (0.30 g, 0.32 mmol) in CH₂Cl₂ (10 mL) was treated with Dess-Martin periodinane (0.20 g, 0.47 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (10 mL). The aqueous layer was extracted with ethyl ether (10 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography filtration (hexane/EtOAc 4:1) to remove the residue from the Dess-Martin reagent provided crude aldehyde as a colorless oil, which was used for the next reaction without further purification. A mixture of ketophosphonate 7 (0.14 g) and Ba(OH)₂ (0.043 g, activated by heating to 100 °C for 1-2 h before use) in THF (2 mL) was stirred at room temperature for 30 min. A solution of the above aldehyde in wet THF (2 mL + 2 x 1 mL washings, 40:1 THF/H₂O) was then added. After stirring for 12 h, the reaction mixture was diluted with Et₂O (10 mL) and washed with sat'd NaHCO₃ (10 mL) and brine (10 mL). The organic solution was dried (MgSO₄) and the solvent was evaporated *in vacuo*. The residue was chromatographed (hexane/EtOAc 9:2) to yield 24 (0.34 g, 90 %) as a colorless oil: IR (CHCl₃) 2957, 2929, 2855, 1615, 1515, 1461, 1249, 1076, 1036, 835, 774 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (m, 6H), 7.38 (m, 2H), 7.28 (m, 12H), 6.89 (m, 2H), 6.78 (m, 2H), 6.22 (d, J = 15.6 Hz, 1H), 5.74 (dd, J = 15.7, 6.2 Hz, 1H), 5.57 (m, 1H), 5.45 (s, 1H), 5.38 (m, 2H), 4.60 (m, 1H), 5.45 (s, 1H), 5.38 (m, 2H), 4.60 (m, 1H), 5.45 (s, 1H), 4.52 (d, J = 11.0 Hz, 1H), 4.33 (d, J = 11.0 Hz, 1H), 4.12 (dd, J = 11.2, 4.5 Hz, 1H), 3.90 (m, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 3.55 (m, 3H), 3.04 (m, 1H), 2.92 (m, 1H), 2.75 (m, 1H), 2.36 (m, 1H), 2.25 (quint, J = 7.2 Hz, 1H), 2.02 (m, 1H), 1.71 (m, 1H), 1.56-1.33 (m, 4H), 1.25 (d, J = 1.56)6.9 Hz, 3H), 0.96 (d, J = 7.8 Hz, 3H), 0.95 (d, J = 7.1 Hz, 3H), 0.92 (m, 21H), 0.85 (d, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 159.7, 158.8, 153.1, 144.3, 134.6, 133.6, 132.4, 131.2, 131.0, 129.1, 128.6, 127.7, 127.2, 126.8, 126.3, 126.0, 113.5, 113.4, 100.7, 86.6, 85.7, 82.8, 73.8, 72.8, 66.4, 65.2, 55.2, 47.0, 42.8, 42.4, 40.4, 35.5, 34.2, 32.8, 32.2, 26.0, 25.9, 19.2, 18.4, 18.3, 18.1, 14.5, 14.4, 12.4, 10.7, -2.9, -4.0, -4.1; LRMS (API-ESI) 1231.6 [M+K]⁺; HRMS (ESI) calcd for $C_{74}H_{104}O_9Si_2K$ 1231.6856 $[M+K]^+$, found 1231.6850; $[\alpha]^{20}D_7 + 22.8$ (c 0.88, CHCl₃).

13(S),15(S)-*bis(tert*-Butyldimethylsilanyloxy)-2-[2-(4-methoxybenzyl)-5(S)-methyl-[1,3(S)]dioxan-4-yl]-9(R)-(4-methoxybenzyloxy)-6(S),8(S),10(S),16(R)-tetramethyl-19trityloxynonadeca-11,17-dien-3-one (25).

NiCl²·6H²O (0.034 g, 0.14 mmol) then portionwise NaBH₄ (0.022 g, 0.58 mmol) were added to a stirred solution of unsaturated ketone 24 (0.34 g, 0.29 mmol) in MeOH (4 mL), THF (0.5 mL) at 0 °C. After 1 h, the reaction mixture was evaporated and filtered with celite eluting with Et₂O (5 mL). The organic phase was concentrated and the residue was purified by flash chromatography (EtOAc/hexane 1:4) to yield 0.31 g of product 25 (89 %) as a colorless oil: IR (CHCl₃) 2956, 2929, 2855, 1713, 1614, 1515, 1461, 1249, 1075, 1036, 835, 774, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.47 (m, 6H), 7.29 (m, 13H), 6.87(m, 2H), 6.80 (m, 2H), 5.75 (dd, J = 15.7, 6.1 Hz, 1H), 5.55 (m, 1H), 5.45 (s, 1H), 5.38 (m, 2H), 4.60 (m, 1H), 4.48 (d, J = 10.9 Hz, 1H), 4.36 (d, J = 10.9 Hz, 1H), 4.13 (dd, J = 11.2, 4.4 Hz, 1H), 3.93 (m, 2H), 3.79 (s, 3H), 3.76 (s, 3H), 3.55 (m, 2H), 2.99 (m, 2H), 2.70 (m, 2H), 2.45 (t, J = 7.0 Hz, 1H), 2.36 (m, 1H), 2.02 (m, 1H), 1.75 (m, 1H), 1.63 (m, 1H), 1.49 (m, 2H), 1.37 (m, 3H), 1.23 (d, *J* = 7.1 Hz, 3H), 1.02 $(d, J = 6.7 \text{ Hz}, 3\text{H}), 0.95 (d, J = 7.0 \text{ Hz}, 3\text{H}), 0.91 (m, 21\text{H}), 0.81 (d, J = 6.8 \text{ Hz}, 3\text{H}), 0.80 (d, J = 6.7 \text{ Hz}, 3\text{H}), 0.12 (s, 3\text{H}), 0.09 (s, 6\text{H}), 0.08 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 211.9, 159.8,$ 158.8, 144.6, 144.4, 134.9, 133.4, 132.3, 131.8, 131.5, 131.0, 129.0, 128.9, 128.7, 127.7, 127.6, 127.2, 126.8, 126.7, 126.3, 113.5, 100.8, 87.4, 86.7, 83.1, 74.0, 72.9, 66.6, 65.2, 55.22, 55.18, 48.3, 43.1, 42.5, 41.6, 38.3, 35.5, 32.7, 31.5, 31.3, 29.6, 26.1, 26.0, 19.0, 18.5, 18.1, 14.5, 14.1, 12.1, 9.7, -2.9, -4.0, -4.1, -4.2; LRMS (API-ESI) 1233.6 [M+K]⁺; HRMS (ESI) calcd for $C_{74}H_{108}O_9Si_2K$ 1233.7013 [M+K]⁺, found 1233.7036; $[\alpha]^{20}D$ +3.0 (*c* 1.7, CHCl₃).

13(S),15(S)-*bis(tert*-Butyldimethylsilanyloxy)-2-[2-(4-methoxybenzyl)-5(S)-methyl-[1,3(S)]dioxan-4-yl]-9(R)-(4-methoxybenzyloxy)-6(S),8(S),10(S),16(R)-tetramethyl-19trityloxynonadeca-11,17-dien-3-ol (26).

 $NaBH_4$ (0.013 g, 0.34 mmol) was added to a solution of 25 (0.27 g, 0.23 mmol) in MeOH (4 mL) at 0 °C. After stirring for 2 h at 0 °C, the reaction mixture was evaporated and water (5 mL) was added. The reaction mixture was extracted with ether (2 x 20 mL) and washed with brine (10 mL), dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/hexane 2:9) to yield 0.19 g of major product 26B (71 %, less polar) and 0.069 g (25 %, more polar) of minor product 26a as a colorless oil: (26B) IR (CHCl₃) 3533, 2956, 2929, 2855, 1614, 1515, 1462, 1250, 1072, 1036, 835, 774, 734 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (m, 6H), 7.43 (m, 2H), 7.30 (m, 11H), 6.92 (m, 2H), 6.84 (m, 2H), 5.78 (dd, J = 15.6, 6.1 Hz, 1H), 5.61 (m, 1H), 5.57 (s, 1H), 5.43 (m, 2H), 4.65 (m, 1H), 4.55 (d, J = 11.0 Hz, 1H), 4.45 (d, J = 10.8 Hz, 1H), 4.18 (dd, J = 11.2, 4.5 Hz, 1H), 3.95 (m, 1H), 3.84 (s, 3H), 3.82 (m, 1H), 3.79 (s, 3H), 3.74 (m, 1H), 3.59 (m, 2H), 3.06 (m, 2H), 2.78 (m, 1H), 2.41 (m, 1H), 2.19 (m, 1H), 1.81 (m, 2H), 1.56 (dd, J = 13.8, 8.1 Hz, 3H), 1.44 (m, 3H), 1.34 (m, 3H), 1.08 (d, J = 7.0 Hz, 6H), 0.99 (d, J = 7.2 Hz, 3H), 0.96 (m, 18H), 0.90 (d, J = 6.7 Hz, 3H), 0.82 (d, J = 6.7 Hz, 6.6 Hz, 6H), 0.16 (s, 3H), 0.14 (s, 6H), 0.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.0, 158.8, 144.6, 144.4, 134.9, 133.4, 132.3, 131.5, 130.7, 129.0, 128.9, 128.7, 127.7, 127.6, 127.2, 126.8, 126.7, 126.3, 113.7, 113.5, 89.0, 87.5, 86.7, 76.7, 74.0, 73.1, 72.8, 66.6, 65.2, 55.2, 55.1, 43.1, 42.5, 41.8, 37.4, 35.5, 34.4, 32.9, 32.4, 30.4, 30.1, 26.0, 25.9, 19.2, 18.5, 18.1, 14.5, 14.1, 11.9, 5.7, -2.9, -4.0, -4.1, -4.2; LRMS (API-ESI) 1235.6 [M+K]⁺; HRMS (ESI) calcd for $C_{74}H_{108}O_9Si_2K$ 1235.7169 $[M+K]^+$, found 1235.7149; $[\alpha]^{20}D$ +3.5 (c 0.6, CHCl₃).

5,15(S),17(S)-tris(tert-Butyldimethylsilanyloxy)-11(R)-(4-methoxybenzyloxy)-3(S)-[2-(4-methoxyphenyl)ethoxy]-2(S),4(R),8(S),10(S),12(S),18(R)-hexamethyl-21-trityloxy-heneicosa-13,19-dien-1-ol (27).

A stirred solution of 26B (0.19 g, 0.16 mmol) and 2,6-lutidine (0.037 mL, 0.32 mmol) in CH₂Cl₂ (16 mL) at 0 °C was treated with TBSOTf (0.055 mL, 0.24 mmol). After stirring 2 h at ambient temperature, the reaction mixture was quenched by the addition of water (5 mL) and extracted by CH₂Cl₂ and dried over MgSO₄, followed by the evaporation of the solution under reduced pressure. The residue was purified by short column chromatography (hexane/EtOAc 9:1). To a stirred solution of TBS protected acetal (0.20 g, 0.15 mmol) in anhydrous CH₂Cl₂ (3 mL) under an atmosphere of N₂ at 0 °C was added diisobutylaluminum hydride (1.0 M in THF, 1.5 mL, 1.5 mmol) dropwise. After stirring for additional 1 h at 0 °C, the reaction mixture was quenched by the careful addition of aqueous sat'd potassium sodium tartrate solution (10 mL), and stirred for 3 h at room temperature. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (20 mL). The combined organic layers were washed with brine and dried over MgSO₄ followed by the evaporation of the organic solution under reduced pressure. The residue was purified by column chromatography (EtOAc/hexane 1:4) to get 27 (0.19 g, 91 % for 2 steps) as a colorless oil: IR (CHCl₃) 3466, 2955, 2928, 2856, 1613, 1514, 1462, 1249, 1072, 1037, 835, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.52 (m, 6H), 7.30 (m, 13H), 6.94 (m, 2H), 6.85 (m, 2H), 5.79 (dd, J = 15.7, 6.3 Hz, 1H), 5.59 (dt, J = 15.7, 5.9 Hz, 1H), 5.44 (m, 2H), 4.67 (m, 1H), 4.60 (s, 2H), 4.57 (d, J = 11.1 Hz, 1H), 4.44 (d, J = 10.9 Hz, 1H), 3.97 (m, 1H), 3.91 (m, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.68 (m, 2H), 3.60 (d, J = 5.6 Hz, 1H), 3.52 (dd, J = 6.6, 4.3 Hz, 1H), 3.07 (m, 2H), 2.97 (brs, 1H), 2.80 (dd, J = 14.5, 6.7 Hz, 1H), 2.40 (m, 1H), 2.02 (m, 1H), 1.95(ddd, J = 9.6, 6.9, 4.0 Hz, 1H), 1.81 (m, 1H), 1.71 (m, 1H), 1.56 (m, 3H), 1.47 (m, 3H), 1.33 (m, 2H), 1.19 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 6H), 1.00 (s, 9H), 0.97 (m, 21H), 0.90 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 6H), 1.00 (s, 9H), 0.97 (m, 21H), 0.90 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 6H), 1.00 (s, 9H), 0.97 (m, 21H), 0.90 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 6H), 1.00 (s, 9H), 0.97 (m, 21H), 0.90 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 6H), 1.00 (s, 9H), 0.97 (m, 21H), 0.90 (d, J = 7.0 Hz, 6H), 1.00 (s, 9H), 0.97 (m, 21H), 0.90 (s, 9H), 0.91 (m, 21H), 0.90 (s, 9H) 6.7 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H), 0.17 (s, 3H), 0.15 (s, 3H), 0.14 (s, 3H), 0.137 (s, 3H), 0.133 (s, 3H), 0.127 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 158.8, 144.6, 144.4, 135.0, 133.6, 132.5, 131.4, 130.6, 129.2, 129.0, 128.9, 128.7, 127.7, 127.6, 126.8, 126.7, 126.3, 113.9, 113.5, 87.4, 86.7, 85.9, 75.3, 74.0, 73.6, 72.8, 66.6, 65.2, 65.1, 55.2, 55.1, 43.2, 42.5, 42.0, 41.5, 37.0, 35.6, 33.4, 32.9, 31.9, 30.1, 26.08, 26.05, 25.98, 19.4, 18.4, 18.1, 15.8, 14.4, 13.9, 10.0, -2.9, -3.7, -3.9, -4.1, -4.2, -4.4; LRMS (API-ESI) 1351.8 [M+K]⁺; HRMS (ESI) calcd for $C_{80}H_{124}O_9Si_3K 1351.8190 [M+K]^+$, found 1351.8134; $[\alpha]^{20}D = 6.1 (c \ 0.48, CHCl_3)$.

7,17(S),19(S)-tris(tert-Butyldimethylsilanyloxy)-5(S),13(R)-bis-(4-methoxybenzyloxy)-

4(S),6(S),10(R),12(S),14(S),20(S)-hexamethyl-23-trityloxytetracosa-1,3,15,21-tetraene (30). The alcohol **28** (0.17 g, 0.13 mmol) in CH_2Cl_2 (5 mL) was treated with Dess-Martin periodinane (0.081 g, 0.2 mmol). After 1 h, the mixture was guenched with saturated NaHCO₃ (5 mL). The aqueous layer was extracted with ethyl ether (5 mL \times 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography filtration (hexane/EtOAc 9:2) to remove the residue from Dess-Martin reagent provided crude aldehyde as a colorless oil, which was used for the next reaction without further purification. To a stirred solution of the above crude aldehyde and 1-bromoallyl trimethylsilane **29** (0.16 g, 0.65 mmol) in anhydrous THF (3 mL) under an atmosphere of N_2 at room temperature was added CrCl₂ (0.13 g, 1.1 mmol) and the mixture was stirred for additional 14 h at ambient temperature. The reaction mixture was diluted with hexane followed by filtration through celite. After the evaporation of the solvent under reduced pressure, the residue was purified by short silica gel column chromatography (EtOAc/hexane 1:9). The foregoing product in THF (3 ml) was cooled to 0 °C and NaH (95 % w/w, 64 mg, 2.56 mmol) was added in one portion. The ice bath was removed after 15 min and the mixture was stirred for 2 h at ambient temperature. The reaction mixture was cooled to 0 $^{\circ}$ C, quenched with H₂O (5 mL), and extracted with diethyl ether (5 mL x 2). The combined organic layer was washed with brine and dried over MgSO₄ followed by the evaporation of the organic solution under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 9:1) to get 30 (122 mg, 72 % for 3

steps) as a colorless oil: IR (CHCl₃) 2955, 2928, 2856, 1613, 1514, 1462, 1249, 1072, 1039, 835, 773, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (m, 6H), 7.28 (m, 13H), 6.89 (m, 2H), 6.79 (m, 2H), 6.61 (ddd, *J* = 16.8, 10.7, 10.6 Hz, 1H), 6.04 (t, *J* = 10.8 Hz, 1H), 5.73 (dd, *J* = 15.6, 6.3 Hz, 1H), 5.61 (t, *J* = 10.4 Hz, 1H), 5.58 (m, 1H), 5.37 (m, 2H), 5.20 (d, *J* = 16.8 Hz, 1H), 5.11 (d, *J* = 10.1 Hz, 1H), 4.54 (m, 3H), 4.50 (d, *J* = 11.0 Hz, 1H), 4.37 (d, *J* = 10.8 Hz, 1H), 3.90 (m, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 3.62 (m, 1H), 3.54 (d, *J* = 5.3 Hz, 1H), 3.35 (dd, *J* = 7.7, 3.1 Hz, 1H), 4.00 (d, *J* = 7.1 Hz, 3H), 0.96 (s, 9H), 0.92 (s, 3H), 0.91 (s, 3H), 0.89 (m, 6H), 0.83 (d, *J* = 6.6 Hz, 3H), 0.72 (d, *J* = 6.4 Hz, 3H), 0.11 (s, 3H), 0.10 (s, 3H), 0.08 (s, 3H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 158.8, 144.6, 144.4, 135.0, 134.6, 133.7, 133.4, 132.6, 132.4, 131.5, 131.4, 129.1, 129.0, 128.98, 128.94, 128.7, 127.7, 126.8, 126.3, 117.2, 113.7, 113.5, 87.3, 86.7, 84.3, 75.0, 74.0, 72.9, 72.8, 66.6, 65.2, 55.2, 55.1, 43.2, 42.6, 42.0, 40.6, 35.7, 35.3, 33.2, 32.8, 32.3, 30.1, 26.1, 26.0, 19.4, 18.8, 18.3, 18.2, 18.1, 14.4, 14.0, 13.9, -2.9, -3.6, -3.9, -4.1, -4.2, -4.4; [α]²⁰_D+2.5 (*c* 1.2, CHCl₃).

7(S),9(S),19-tris-(*tert*-Butyldimethylsilanyloxy)-13(R),21(S)-*bis*-(4-methoxybenzyloxy)-6(R),12(S),14(S),16(S),20(R),22(S)-hexamethylhexacosa-2,4,10,23,25-pentaenoic acid methyl ester (32).

A solution of **30** (18.6 mg) in CH₂Cl₂ (0.2 mL) was cooled to -78 °C and B-chlorocatecholborane (0.25 M in CH₂Cl₂, 0.17 mL) was added. The solution was stirred at -78 °C for 1 h followed by treatment with sat'd aqueous NaHCO₃ (1 mL). The resulting reaction mixture was then diluted with CH_2Cl_2 (10 mL) and H_2O (3 mL). The layers were separated and the aqueous layer was further extracted with CH₂Cl₂ (2 x 5 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified by flash chromatography (hexane/EtOAc 4:1) on silica gel to yield **31** (9.4 mg) as a colorless oil. The alcohol **31** (20 mg, 0.018 mmol) in CH_2Cl_2 (0.5 mL) was treated with Dess-Martin periodinane (12 mg, 0.028 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (1 mL). The aqueous layer was extracted with ethyl ether (3 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography filtration (hexane/EtOAc 9:2) to remove the residue from the Dess-Martin reagent provided crude aldehyde as a colorless oil, which was used for the next reaction without further purification. To a stirred solution of *bis*(2,2,2-trifluoroethyl)-(methoxycarbonylmethyl) phosphate (5.0 mL, 0.024 mmol), 18-crown-6 (0.024 g, 0.09 mmol) in THF (0.5 mL) cooled to – 78 °C was added dropwise potassium *bis*(trimethylsilyl)amide (0.044 mL, 0.022 mmol, 0.5M solution in toluene). Thereafter the above aldehyde in THF (0.5 mL) was added and the solution was stirred for 6 h at -78 °C. The reaction mixture was quenched by addition of a sat'd NH₄Cl solution (1 mL) and diluted with diethyl ether (5 mL). The layers were separated and organic phase was washed with brine (5 mL) and dried with MgSO₄, filtered, and concentrated. The residue was purified by flash chromatography (EtOAc/hexane 1:9) to obtain (E,Z)-doubly unsaturated ester **32** (17 mg, 82 % for 2 steps) as a colorless oil: IR (CHCl₃) 2956, 2929, 2856, 1720, 1613, 1514, 1462, 1249, 1173, 1075, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.22 (m, 5H), 6.82 (m, 4H), 6.55 (ddd, J = 16.8, 10.8, 10.8 Hz, 1H), 6.38 (t, J = 11.4 Hz, 1H), 6.05 (dd, J = 15.4, 6.2 Hz, 1H), 5.98 (t, J = 11.0 Hz, 1H), 5.55 (t, J = 10.5 Hz, 1H), 5.48 (d, J = 11.5 Hz, 1H), 5.48 (d, J = 11.5Hz, 1H), 5.31 (m, 2H), 5.14 (d, J = 16.8 Hz, 1H), 5.05 (d, J = 10.1 Hz, 1H), 4.54 (m, 1H), 4.49 (m, 3H), 4.31 (d, J = 10.9 Hz, 1H), 3.87 (m, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 3.68 (s, 3H), 3.57 (m, 1H), 3.29 (dd, J = 7.7, 3.1 Hz, 1H), 2.94 (m, 2H), 2.68 (m, 1H), 2.48 (m, 1H), 1.65 (m, 3H),1.43-1.28 (m, 6H), 1.20 (m, 2H), 1.08 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H), 0.94 (d, J =6.1 Hz, 3H), 0.90 (s, 9H), 0.86 (m, 21H), 0.81 (d, J = 6.7 Hz, 3H), 0.71 (d, J = 6.4 Hz, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 159.0, 158.8, 147.7, 146.9, 145.8, 134.6, 133.5, 132.7, 132.5, 131.6, 131.4, 129.1, 128.9, 128.8, 128.7, 128.4, 127.9, 127.7, 127.3, 126.4, 117.2, 114.9, 113.7, 113.6, 87.6, 84.3, 77.2, 74.9, 74.2, 72.9, 72.7, 66.4, 55.3, 55.2, 50.9, 43.1, 42.5, 42.1, 40.6, 35.8, 35.3, 33.6, 33.2, 32.9, 18.14, 18.11, 14.6, 13.9, 9.3, -2.9, -3.6, -3.9, -4.1, -4.4; LRMS (API-ESI) 1185.7 [M+K]⁺; HRMS (ESI) calcd for $C_{67}H_{114}O_9Si_3K$ 1185.7408 [M+K]⁺, found 1185.7464; $[\alpha]^{20}_{D}$ -12.6 (*c* 0.75, CHCl₃).

8(*S*),10(*S*),14(*R*),20(*R*)-Tetrahydroxy-7(*S*),13(*S*),15(*S*),17(*R*),21(*S*)-pentamethyl-22(*S*)-(1(*S*)-methylpenta-2,4-dienyl)oxacyclodocosa-3,5,11-trien-2-one (5).

The ester 32 (8.5 mg, 7.4 μ mol) was added to CH₂Cl₂ (1 mL) and H₂O (0.05 mL) and DDQ (5.0 mg, 22 µmol) was added at 0 °C. After 1 h of stirring at 0 °C, the reaction mixture was quenched by adding sat'd NaHCO₃ (5 mL). The organic phase was washed by sat'd NaHCO₃ solution (3 x 10 mL) and brine, dried over MgSO₄ and concentrated. Purification by flash column chromatography (EtOAc/hexane 2:9) furnished diol 33 (6.4 mg, 95%) as a colorless oil. To the stirred solution of the above diol (6.4 mg, 7.06 µmol) in EtOH (0.7 mL) was added 1N aqueous KOH solution (0.07 mL) and the mixture was refluxed gently until the ester disappeared (about 7 h) as determined by TLC analysis. The ethanolic solution was concentrated and then diluted with ether (4 mL). After the solution was acidified to pH3 with 1N HCl solution, the organic phase was separated and aqueous phase was extracted with EtOAc (2 x 2 mL). The combined organic phases were dried with MgSO₄, concentrated and **34** was used without further purification. A solution of above dihydroxy acid in THF (0.5 mL) was treated at 0 °C with Et₃N (0.006 mL, 43 umol) and 2,4,6-trichlorobenzoyl chloride (0.0055 mL, 35 umol). The reaction mixture was stirred at 0 °C for 30 min and then added to a 4-DMAP (3.5 mL, 0.02 M solution in toluene) at 25 °C. After stirring for 12 h, the reaction mixture was concentrated, EtOAc (5 mL) was added and the organic phase was washed with 1N HCl (2 x 5 mL), and dried over MgSO₄. Purification by flash column chromatography (EtOAc/hexane 1:9) furnished macrolactone 5 (3.0 mg, 49 % for 2 steps) as a colorless oil. To a stirred solution of the above macrolactone (2.7 mg, 3.1 µmol) in MeOH (0.5 mL) at 0 °C was added 1.0 mL of 3 N HCl (prepared by adding 0.25 mL of conc. HCl to 0.75 mL MeOH). After 2 h at room temperature, the reaction mixture was diluted with EtOAc (2 mL) and H₂O (2 mL) and the organic phase was separated and aqueous phase was extracted with EtOAc (2 x 2 mL). The combined organic phase was washed with sat'd NaHCO₃ (5 mL), dried with MgSO₄, concentrated and the residue was purified by flash chromatography (EtOAc/hexane 1:1) to yield 5 (1.2 mg, 73 %) as a colorless oil: IR (CHCl₃) 3400, 2960, 2926, 2854, 1693, 1635, 1599, 1461, 1378, 1277, 1183, 1075, 964 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 7.34 (dd, J = 15.3, 11.3 Hz, 1H), 6.64 (ddd, J = 16.9, 10.5, 10.3 Hz, 1H), 6.57 (t, J = 11.4 Hz, 1H), 5.96 (t, J = 10.9 Hz, 1H), *5.95 (dd, J = 15.3, 8.3 Hz, 1H), *5.48 (t, J = 10.0 Hz, 1H), *5.47 (d, J = 11.6 Hz, 1H), 5.38 (dd, J = 11.1, 8.9 Hz, 1H), 5.27 (t, J = 10.5 Hz, 1H), 5.16 (d, J = 16.9 Hz)Hz, 1H), 5.08 (d, J = 10.2 Hz, 1H), 5.02 (dd, J = 8.0, 3.5 Hz, 1H), 4.65 (dt, J = 3.1, 8.4 Hz, 1H), *3.72 (ddd, J = 9.0, 6.3, 2.8 Hz, 1H), *3.25 (ddd, J = 10.2, 7.4, 2.8 Hz, 1H), *3.16 (dd, J = 6.7, 10.2, 10.14.7, 7.2 Hz, 1H), 1.86 (m, 1H), 1.81 (dt, J = 6.8, 3.7 Hz, 1H), 1.69 (m, 2H), 1.58 (m, 1H), 1.47 (ddd, J = 13.8, 9.5, 3.5 Hz, 1H), 1.37 (m, 1H), 1.25 (m, 1H), 1.17 (m, 1H), 1.13 (m, 1H), 1.09 (d, J = 6.8 Hz, 3H), 1.03 (d, J = 6.9 Hz, 6H), 0.98 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.7 Hz, 3H), 0.76 (d, J = 6.4 Hz, 3H) (*coupling constants were measured in CDCl₃); ¹³C NMR (125 MHz, CDCl₃) 8 166.3, 147.2, 145.3, 134.39, 134.37, 132.5, 132.3, 130.0, 127.6, 117.8, 116.5, 80.0, 75.4, 74.9, 72.0, 66.2, 43.2, 41.5, 40.7, 40.6, 35.6, 35.4, 35.0, 33.0, 31.2, 30.4, 20.4, 18.1, 17.3, 16.2, 12.4, 10.2; LRMS (API-ESI) 571.3 $[M+K]^+$; HRMS (ESI) calcd for $C_{32}H_{52}O_6K$ 571.3401 $[M+K]^+$, found 571.3397; $[\alpha]^{20}_{D}$ +32.6 (*c* 0.10, MeOH).

Synthesis of 6,14-*bis*,*epi*-dictyostatin

(S)-4-Benzyl-3-[(2R,3S)-3-hydroxy-2,4-dimethylpent-4-enoyl]oxazolidin-2-one 41.

A solution of **40** in ethyl acetate (185 mL) was treated with MgCl₂ (0.35 g, 3.67 mmol), NaSbF₆ (2.85 g, 11.01 mmol), triethylamine (10.2 mL, 73.4 mmol), methacrolein (4.6 mL, 44.04 mmol), and TMSCl (7.0 mL, 55.05 mmol). The mixture was stirred at room temperature for three days, and filtered through a pad of silica gel. The filtrate was evaporated under vacuum. The residue was dissolved in a solution of MeOH (200 mL) and TFA (1 mL). The mixture was stirred at room temperature for 1 h. The solvent was removed under vacuum to provide the brown oil. The flash chromatography (CH₂Cl₂:EtOAc, 49:1) afforded the title compound (9.62 g, 86% yield): ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.18 (m, 5H), 5.11 (d, *J* = 16.2 Hz, 2H), 4.79 (m, 1H), 4.31-4.09 (m, 4H), 3.41 (dd, *J* = 3.3, 13.5 Hz, 1H), 2.99-2.82 (m, 2H), 1.89 (s, 3H), 1.24 (d, *J* = 6.9 Hz, 3H).

(2S,4S,5S)-2-(4-Methoxyphenyl)-5-methyl-4-(prop-1-en-2-yl)-1,3-dioxane (42).

A solution of **41** (11.62 g, 38.3 mmol) in THF (150 mL) and MeOH (1.7 mL) was treated with a solution of LiBH₄ (2.0 M in THF, 23.0 mL, 46.0 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h, then let to warm to room temperature over 1 h. The mixture was quenched with sat. aq. sodium potassium tartrate, then diluted with ethyl ether and water. The aqueous layer was extracted with ethyl ether (2 × 75 mL). The combined organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum to provide the oil. The flash chromatography (CH₂Cl₂:EtOAc, 19:1 to 3:2) afforded the diol (3.63 g, 73% yield): ¹H NMR (300 MHz, CDCl₃) δ 5.04 (d, *J* = 14.7 Hz, 2H), 4.08 (dd, *J* = 2.7, 8.4 Hz, 1H), 3.82-3.68 (m, 2H), 2.94 (dd, *J* = 3.9, 6.9 Hz, 1H), 2.58 (d, *J* = 2.7 Hz, 1H), 1.99 (m, 1H), 1.82 (s, 3H), 0.89 (d, *J* = 6.9 Hz, 3H).

A solution of the diol (3.61 g 27.7 mmol) and PMB dimethyl acetal (4.95 mL, 29.0 mmol) in toluene (35 mL) was treated with PPTS (0.69 g, 2.77 mmol) at room temperature. The mixture was stirred at room temperature overnight. The mixture was quenched with sat. aq. NaHCO₃, then diluted with ethyl ether. The organic layer was washed with water and brine, then dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to provide the crude mixture **42**, which was used without purification for the next reaction: ¹H NMR (300 MHz, CDCl₃) §7.52 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 5.59 (s, 1H), 5.07 (dd, J = 0.9, 4.2 Hz, 2H), 4.28 (dd, J = 4.8, 11.4 Hz, 1H), 3.98-3.88 (m, 4H), 3.62 (t, J = 11.4 Hz, 1H), 2.15 (m, 1H), 1.90 (d, J = 0.9 Hz, 3H), 0.81 (d, J = 5.7 Hz, 3H).

(R)-2-[(2S,4R,5S)-2-(4-Methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]propan-1-ol (43).

A solution of cyclohexene (8.7 mL, 85.8 mmol) in THF (100 mL) was treated with BH₃•DMS (10.0 M in THF, 4.3 mL, 42.9 mmol) dropwise at 0 °C. The solution was stirred at 0 °C for 1 h. The white precipitates formed. A solution of the crude **42** in THF (2 mL) was added dropwise. The mixture was warmed to room temperature over 3 h, and cooled to 0 °C, then treated with water (3 mL), 3N NaOH (1 mL), and H₂O₂ (1 mL). The mixture was stirred at 0 °C for 20 min, at room temperature for 20 min, and at 50 °C for 20 min. The mixture was cooled to room temperature, and diluted with ethyl ether. The aqueous layer was extracted with ethyl ether (3 × 50 mL). The combined organic layers were washed with brine, and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to provide the oil. The flash chromatography (CH₂Cl₂:EtOAc, 17:3) afforded the title compound (5.61 g, 76% yield, two steps): IR (NaCl) 3426, 2961, 2932, 1517, 1249, 1032 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 5.41 (s, 1H), 4.19 (dd, *J* = 4.8, 11.4 Hz, 1H), 3.99 (dd, *J* = 3.6, 11.1 Hz, 1H), 3.83 (s, 3H), 3.67 (dd, *J* = 4.5, 8.4 Hz, 1H), 3.59-3.45 (m, 2H), 2.42 (brs, 1H), 2.18

(m, 1H), 2.01 (m, 1H), 1.24 (d, J = 7.2 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H); LRMS (EI) 266 (M⁺⁺); HRMS (EI) calcd for C₁₅H₂₂O₄ 266.1518 (M⁺⁺), found 266.1512.

(2S,4S,5S)-4-[(S)-1-Iodopropan-2-yl]-2-(4-methoxyphenyl)-5-methyl-1,3-dioxane (44).

To a solution of PPh₃ (2.44 g, 9.05 mmol) in CH₂Cl₂ (25 mL) was added imidazole (0.77 g, 11.31 mmol) and iodine (2.58 g, 10.18 mmol) at room temperature. The mixture was vigorously stirred until dissolution of iodine. A solution of **43** (2.00 g, 7.54 mmol) in CH₂Cl₂ (5 mL) was added dropwise. The mixture was stirred at room temperature for 20 h, then concentrated under vacuum. The residue was dissolved in a minimum amount of CH₂Cl₂ and purified by flash chromatography (hexane/EtOAc, 4:1) afforded the title compound (2.79 g, 98% yield): ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 5.43 (s, 1H), 4.14 (dd, *J* = 4.8, 11.4 Hz, 1H), 3.81 (s, 3H), 3.58-3.37 (m, 3H), 3.12 (t, *J* = 9.9 Hz, 1H), 2.16 (m, 2H), 1.28 (d, *J* = 6.3 Hz, 3H), 0.83 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 131.2, 127.3, 113.6, 101.1, 86.1, 73.0, 55.4, 38.0, 31.3, 19.0, 12.5, 9.6; LRMS (EI) 376 (M⁺⁺); HRMS (EI) calcd for C₁₅H₂₁O₃I 376.0533 (M⁺⁺), found 376.0535.

(2*R*,4*R*)-*N*-[(1*S*,2*S*)-1-Hydroxy-1-phenylpropan-2-yl]-4-[(2*S*,4*R*,5*S*)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-*N*,2-dimethylpentanamide (46).

A suspension of LiCl (3.99 g, 94.2 mmol) and diisopropylamine (4.50 mL, 31.8 mmol) in THF (15 mL) was treated with BuLi (1.6 M in hexane, 11.8 mL, 29.5 mmol) at -78 °C dropwise. The mixture was stirred at -78 °C for 10 min and at 0 °C for 5 min, then cooled to -78 °C. A solution of **45** (3.44 g, 15.6 mmol) in THF (30 mL) was added dropwise. The mixture was stirred at -78 °C for 15 min, and at room temperature for 5 min, then cooled to 0 °C. A solution of **44** (2.79 g, 7.4 mmol) in THF (10 mL) was added. The mixture was allowed to warm to room temperature and stirred for 36 h. The reaction mixture was quenched with half sat. aq. NH₄Cl and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to provide the oil. The flash chromatography (hexane:EtOAc, 2:3) afforded the title compound (3.07 g, 88% yield): IR (NaCl) 3380, 2962, 2932, 2874, 2836, 1614, 1249, 1033 cm⁻¹; LRMS (EI) 468 (M⁺⁺); HRMS (EI) calcd for C₂₈H₃₈NO₅ 468.2759 (M⁺⁺), found 468.2750.

(2*R*,4*R*)-4-[(2*S*,4*R*,5*S*)-2-(4-Methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-2-methylpentan-1-ol (47).

A solution of diisopropylamine (2.70 mL, 26.5 mmol) in THF (20 mL) was treated with BuLi (1.6 M in hexane, 15.4 mL, 24.6 mmol) at -78 °C dropwise. The mixture was stirred at -78 °C for 10 min and at 0 °C for 10 min. BH₃•NH₃ (0.87 g, 25.3 mmol) was added. The mixture was stirred at 0 °C for 15 min and at room temperature for 15 min, then cooled to 0 °C. A solution of **46** (2.97 g, 6.32 mmol) in THF (10 mL) was added. The mixture was warmed to room temperature and stirred for 2 h. The reaction mixture was quenched with half sat. aq. NH₄Cl and extracted with ethyl ether. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to provide the oil. Flash chromatography (hexane:EtOAc, 7:3) afforded the title compound (1.54 g, 79% yield): IR (NaCl) 3415, 2958, 2929, 2873, 2836, 1517, 1249, 1033 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 5.43 (s, 1H), 4.12 (dd, *J* = 4.5, 11.1 Hz, 1H), 3.80 (s, 3H), 3.57-3.33 (m, 4H), 2.06 (m, 1H), 1.91 (m, 1H), 1.70 (m, 1H), 1.43 (m, 1H), 1.24 (m, 1H), 1.06 (d, *J* = 6.6 Hz, 3H), 0.92 (d, *J* = 6.6 Hz, 3H), 0.77 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 131.6, 127.3, 113.5, 101.2, 88.0, 73.2, 69.4, 55.3, 33.3, 32.8, 30.9, 30.5, 17.1, 15.8, 12.2; LRMS (EI) 308 (M⁺⁺); HRMS (EI) calcd for C₁₈H₂₈O₄ 308.1991 (M⁺⁺), found 308.1987.

Shin, et al.

tert-Butyl{(2*R*,4*R*)-4-[(2*S*,4*R*,5*S*)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-2-methylpentyloxy}dimethylsilane (48).

A solution of **47** (1.52 g, 4.92 mmol), imidazole (0.67 g, 9.84 mmol) and DMAP (0.03 g, 0.25 mmol) in CH₂Cl₂ (20 mL) was treated with TBDMSCl (1.11 g, 7.38 mmol) at 0 °C. The white suspension was stirred at room temperature for 3 h, then diluted with CH₂Cl₂ and brine The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum to provide the crude oil (1.95 g, 94% yield): IR (NaCl) 2955, 2928, 2855, 1249, 1093, 834 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 5.53 (s, 1H), 4.21 (dd, *J* = 4.8, 15.9 Hz, 1H), 3.83 (s, 3H), 3.70-3.42 (m, 4H), 2.15 (m, 1H), 2.00 (m, 1H), 1.78 (m, 1H), 1.56 (m, 1H), 1.27 (m, 1H), 1.15 (d, *J* = 6.9 Hz, 3H), 1.02 (s, 9H), 0.99 (d, *J* = 7.2 Hz, 3H), 0.87 (d, *J* = 6.9 Hz, 3H), 0.16 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 131.8, 127.4, 113.5, 101.2, 88.1, 73.2, 69.4, 55.3, 33.4, 32.9, 31.0, 30.5, 26.1, 18.4, 17.1, 15.9, 12.2, -5.1; LRMS (EI) 422 (M⁺⁺); HRMS (EI) calcd for C₂₄H₄₂O₄Si 422.2841 (M⁺⁺), found 422.2852.

(2*S*,3*R*,4*R*,6*R*)-3-(4-Methoxybenzyloxy)-7-(*tert*-butyldimethylsilyloxy)-2,4,6-trimethylheptan-1-ol (49).

A solution of **48** (1.59 g, 3.77 mmol) in CH₂Cl₂ (30 mL) was treated with DIBALH (1.0 M in hexane, 17.0 mL, 17.0 mmol) at -78 °C dropwise. The mixture was stirred at -78 °C for 15 min and at 0 °C for 20 min. The reaction mixture was quenched with sat. aq. sodium potassium tartrate, diluted with ethyl ether and water, then stirred vigorously until the phases were clear. The aqueous layer was extracted with ethyl ether. The combined organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum to provide the oil. The flash chromatography (hexane:EtOAc, 7:3) afforded the title compound (1.23 g, 77% yield): IR (NaCl) 3453, 2956, 2928, 2856, 1514, 1249, 1089, 836 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 4.70 (d, *J* = 10.5 Hz, 1H), 4.56 (d, *J* = 10.5 Hz, 1H), 3.88 (s, 3H), 3.82 (dd, *J* = 3.6, 11.1 Hz, 1H), 3.65 (dd, *J* = 5.7, 10.8 Hz, 1H), 3.51 (dd, *J* = 6.3, 9.9 Hz, 1H), 3.43 (dd, *J* = 6.3, 9.9 Hz, 1H), 3.30 (dd, *J* = 4.5, 6.6 Hz, 1H), 2.88 (brs, 1H), 1.99 (m, 2H), 1.77 (m, 1H), 1.50-1.25 (m, 2H), 1.08 (d, *J* = 6.9 Hz, 3H), 1.06 (d, *J* = 7.2 Hz, 3H), 0.99 (s, 9H), 0.92 (d, *J* = 6.9 Hz, 3H), 0.13 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 130.6, 129.4, 113.9, 90.1, 74.9, 69.4, 66.5, 55.3, 37.4, 35.0, 33.4, 33.3, 26.1, 18.4, 17.0, 16.1, 15.9, -5.1; LRMS (ESI) 447.2 [M+Na]⁺; HRMS (ESI) calcd for C₂₄H₄₅O₄Si 425.3087 [M+H]⁺, found 425.3060.

[(2*R*,4*R*,5*R*,6*S*)-5-(4-Methoxybenzyloxy)-2,4,6-trimethyloct-7-ynyloxy](*tert*-butyl)dimethylsilane (38).

A solution of **49** (0.54 g, 1.26 mmol) in CH_2Cl_2 (25 mL) was treated with Dess-Martin periodinane (1.07 g, 2.52 mmol) at room temperature. The mixture was stirred for 2 h. The reaction mixture was quenched with sat. aq. NaHCO₃. The aqueous layer was extracted with ethyl ether. The combined organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum to provide the oil, which was used for the next reaction without further purification.

A solution of CBr₄ (0.84 g, 2.52 mmol) in CH₂Cl₂ (3 mL) was treated with PPh₃ (1.36 g, 5.05 mmol) at 0 °C. The mixture was stirred until the formation of precipitates. A solution of the crude aldehyde and 2,6-lutidine (0.29 mL, 2.52 mmol) was added at 0 °C. The mixture was stirred at 0 °C for 2 h. The reaction mixture was quenched with water. The aqueous layer was extracted with ethyl ether. The combined organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum to provide the oil. The flash chromatography (hexane:EtOAc, 9:1) afforded the dibromoalkene (0.58 g, 79% yield, two steps): IR (NaCl) 2955,

2928, 1514, 1249, 1092, 836 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.60 (d, *J* = 9.6 Hz, 1H), 4.60 (d, *J* = 10.8 Hz, 1H), 4.51 (d, *J* = 10.8 Hz, 1H), 3.85 (s, 3H), 3.48 (dd, *J* = 6.3, 9.9 Hz, 1H), 3.39 (dd, *J* = 6.3, 9.9 Hz, 1H), 3.12 (dd, *J* = 3.0, 6.3 Hz, 1H), 2.79 (m, 1H), 1.77 (m, 2H), 1.29 (m, 2H), 1.13 (d, *J* = 6.9 Hz, 3H), 0.94 (s, 9H), 0.92 (d, *J* = 6.6 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 3H), 0.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 141.2, 131.0, 129.3, 113.8, 87.6, 87.3, 74.3, 69.4, 55.4, 41.1, 36.2, 33.7, 33.4, 26.1, 18.5, 17.6, 16.1, 15.7, -5.1; LRMS (EI) 578 (M⁺⁺); HRMS (EI) calcd for C₂₅H₄₂Br₂O₃Si 576.1279 (M⁺⁺), found 576.1270.

A solution of the dibromoalkene (0.46 g, 0.80 mmol) in THF (5 mL) was treated with BuLi (1.6 M in hexane, 1.50 mL, 2.40 mmol) at -78 °C dropwise. The mixture was stirred at -78 °C for 40 min. The reaction mixture was quenched with sat. aq. NH₄Cl. The aqueous layer was extracted with ethyl ether. The combined organic layers were dried over anhydrous MgSO₄. The solvent was removed under vacuum to provide the oil. Flash chromatography (hexane:EtOAc, 9:1) afforded the title compound (0.32 g, 96% yield): ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.70 (d, J = 10.8 Hz, 1H), 4.58 (d, J = 10.8 Hz, 1H), 3.81 (s, 3H), 3.44 (dd, J = 6.3, 9.6 Hz, 1H), 3.32 (dd, J = 6.3, 9.0 Hz, 1H), 3.11 (t, J = 5.7 Hz, 1H), 2.79 (m, 1H), 2.09 (d, J = 2.4 Hz, 1H), 1.93 (m, 1H), 1.69 (m, 1H) 1.24 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.90 (s, 9H), 0.85 (d, J = 6.6 Hz, 3H), 0.04 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 131.1, 129.4, 113.7, 87.1, 86.6, 74.2, 69.6, 69.4, 55.3, 34.9, 33.3, 33.1, 29.1, 26.0, 18.4, 18.3, 16.5, 15.9, -5.1.

(4*S*,5*S*,*E*)-Ethyl 5,7-*bis*(*tert*-butyldimethylsilyloxy)-4-methylhept-2-enoate (53).

A cooled (0 °C) stirred suspension of NaH (0.18 g, 7.07 mmol, 95 % dispersion in mineral oil) in THF (63 mL) was treated dropwise with a solution of triethyl phosphonoacetate (1.12 mL, 7.19 mmol) over 10 min period. The mixture was brought to room temperature with a water bath (30 min) and then cooled back to -78 °C and the aldehyde from 52¹ (2.05 g, 5.66 mmol) in THF (5 mL) was added. The resulting mixture was stirred for 1 h at 0 C then pH 7 phosphate buffer solution (10 mL) and diethyl ether (50 mL) were added. The mixture was allowed to warm to room temperature and the phases were separated. The organic phase was washed with sat'd NH₄Cl solution (30 mL) and brine (30 mL), dried with MgSO₄, filtered and concentrated to give crude product. Purification by flash chromatography (EtOAc/hexane 1:9) afforded pure ester 53 (1.68 g, 69 % for 2 steps) as a colorless oil: IR (CHCl₃) 2928, 2855, 1720, 1652, 1472, 1388, 1366, 1258, 1180, 1038, 832, 774 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.05 (dd, J = 15.8, 7.0 Hz, 1H), 5.79 (d, J = 15.9 Hz, 1H), 4.18 (q, J = 7.1Hz, 2H), 3.82 (m, 1H), 3.64 (m, 2H), 2.48 (m, 1H), 1.72-1.49 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.05-0.03 (m, 12H); 13 C NMR (75 MHz, CDCl₃) δ 166.5, 151.6, 120.9, 72.1, 59.95, 59.52, 41.8, 36.8, 25.8, 18.1, 18.0, 14.2, 13.8, -4.56, -4.61, -5.4; LRMS (EI) 415 (M-CH₃)⁺ 373, 303, 189, 147; HRMS (EI) calcd for $C_{21}H_{43}O_4Si_2$ 415.2700 (M–CH₃)⁺ found 415.2700; $[\alpha]_{D}^{20}$ –31.6 (c 1.36, CHCl₃).

(4S,5S,E)-5,7-bis(tert-Butyldimethylsilyloxy)-4-methylhept-2-en-1-ol (54).

DIBALH (8.8 mL, 8.8 mmol, 1.0 M solution in hexane) was added to the above ester **53** (1.52 g. 3.53 µmol) in CH₂Cl₂ (35 mL) at -78 °C dropwise and stirred for 1 h. The reaction mixture was quenched by EtOAc (5 mL) and sat'd sodium potassium tartrate solution (20 mL) followed by vigorous stirring for 4 h. The aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with brine (10 mL). After drying over MgSO₄ and evaporation under vacuum, flash column chromatography (hexane/EtOAc 4:1) provided 1.33 g of alcohol (97 %) as a colorless oil: IR (CHCl₃) 3344, 2853, 1471, 1387, 1255, 1096, 974, 834, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) §5.69 (dd, *J* = 15.5, 6.6 Hz, 1H), 5.57 (dt, *J* = 15.6, 5.6

Hz, 1H), 4.04 (m, 2H), 3.70-3.54 (m, 3H), 2.29 (m, 1H), 1.96 (br, 1H), 1.62-1.45 (m, 2H), 0.92 (d, J = 7.0 Hz, 3H), 0.85 (s, 18H), 0.00 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 135.1, 128.8, 72.8, 63.8, 59.8, 41.6, 36.4, 25.9, 18.2, 18.1, 15.1, -4.4, -4.6, -5.4; LRMS (EI) 331 (M^{-t}Bu)⁺ 303, 171, 147; HRMS (EI) calcd for C₁₆H₃₅O₃Si₂ 331.2125 (M^{-t}Bu)⁺ found 331.2135; $[\alpha]^{20}_{D} - 32.4$ (*c* 0.90, CHCl₃).

((4*S*,5*S*,*E*)-5,7-*bis*(*tert*-Butyldimethylsilyloxy)-4-methylhept-2-enyloxy)triphenylmethane (55).

Trityl chloride (2.0 g) and DMAP (0.88 g) were added to a solution of alcohol **54** (1.33 g) in pyridine (34 mL). The mixture was then refluxed for 18 h, cooled to ambient temperature and added to a solution of sat'd CuSO₄ (200 mL). The mixture was extracted with Et₂O (2 x 20 mL), washed sat'd CuSO₄ (2 x 20 mL). The organic layer was separated, dried (MgSO₄), filtered, and concentrated *in vacuo*. Flash column chromatography (EtOAc/hexane 1:19) provided product (2.16 g, 94 %) as a pale yellow oil: IR (CHCl₃) 2955, 2928, 2856, 1490, 1471, 1448, 1255, 1093, 835, 774, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.53 (m, 6H), 7.38-7.27 (m, 9H), 5.91 (dd, *J* = 15.7, 6.7 Hz, 1H), 5.64 (dt, *J* = 15.5, 5.4 Hz, 1H), 3.84-3.70 (m, 3H), 3.65 (d, *J* = 5.2 Hz, 2H), 2.43 (m, 1H), 1.78-1.54 (m, 2H), 1.05 (d, *J* = 6.9 Hz, 3H), 0.98 (s, 9H), 0.97 (s, 9H), 0.14 (s, 6H), 0.12 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 134.4, 128.7, 127.7, 126.8, 126.4, 86.7, 72.9, 65.1, 60.0, 41.8, 36.5, 26.0, 18.3, 18.1, 15.0, -4.3, -4.5, -5.2; LRMS (EI) 573 (M-¹Bu)⁺ 367, 303, 243; HRMS (EI) calcd for C₃₅H₄₉O₃Si₂ 573.3220 (M-¹Bu)⁺ found 573.3218; [α]²⁰_D -18.0 (*c* 1.2, CHCl₃).

(3S,4S,E)-3-(tert-Butyldimethylsilyloxy)-4-methyl-7-(trityloxy)hept-5-en-1-ol (56).

A solution of TBS ether **55** (1.68 g, 2.67 mmol) in THF (10 mL) was treated slowly with HFpyridine in pyridine (40 mL, prepared by slow addition of 12 mL pyridine to 3 mL HF-pyridine complex followed by dilution with 25 mL THF). The mixture was stirred overnight at room temperature and quenched with sat'd NaHCO₃ (100 mL). The aqueous layer was separated and extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with sat'd CuSO₄ (3 x 50 mL), dried over MgSO₄, and concentrated. Flash column chromatography (EtOAc/hexane 3:17) afforded 1.13 g (82 %) of the alcohol as a colorless oil: IR (CHCl₃) 3390, 2955, 2928, 2855, 1448, 1380, 1255, 1060, 836, 774 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.72 (m, 6H), 7.55-7.42 (m, 9H), 6.09 (dd, *J* = 15.6, 6.4 Hz, 1H), 5.86 (dt, *J* = 15.6, 5.2 Hz, 1H), 4.07-3.94 (m, 3H), 3.86 (d, *J* = 5.0 Hz, 2H), 2.70 (m, 2H), 1.93 (m, 1H), 1.54 (br, 1H), 1.27 (d, *J* = 6.7 Hz, 3H), 1.20 (s, 9H), 0.38 (s, 3H), 0.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.2, 133.6, 128.5, 127.6, 126.84, 126.76, 86.7, 74.5, 64.9, 59.9, 41.6, 35.1, 25.8, 17.9, 15.6, -4.4, -4.6; LRMS (API-ESI) 539.2 [M+Na]⁺; HRMS (ESI) calcd for C₃₃H₄₄O₃Si₁Na 539.2957 [M+Na]⁺ found 539.2006; [α]²⁰ – 31.8 (*c* 3.1, CHCl₃).

(3*S*,4*S*,*E*)-3-(*tert*-Butyldimethylsilyloxy)-*N*-methoxy-*N*,4-dimethyl-7-(trityloxy)hept-5-enamide (39).

The alcohol **56** (0.34 g, 0.66 mmol) in CH_2Cl_2 (10 mL) was treated with Dess-Martin periodinane (0.41 g, 0.99 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (10 mL). The aqueous layer was extracted with ethyl ether (10 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography (hexane/EtOAc 4:1) to remove the Dess-Martin residue provided the aldehyde as a colorless oil, which was used for the next reaction without further purification. A solution of the above aldehyde in THF (10 mL) and H₂O (5 mL) was treated with a 2 M solution of 2-methyl-2-butene (1.9 mL, 0.95 mmol) in THF, NaH₂PO₄•H₂O (0.27 g, 1.96 mmol) and NaClO₂ (0.22 g, 1.96 mmol). The reaction mixture was stirred for 2 h, diluted with 1N HCl (20

mL) and extracted with CH₂Cl₂ (2 x 40 mL). The combined organic layers were dried over MgSO₄, concentrated *in vacuo* and the crude **57** was used for the next reaction without further purification. To a solution of acid in CH₂Cl₂, *N*,*O*-dimethylhydroxylamine hydrochloride (0.064 g, 0.65 mmol), Et₃N (0.09 mL, 0.65 mmol), DMAP (8 mg, 0.065 mmol) were successively added. The reaction mixture was cooled to 0 °C, DCC (0.14 g, 0.65 mmol) was added. The mixture was stirred at ambient temperature for 15 h and filtered. The filtrate was washed with 0.5 N HCl, saturated aqueous NaHCO₃, and brine, dried over anhydrous MgSO₄ and concentrated. Purification by column chromatography over silica gel (hexane/EtOAc 4:1) gave the Weinreb amide **39** (0.37 g, 81 % for 3 steps) as a colorless oil: IR (CHCl₃) 2956, 2929, 2855, 1661, 1448, 1385, 1251, 1089, 1054, 1003, 836, 775, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.61 m, 6H), 7.45-7.33 (m, 9H), 6.09 (dd, *J* = 15.7, 6.6 Hz, 1H), 5.75 (dt, *J* = 15.7, 5.2 Hz, 1H), 4.42 (m, 1H), 3.76 (s, 3H), 3.70 (m, 2H), 3.29 (s, 3H), 2.88 (m, 1H), 2.55 (m, 2H), 1.18 (d, *J* = 6.8 Hz, 3H), 1.06 (s, 9H), 0.27 (s, 3H), 0.20 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 144.2, 133.5, 128.5, 127.6, 126.8, 86.5, 72.8, 64.6, 61.1, 42.2, 36.0, 31.9, 25.8, 18.0, 14.8, -4.7, -4.8; LRMS (EI) 573 (M⁺⁺), 558, 516, 246, 165; HRMS (EI) calcd for C₃₅H₄₇O₄NSi 573.3290 (M⁺⁺), found 573.3290; [α]²⁰_D-40.1 (*c* 1.2, CHCl₃).

(4*S*,5*S*,10*S*,11*R*,12*R*,14*R*,*E*)-11-(4-Methoxybenzyloxy)-5,15-*bis*(*tert*-butyldimethylsilyloxy)-4,10,12,14-tetramethyl-1-(trityloxy)pentadec-2-en-8-yn-7-one (58).

Alkyne 38 (7.75 g, 18.5 mmol) was taken up in THF (185 mL) and cooled to -78 °C. n-BuLi (11.6 mL, 1.6 M solution in hexane) was added slowly. After 5 min, the mixture was warmed to 0 °C and stirred for 30 min. The mixture was then cooled to -78 °C and amide **39** (5.31 g, 9.26 mmol) in THF (15 mL) was added slowly. After 5 min the solution was warmed to 0 °C and stirred for 1 h. The reaction was quenched with aq NH₄Cl and the mixture was partitioned in a separatory funnel. The aqueous phase was extracted with ether (50 mL x 3) and combined organic extracts were washed with brine and dried over MgSO₄. Filtration and concentration under reduced pressure, followed by flash chromatography on silica gel (hexane/EtOAc 19:1) afforded ynone 58 (8.45 g, 98 %) as a pale yellow oil: IR (CHCl₃) 2955, 2929, 2856, 2208, 1674, 1514, 1470, 1249, 1092, 836, 775, 706 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) §7.50-7.47 m, 6H), 7.35-7.22 (m, 11H), 6.88-6.84 (m, 2H), 5.81 (dd, J = 15.6, 6.7 Hz, 1H), 5.58 (dt, J = 15.6, 5.2Hz, 1H), 4.64 (d, J = 10.8 Hz, 1H), 4.54 (d, J = 10.8 Hz, 1H), 4.27 (m, 1H), 3.80 (s, 3H), 3.59 (d, J = 10.8 Hz, 1H), 4.54 (d, J = 10.8 Hz, 1H), 4.57 (m, 1H), 3.80 (s, 3H), 3.59 (d, J = 10.8 Hz, 1H), 4.54 (d, J J = 5.2 Hz, 2H), 3.44-3.34 (m, 2H), 3.18 (t, J = 5.4 Hz, 1H), 2.94 (m, 1H), 2.62 (m, 1H), 2.38 (m, 1H), 1.89 (m, 1H), 1.68 (m, 1H), 1.26 (d, J = 7.0 Hz, 3H), 1.24 (m, 1H), 0.99 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.92 (s, 9H), 0.91 (m, 1H), 0.89 (s, 9H), 0.84 (d, J = 6.7 Hz, 3H), 0.09-0.05 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 186.4, 159.1, 144.3, 133.5, 130.7, 129.2, 128.7, 127.7, 127.3, 126.9, 113.7, 96.8, 86.8, 86.2, 82.6, 74.0, 72.3, 69.2, 64.9, 55.2, 50.5, 42.3, 34.9, 33.2, 33.0, 29.5, 26.0, 25.9, 18.3, 18.1, 17.2, 16.3, 15.9, 14.8, -4.50, -4.55, -5.3; LRMS (ESI) 953.6 $[M+Na]^+$; HRMS (ESI) calcd for $C_{58}H_{82}O_6Si_2Na$ 953.5548 $[M+Na]^+$, found 953.5552; $[\alpha]^{20}$ –9.5 (c 2.8, CHCl₃).

(4S,5S,7S,10S,11R,12R,14R,E)-11-(4-Methoxybenzyloxy)-5,15-bis(tert-

butyldimethylsilyloxy)-4,10,12,14-tetramethyl-1-(trityloxy)pentadec-2-en-8-yn-7-ol (59). Ynone **58** (7.06 g, 7.59 mmol) was taken up in *i*-PrOH (100 mL). Noyori catalyst (1.02 g, 1.52 mmol, 20 mol%) was added in one portion and the solution was stirred for 12 h. The solvent was removed under vacuum, and the crude residue was purified by flash chromatography on silica gel (hexane/EtOAc 9:1), affording propargylic alcohol **59** (6.16 g, 87 %) as a pale yellow oil: IR (CHCl₃) 3434, 2955, 2928, 2855, 1613, 1513, 1462, 1250, 1091, 836, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.57 (m, 6H), 7.42-7.30 (m, 11H), 6.96-6.93 (m, 2H), 5.96 (dd, *J* = 15.7, 6.4 Hz, 1H), 5.68 (dt, *J* = 15.2, 5.3 Hz, 1H), 4.79 (d, *J* = 10.8 Hz, 1H), 4.67 (m, 1H), 4.63 (d, *J* = 10.9 Hz, 1H), 4.07 (m, 1H), 3.86 (s, 3H), 3.69 (d, J = 4.7 Hz, 2H), 3.49 (m, 2H), 3.22 (t, J = 5.5 Hz, 1H), 2.91 (m, 1H), 2.67 (d, J = 5.3 Hz, 1H), 2.56 (m, 1H), 1.98 (m, 1H), 1.86 (m, 2H), 1.77 (m, 1H), 1.36 (m, 1H), 1.31 (d, J = 7.0 Hz, 3H), 1.09 (d, J = 7.1 Hz, 3H), 1.06 (d, J = 7.1 Hz, 3H), 1.03 (s, 9H), 1.02 (s, 9H), 0.94 (d, J = 6.6 Hz, 3H), 0.24 (s, 3H), 0.22 (s, 3H), 0.15 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 144.3, 133.2, 131.0, 129.1, 128.6, 127.7, 127.0, 126.8, 113.5, 87.5, 86.79, 86.74, 82.6, 74.0, 73.3, 69.3, 65.0, 59.6, 55.1, 41.4, 40.2, 34.5, 33.1, 32.7, 29.1, 25.9, 18.3, 18.0, 17.9, 16.6, 15.8, 15.3, -4.3, -4.5, -5.4; LRMS (ESI) 955.6 [M+Na]⁺; HRMS (ESI) calcd for C₅₈H₈₄O₆Si₂Na 955.5704 [M+Na]⁺, found 955.5734; [α]²⁰_D -8.5 (*c* 1.5, CHCl₃).

(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*R*)-11-(4-Methoxybenzyloxy)-5-(*tert*-butyldimethylsilyloxy)-15-(*tert*-butyldimethylsilyloxy))-4,10,12,14-tetramethyl-1-(trityloxy)pentadeca-2,8-dien-7-ol (60).

A catalytic amount of Lindlar catalyst (ca. 200 mg) was added to a solution of alcohol **59** (3.11 g, 3.33 mmol) in toluene (100 mL). The flask was fitted with a H₂ balloon, and stirred under an atmosphere of H₂ until starting material was consumed (usually 1 h), as indicated by TLC analysis. The mixture was filtered through a pad of celite and concentrated under reduced pressure to afford the olefin **60** as a colorless oil (2.81 g, 90 %): IR (CHCl₃) 3434, 2956, 2928, 2856, 1613, 1514, 1471, 1249, 1062, 836, 774 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.55 (m, 6H), 7.4-7.29 (m, 1H), 6.93 (m, 2H), 5.90 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.68 (dt, *J* = 15.7, 5.4 Hz, 1H), 5.60 (dd, *J* = 11.1, 8.9 Hz, 1H), 5.51 (dd, *J* = 11.2, 7.3 Hz, 1H), 4.66 (m, 1H), 4.58 (d, *J* = 10.9 Hz, 1H), 4.55 (d, *J* = 10.9 Hz, 1H), 3.95 (m, 1H), 3.86 (s, 3H), 3.66 (dd, *J* = 4.9 Hz, 1H), 3.52-3.38 (m, 2H), 3.01 (m, 2H), 2.89 (br, 1H), 2.55 (m, 1H), 1.79 (m, 1H), 1.70 (m, 1H), 1.62 (m, 2H), 1.33-1.29 (m, 2H), 1.12 (d, *J* = 5.8 Hz, 3H), 1.10 (d, *J* = 6.7 Hz, 3H), 1.02 (s, 9H), 1.01 (s, 9H), 0.89 (d, *J* = 6.1 Hz, 3H), 0.87 (d, *J* = 6.3 Hz, 3H), 0.19 (s, 6H), 0.14 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 144.3, 134.1, 133.5, 132.6, 131.0, 129.0, 128.6, 127.7, 126.8, 126.7, 113.5, 88.4, 86.7, 74.9, 73.5, 69.4, 65.2, 65.1, 55.1, 41.8, 40.2, 35.0, 34.6, 33.1, 25.9, 19.1, 18.3, 18.0, 16.6, 15.8, 15.6, -4.4, -4.5, -5.3; LRMS (ESI) 957.6 [M+Na]⁺; HRMS (ESI) calcd for C₅₈H₈₆O₆Si₂Na 957.5861 [M+Na]⁺, found 957.5900; [α]²⁰_D+2.0 (*c* 1.2, CHCl₃).

[(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*R*)-11-(4-Methoxybenzyloxy)-5,7,15-*tris*(*tert*-butyldimethylsilyloxy)-4,10,12,14-tetramethylpentadeca-2,8-dienyloxy]triphenylmethane (61).

TBSOTf (1.05 mL, 4.57 mmol) was added to a stirred solution of the alcohol **60** (3.89 g, 4.16 mmol) and 2,6-lutidine (0.58 mL, 5.01 mmol) in CH₂Cl₂ (14 mL) at 0 °C. After stirring for 1 h at 0 °C, the reaction mixture was quenched by the addition of water (25 mL), and extracted by CH₂Cl₂ and dried over MgSO₄, followed by the evaporation of the solvent under reduced pressure. The residue was purified by short column chromatography (hexane/EtOAc 9:1) to obtain the product **61** (4.36 g, quantitative) as a colorless oil: IR (CHCl₃) 2956, 2928, 2856, 1613, 1514, 1471, 1462, 1250, 1088, 836, 773, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 6H), 7.43-7.31 (m, 11H), 6.97-6.94 (m, 2H), 5.95 (dd, *J* = 15.7, 6.0 Hz, 1H), 5.67 (dt, *J* = 15.7, 5.6 Hz, 1H), 5.62-5.46 (m, 2H), 4.71 (m, 1H), 4.62 (m, 2H), 4.05 (m, 1H), 3.87 (s, 3H), 3.69 (d, *J* = 5.3 Hz, 2H), 3.53-3.40 (m, 2H), 3.08 (m, 1H), 2.91 (m, 1H), 2.51 (m, 1H), 1.76 (m, 1H), 1.66 (m, 2H), 1.50-1.40 (m, 2H), 1.32 (m, 1H), 1.22 (d, *J* = 6.8 Hz, 6H), 1.09 (d, *J* = 6.9 Hz, 3H), 1.06-0.96 (m, 27H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.83 (d, *J* = 6.5 Hz, 3H), 0.25-0.17 (m, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 144.4, 134.3, 133.7, 131.4, 129.4, 129.0, 128.6, 127.7, 126.8, 126.4, 113.5, 88.8, 86.7, 74.8, 72.8, 69.5, 66.3, 65.1, 55.1, 43.0, 42.3, 35.4, 35.1, 33.4, 33.1, 26.1, 26.0, 18.8, 18.3, 18.1, 16.7, 15.7, 14.6, -2.8, -3.9, -4.1, -4.2, -5.3; LRMS (ESI)

Shin, et al.

1071.9 [M+Na]⁺; HRMS (ESI) calcd for $C_{64}H_{100}O_6Si_3Na$ 1071.6725 [M+Na]⁺, found 1071.6779; $[\alpha]^{20}_{D}$ –9.5 (*c* 3.0, CHCl₃).

(2*R*,4*R*,5*R*,6*S*,7*Z*,9*S*,11*S*,12*S*,13*E*)-1,9,11-*tris*(*tert*-Butyldimethylsilyloxy)-2,4,6,12-tetramethyl-15-(trityloxy)pentadeca-7,13-dien-5-ol (62).

The above PMB alcohol 61 (2.90 g, 2.77 mmol) was added to CH₂Cl₂ (25 mL) and H₂O (1 mL), and DDQ (0.94 g, 4.15 mmol) was added. After 1 h of stirring, the reaction mixture was quenched by adding sat'd NaHCO₃ (200 mL). The organic phase was washed by sat'd NaHCO₃ solution (3 x 100 mL) and brine, dried over MgSO₄ and concentrated. Purification by flash column chromatography (EtOAc/hexane 1:19) furnished 62 (2.16 g, 84 %) as a colorless oil: IR (CHCl₃) 3477, 2956, 2928, 2856, 1471, 1386, 1254, 1088, 836, 774 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 7.55-7.52 (m, 6H), 7.38-7.25 (m, 9H), 5.92 (dd, J = 15.7, 6.0 Hz, 1H), 5.62 (dt, J = 15.7, 6.0 Hz, 2H), 5.62 (dt, J = 15.7, 6.0 Hz, 2H), 15.7, 5.5 Hz, 1H), 5.52 (dd, J = 11.1, 9.3 Hz, 1H), 5.35 (t, J = 10.5 Hz, 1H), 4.63 (m, 1H), 3.97 (m, 1H), 3.63 (d, J = 5.4 Hz, 2H), 3.51-3.36 (m, 2H), 3.18 (m, 1H), 2.68 (m, 1H), 2.47 (m, 1H), 2.47 (m, 2H), 3.18 (m, 2H), 3.1.71-1.59 (m, 3H), 1.42-1.27 (m, 2H), 1.17 (m, 1H), 1.08 (d, J = 6.7 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 0.99 (s, 9H), 0.97 (s, 9H), 0.96 (s, 9H), 0.91 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H), 0.18 (s, 3H), 0.16 (s, 3H), 0.15 (s, 3H), 0.13 (s, 3H), 0.12 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 135.2, 134.1, 131.1, 128.7, 127.7, 126.8, 126.4, 86.7, 79.8, 72.8, 69.6, 66.2, 65.2, 43.0, 42.1, 35.5, 33.7, 32.8, 32.5, 26.1, 26.0, 25.9, 18.4, 18.1, 17.6, 16.8, 16.3, 14.7, -2.9, -4.0, -4.15, -4.22, -5.3; LRMS (ESI) 951.7 [M+Na]⁺; HRMS (ESI) calcd for C₅₆H₉₂O₅Si₃Na 951.6150 $[M+Na]^+$, found 951.6165; $[\alpha]^{20}_D$ 30.0 (*c* 3.6, CHCl₃).

[(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*R*)-5,7,11,15-*tetrakis*(*tert*-Butyldimethylsilyloxy)-4,10,12,14-tetramethylpentadeca-2,8-dienyloxy]triphenylmethane (63).

The procedure for **61** was used with above **62** (3.34 g, 3.60 µmol), TBSOTf (1.82 mL, 7.9 mmol) to yield 3.53 g (94 %) of the product by flash column chromatography (EtOAc/hexane 1:19) as a colorless oil: IR (CHCl₃) 2956, 2928, 2856, 1471, 1462, 1361, 1254, 1088, 836, 773, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.48 (m, 6H), 7.34-7.22 (m, 9H), 5.82 (dd, *J* = 15.7, 6.0 Hz, 1H), 5.57 (dt, *J* = 15.8, 5.9 Hz, 1H), 5.48 (dd, *J* = 11.0, 9.9 Hz, 1H), 5.32 (dd, *J* = 11.0, 8.7 Hz, 1H), 4.56 (m, 1H), 3.93 (m, 1H), 3.59 (d, *J* = 5.5 Hz, 2H), 3.39 (dd, *J* = 9.6, 5.8 Hz, 1H), 3.31-3.27 (m, 2H), 2.62(m, 1H), 2.40 (m, 1H), 1.58-1.50 (m, 3H), 1.35 (m, 1H), 1.20-1.09 (m, 2H), 1.02 (d, *J* = 7.1 Hz, 3H), 1.00 (d, *J* = 7.0 Hz, 3H), 0.94 (s, 9H), 0.92 (s, 9H), 0.91 (s, 9H), 0.90 (s, 9H), 0.78 (d, *J* = 6.8 Hz, 3H), 0.74 (d, *J* = 6.6 Hz, 3H), 0.13-0.05 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 134.5, 133.0, 131.8, 128.7, 127.7, 126.8, 126.4, 86.7, 81.2, 72.8, 69.3, 66.6, 65.3, 43.1, 42.3, 35.9, 35.1, 33.3, 29.7, 26.2, 26.1, 26.0, 19.6, 18.4, 18.3, 18.2, 16.3, 16.0, 14.6, -2.8, -3.5, -3.6, -4.0, -4.1, -5.3; LRMS (ESI) 1065.7 [M+Na]⁺; HRMS (ESI) calcd for C₆₂H₁₀₆O₅Si₄Na 1065.7015 [M+Na]⁺, found 1065.7068; [α]²⁰ D-22.5 (*c* 2.0, CHCl₃).

(2*R*,4*R*,5*R*,6*S*,7*Z*,9*S*,11*S*,12*S*,13*E*)-5,9,11-*tris*(*tert*-Butyldimethylsilyloxy)-2,4,6,12-tetramethyl-15-(trityloxy)pentadeca-7,13-dien-1-ol (64).

HF-pyridine in pyridine (40 mL, prepared by slow addition of 12 mL pyridine to 3 mL HFpyridine complex followed by dilution with 25 mL THF) was slowly added to a solution of TBS ether **63** (3.54 g, 4.10 mmol) in THF (5 mL) at 0 °C. The mixture was stirred for 2 days at 0 °C and quenched with sat'd NaHCO₃ (100 mL). The aqueous layer was separated and extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with sat'd CuSO₄ (3 x 50 mL), dried over MgSO₄, and concentrated. Flash column chromatography (EtOAc/hexane 3:17) afforded 2.08 g (66 %) of the alcohol as a colorless oil: IR (CHCl₃) 3400, 2956, 2928, 2856, 1471, 1448, 1254, 1075, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.48 (m, 6H), 7.36-7.24 (m, 9H), 5.87 (dd, *J* = 15.7, 5.9 Hz, 1H), 5.59 (dt, *J* = 15.7, 5.7 Hz, 1H), 5.55 (dd, *J* = 10.6,

Shin, et al.

10.4 Hz, 1H), 5.33 (dd, J = 11.0, 8.7 Hz, 1H), 4.58 (m, 1H), 3.94 (m, 1H), 3.60 (d, J = 5.5 Hz, 2H), 3.38-3.32 (m, 2H), 3.25 (m, 1H), 2.62 (m, 1H), 2.45 (m, 1H), 1.59 (m, 1H), 1.55 (m, 1H), 1.47 (m, 1H), 1.35 (m, 1H), 1.09 (m, 1H), 1.04 (d, J = 7.6 Hz, 3H), 1.01 (d, J = 7.2 Hz, 3H), 0.96 (s, 9H), 0.94 (s, 9H), 0.93 (s, 9H), 0.79 (d, J = 6.8 Hz, 3H), 0.75 (d, J = 6.6 Hz, 3H), 0.15 (s, 9H), 0.14 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 134.0, 132.7, 131.3, 128.7, 127.7, 126.8, 126.5, 86.8, 81.0, 73.0, 69.2, 66.5, 65.3, 42.6, 42.2, 36.2, 35.5, 34.6, 33.3, 26.2, 26.1, 25.9, 20.0, 18.4, 18.2, 18.1, 15.7, 15.6, 14.9, -2.8, -3.7, - 3.8, -4.0, -4.1, -4.2; LRMS (ESI) 951.6 [M+Na]⁺; HRMS (ESI) calcd for C₅₆H₉₂O₅Si₃Na 951.6150 [M+Na]⁺, found 951.6158; [α]²⁰D -33.5 (c 2.0, CHCl₃).

(2*R*,4*E*,6*R*,8*R*,9*R*,10*S*,11*Z*,13*S*,15*S*,16*S*,17*E*)-9,13,15-*tris*(*tert*-Butyldimethylsilyloxy)-2-[(4*S*,5*S*)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-6,8,10,16-tetramethyl-19-(trityloxy)nonadeca-4,11,17-trien-3-one (65).

The alcohol 64 (2.04 g, 2.20 mmol) in CH₂Cl₂ (30 mL) was treated with Dess-Martin periodinane (1.40 g, 3.30 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (30 mL) and $\text{Na}_2\text{S}_2\text{O}_3$ (30 mL). The aqueous layer was extracted with ethyl ether (30 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography filtration (hexane/EtOAc 4:1) to remove the residue from the Dess-Martin reagent provided crude aldehyde as a colorless oil, which was used for the next reaction without further purification. A mixture of ketophosphonate 7 (0.85 g, 2.20 mmol) and Ba(OH)₂ (0.30 g, activated by heating to 100 °C for 1-2 h before use) in THF (40 mL) was stirred at room temperature for 30 min. A solution of the above aldehyde in wet THF $(4 \text{ mL} + 4 \text{ x 1 mL} \text{ washings}, 40:1 \text{ THF/H}_2\text{O})$ was then added. After stirring for 12 h, the reaction mixture was diluted with Et₂O (30 mL) and washed with sat'd NaHCO₃ (50 mL) and brine (50 mL). The organic solution was dried (MgSO₄) and the solvent was evaporated in vacuo. The residue was chromatographed (hexane/EtOAc 9:1) to yield 65 (2.04 g, 78 % for 2 steps) as a colorless oil: IR (CHCl₃) 2957, 2929, 2855, 1618, 1518, 1461, 1388, 1251, 1078, 1036, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.46 (m, 6H), 7.39 (m, 2H), 7.33-7.21 (m, 9H), 6.89 (m, 2H), 6.79 (dd, J = 15.7, 7.4 Hz, 1H), 6.20 (d, J = 15.6 Hz, 1H), 5.85 (dd, J = 15.7, 5.9 Hz, 1H), 5.58 (dt, J = 15.7, 4.6 Hz, 1H), 5.49 (dd, J = 11.0, 10.4 Hz, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.46 (s, 1H), 5.34 (dd, J = 11.0, 1H), 5.46 (s, 1H), 5.46 11.1, 8.6 Hz, 1H), 4.56 (m, 1H), 4.12 (dd, J = 11.3, 4.6 Hz, 1H), 3.92 (m, 2H), 3.81 (s, 3H), 3.57 (d, J = 5.6 Hz, 1H), 3.54 (m, 1H), 3.29 (dd, J = 5.6, 2.4 Hz, 1H), 2.93 (m, 1H), 2.61 (m, 1H),2.43 (m, 1H), 2.18 (m, 1H), 2.01 (m, 1H), 1.59-1.46 (m, 2H), 1.43 (m, 1H), 1.35-1.29 (m, 2H), 1.25 (d, J = 7.0 Hz, 3H), 1.03 (d, J = 7.2 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.94 (s, 9H), 0.92 (s, 9H), 0.91 (s, 9H), 0.82 (d, J = 7.0 Hz, 3H), 0.79 (d, J = 6.7 Hz, 3H), 0.77 (d, J = 6.5 Hz, 3H), 0.13 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.05 (s, 3H), 0.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.7, 159.8, 153.3, 144.3, 134.0, 133.3, 131.1, 130.8, 128.6, 127.7, 127.2, 126.8, 126.5, 125.7, 113.4, 100.8, 86.7, 82.7, 80.4, 72.8, 66.5, 65.8, 65.2, 55.2, 47.0, 42.8, 42.1, 39.1, 35.6, 34.9, 34.0, 32.3, 26.1, 26.0, 25.9, 19.7, 18.39, 18.36, 18.1, 16.4, 15.2, 14.7, 12.4, 10.7, -2.8, -3.6, -3.7, -4.0, -4.1; LRMS (ESI) 1209.7 [M+Na]⁺; HRMS (ESI) calcd for $C_{72}H_{110}O_8Si_3Na \ 1209.7406 \ [M+Na]^+$, found 1209.7466; $[\alpha]^{20}D - 8.6 \ (c \ 2.5, CHCl_3)$.

(2*R*,6*S*,8*R*,9*R*,10*S*,11*Z*,13*S*,15*S*,16*S*,17*E*)-9,13,15-*tris*(*tert*-Butyldimethylsilyloxy)-2-[(4*S*,5*S*)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-6,8,10,16-tetramethyl-19-(trityloxy)nonadeca-11,17-dien-3-one (66).

NiCl₂•6H₂O (0.20 g, 0.84 mmol) then portionwise NaBH₄ (0.17 g, 4.49 mmol) were added to a stirred solution of unsaturated ketone **65** (2.60 g, 1.72 mmol) in MeOH (60 mL), THF (20 mL) at 0 °C. After 1 h, the reaction mixture was evaporated and filtered with celite using Et₂O as an eluent (30 mL). The organic phase was concentrated and the residue was purified by flash

chromatography (EtOAc/hexane 1:9) to yield **66** (1.55 g, 76 %) as a colorless oil: IR (CHCl₃) 2956, 2929, 2855, 1713, 1616, 1518, 1462, 1251, 1076, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.50 (m, 6H), 7.42-7.24 (m, 11H), 6.92-6.86 (m, 2H), 5.87 (dd, *J* = 15.7, 6.0 Hz, 2H), 5.60 (dt, *J* = 15.8, 5.9 Hz, 1H), 5.50 (m, 1H), 5.49 (s, 1H), 5.37 (dd, *J* = 10.9, 8.5 Hz, 1H), 4.59 (m, 1H), 4.17 (dd, *J* = 11.3, 4.7 Hz, 1H), 3.98 (m, 2H), 3.82 (s, 3H), 3.62-3.55 (m, 3H), 3.29 (m, 1H), 2.73 (m, 1H), 2.65 (m, 1H), 2.49 (m, 2H), 2.06 (m, 1H), 1.63-1.50 (m, 2H), 1.47-1.32 (m, 2H), 1.27 (d, *J* = 7.1 Hz, 3H), 1.26 (m, 1H), 1.06 (d, *J* = 7.3 Hz, 3H), 1.03 (d, *J* = 7.2 Hz, 3H), 0.97-0.94 (m, 27H), 0.90-0.84 (m, 2H), 0.83 (d, *J* = 6.7 Hz, 3H), 0.76 (d, *J* = 7.0 Hz, 3H), 0.69 (d, *J* = 5.7 Hz, 3H), 0.17-0.05 (m, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 211.7, 159.8, 144.4, 134.3, 133.1, 131.4, 130.9, 128.6, 127.9, 127.6, 127.1, 126.8, 126.4, 113.4, 100.8, 86.7, 82.9, 81.0, 72.8, 66.5, 65.2, 55.2, 48.3, 43.0, 42.2, 39.8, 38.3, 35.2, 35.1, 31.9, 31.3, 29.7, 26.2, 26.0, 25.9, 19.6, 18.6, 18.4, 18.1, 16.3, 14.6, 12.1, 9.7, -2.9, -3.5, -3.6, -4.0, -4.1, -4.2; LRMS (ESI) 1211.8 [M+Na]⁺; HRMS (ESI) calcd for C₇₂H₁₁₂O₈Si₃Na 1211.7563 [M+Na]⁺, found 1211.7629; [α]²⁰_D -4.3 (*c* 1.0, CHCl₃).

(2*S*,3*R*,6*S*,8*R*,9*R*,10*S*,11*Z*,13*S*,15*S*,16*S*,17*E*)-9,13,15-*tris*(*tert*-Butyldimethylsilyloxy)-2-[(4*S*,5*S*)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-6,8,10,16-tetramethyl-19-(trityloxy)nonadeca-11,17-dien-3-ol (67).

NaBH₄ (0.074 g, 1.96 mmol) was added to a solution of ketone **66** (1.55 g, 1.30 mmol) in MeOH (21 mL) at 0 °C. After stirring for 2 h at 0 °C, the reaction mixture was evaporated and water (30 mL) was added. The reaction mixture was extracted with ether (2 x 40 mL) and washed with brine (50 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography (EtOAc/hexane 1:9) to yield 1.02 g of major product β (less polar, 62 %) and 0.60 g (more polar, 36 %) of minor product α as colorless oils: (67 β) IR (CHCl₃) 3540, 2956, 2929, 2855, 1615, 1518, 1461, 1385, 1252, 1074, 835, 773, 706 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 7.54-7.50 (m, 6H), 7.42 (m, 2H), 7.37-7.25 (m, 9H), 6.94-6.91 (m, 2H), 5.88 (dd, J =15.7, 6.0 Hz, 1H), 5.61 (dt, J = 16.0, 5.7 Hz, 1H), 5.56 (s, 1H), 5.50 (m, 1H), 5.37 (dd, J = 10.8,8.6 Hz, 1H), 4.60 (m, 1H), 4.17 (dd, J = 11.2, 4.6 Hz, 1H), 3.96 (m, 1H), 3.87 (m, 1H), 3.84 (s, 3H), 3.74 (m, 1H), 3.64-3.53 (m, 3H), 3.32 (m, 1H), 3.20 (br, 1H), 2.67 (m, 1H), 2.44 (m, 1H), 2.18 (m, 1H), 1.83 (m, 1H), 1.67-1.51 (m, 2H), 1.50-1.32 (m, 3H), 1.26 (m, 1H), 1.08 (d, J = 6.8 Hz, 3H), 1.07 (m, 2H), 1.06 (d, J = 7.0 Hz, 3H), 1.04 (d, J = 7.4 Hz, 3H), 0.98-0.85 (m, 2H), 0.82 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.7 Hz, 3H), 0.77 (d, J = 6.0 Hz, 3H), 0.18-0.09 (m, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 160.0, 144.5, 144.4, 134.4, 132.9, 131.6, 130.7, 128.6, 127.6, 127.2, 126.8, 126.7, 126.4, 113.6, 101.2, 89.1, 86.7, 81.1, 76.8, 73.1, 72.8, 66.5, 55.2, 43.0, 42.3, 39.9, 37.2, 35.3, 35.1, 34.7, 32.3, 30.4, 30.2, 26.2, 26.1, 25.9, 19.6, 18.8, 18.4, 18.13, 18.10, 16.3, 14.6, 11.9, 5.5, -2.8, -3.56, -3.61, -4.0, -4.1, -4.16, -4.25; LRMS (API-ES) 1213.6 [M+Na]+, 557.0, 359.2, 243.1; HRMS (ESI) calcd for C₇₂H₁₁₄O₈Si₃Na 1213.7719 [M+Na]+, found 1213.7717; [α]²⁰_D –0.68 (*c* 7.1, CHCl₃): (67α) IR (CHCl₃) 3531, 2956, 2929, 2855, 1615, 1518, 1462, 1383, 1252, 1075, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.53-7.49 (m, 6H), 7.44-7.41 (m, 2H), 7.36-7.24 (m, 9H), 6.94-6.91 (m, 2H), 5.86 (dd, *J* = 15.7, 6.0 Hz, 1H), 5.60 (dt, *J* = 15.7, 5.7 Hz, 1H), 5.54 (s, 1H), 5.56-5.47 (m, 1H), 5.36 (dd, *J* = 11.0, 8.6 Hz, 1H), 4.60 (m, 1H), 4.17 (dd, *J* = 11.2, 4.6 Hz, 1H), 3.97-3.91 (m, 2H), 3.84 (s, 3H), 3.62 (d, *J* = 4.9 Hz, 2H), 3.61-3.53 (m, 2H), 3.32 (m, 1H), 2.67 (m, 1H), 2.44 (m, 1H), 2.16 (m, 1H), 1.82 (m, 1H), 1.72-1.50 (m, 4H), 1.42-1.33 (m, 2H), 1.32-1.22 (m, 2H), 1.14 (d, J = 7.1 Hz, 3H), 1.06 (d, J = 7.0 Hz, 3H)3H), 1.03 (d, J = 7.0 Hz, 3H), 0.97-0.92 (m, 27H), 0.90-0.85 (m, 2H), 0.81 (d, J = 6.4 Hz, 3H), 0.79 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 5.7 Hz, 3H), 0.17-0.09 (m, 18H); ¹³C NMR (75 MHz, CDCl₃) & 160.0, 144.6, 144.4, 134.4, 133.0, 131.6, 131.1, 128.7, 127.7, 127.6, 127.3, 126.8, 126.7, 126.4, 113.6, 101.0, 86.7, 82.8, 81.2, 75.1, 73.3, 72.8, 66.6, 65.2, 55.2, 43.0, 42.3, 39.9, 37.9, 35.3, 35.1, 34.6, 33.4, 30.3, 26.3, 26.1, 26.0, 19.7, 19.0, 18.4, 18.1, 16.4, 14.6, 11.9, 11.1, - 2.8, -3.5, -4.0, -4.07, -4.13; LRMS (ESI) 1213.8 $[M+Na]^+$; HRMS (ESI) calcd for $C_{72}H_{114}O_8Si_3Na$ 1213.7719 $[M+Na]^+$, found 1213.7766; $[\alpha]^{20}_{D}$ -1.4 (*c* 4.7, CHCl₃).

(4*S*,5*S*)-4-[(2*R*,3*R*,6*S*,8*R*,9*R*,10*S*,11*Z*,13*S*,15*S*,16*S*,17*E*)-3,9,13,15-*tetrakis*(*tert*-Butyldimethylsilyloxy)-6,8,10,16-tetramethyl-19-(trityloxy)nonadeca-11,17-dien-2-yl]-2-(4-methoxyphenyl)-5-methyl-1,3-dioxane (68**β**).

TBSOTf (0.30 mL, 2.57 mmol) was added to a stirred solution of alcohol 678 (1.02 g, 0.86 mmol) and 2,6-lutidine (0.20 mL, 1.71 mmol) in CH₂Cl₂ (17 mL) at 0 °C and the reaction mixture was stirred for 1 h at ambient temperature. The reaction mixture was quenched by the addition of water (50 mL). The reaction mixture was extracted by CH₂Cl₂ and dried over MgSO₄ followed by the evaporation of the solution under reduced pressure. The residue was purified by short column chromatography (hexane/EtOAc 9:1) to yield product (0.97 g, 86 %) as a colorless oil: IR (CHCl₃) 2955, 2928, 2856, 1615, 1518, 1471, 1462, 1387, 1251, 1074, 1038, 835, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.46 (m, 6H), 7.45-7.42 (m, 2H), 7.35-7.22 (m, 9H), 6.92-6.89 (m, 2H), 5.86 (dd, J = 15.7, 6.0 Hz, 1H), 5.59 (dt, J = 15.7, 4.9 Hz, 1H), 5.48(m, 1H), 5.47 (s, 1H), 5.36 (dd, J = 11.1, 8.6 Hz, 1H), 4.58 (m, 1H), 4.15 (dd, J = 11.2, 4.6 Hz, 1H), 3.96 (m, 1H), 3.81 (s, 3H), 3.73-3.66 (m, 2H), 3.60 (d, J = 5.6 Hz, 2H), 3.55 (m, 1H), 3.19(m, 1H), 2.65 (m 1H), 2.42 (m, 1H), 2.07 (m, 1H), 1.91 (m, 1H), 1.57 (m, 2H), 1.40-1.21 (m, 3H), 1.14 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H), 1.04 (d, J = 5.9 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H), 0.96-0.92 (m, 36H), 0.88-0.84 (m, 3H), 0.80 (m, 1H), 0.77 (d, J = 6.5 Hz, 3H), 0.76 (d, J = 6.4Hz, 3H), 0.71 (d, J = 5.1 Hz, 3H), 0.16-0.03 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 144.6, 144.4, 134.4, 133.2, 131.7, 131.4, 128.7, 127.7, 127.2, 126.8, 126.4, 113.4, 100.4, 86.7, 81.8, 81.4, 75.0, 73.3, 72.8, 66.5, 65.2, 55.2, 43.1, 42.3, 39.7, 38.9, 35.3, 35.0, 34.0, 31.2, 30.7, 30.6, 26.2, 26.1, 26.00, 25.95, 19.5, 19.1, 18.4, 18.13, 18.10, 16.5, 14.5, 12.4, 10.6, -2.8, -3.4, -3.95, -3.98, -4.2, -4.3; LRMS (ESI) 1327.8 [M+Na]⁺; HRMS (ESI) calcd for C₇₈H₁₂₈O₈Si₄Na $1327.8584 \text{ [M+Na]}^+$, found $1327.8534; \left[\alpha\right]^{20}\text{ } +6.7 (c \ 0.65, \text{CHCl}_3).$

(2*S*,3*S*,4*R*,5*R*,8*S*,10*R*,11*R*,12*S*,13*Z*,15*S*,17*S*,18*S*,19*E*)-3-(4-Methoxybenzyloxy)-5,11,15,17*tetrakis*(*tert*-butyldimethylsilyloxy)-2,4,8,10,12,18-hexamethyl-21-(trityloxy)henicosa-13,19dien-1-ol (69**B**).

DIBALH (1.0 M in hexane, 7.4 mL, 7.4 mmol) was added to a stirred solution of TBS protected acetal **68** β (0.97 g, 0.74 mmol) in anhydrous CH₂Cl₂ (3 mL), under an atmosphere of N₂ at 0 °C dropwise. After stirring for additional 30 min at 0 $^{\circ}$ C, the reaction mixture was quenched by the careful addition of aqueous sat'd potassium sodium tartrate solution (30 mL) and stirred for 3 h at room temperature. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (20 mL). The combined organic layers were washed with brine and dried over MgSO₄ followed by the evaporation of the organic solution under reduced pressure. The residue was purified by column chromatography (EtOAc/hexane 1:9) to obtain 69B (0.94 g, 97 %) as a colorless oil: IR (CHCl₃) 3501, 2956, 2929, 2856, 1613, 1514, 1471, 1462, 1251, 1075, 835, 773, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.55-7.51 (m, 6H), 7.37-7.25 (m, 11H), 6.94-6.92 (m, 2H), 5.90 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.56-5.48 (m, 1H), 5.40 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.7, 5.9 Hz, 1H), 5.62 (dt, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 1H), 5.66-5.48 (m, 1H), 5.40 (dd, J = 15.6, 5.6 Hz, 5.6 J = 11.2, 8.5 Hz, 1H), 4.61 (m, 1H), 4.60 (s, 2H), 3.99 (m, 1H), 3.90 (m, 1H), 3.83 (s, 3H), 3.69 (m, 1H), 3.64 (d, J = 5.3 Hz, 1H), 3.53 (m, 1H), 3.31 (m, 1H), 2.99 (m 1H), 2.70 (m, 1H), 2.47 (m, 1H), 2.00 (m, 2H), 1.65-1.52 (m, 3H), 1.45-1.37 (m, 1H), 1.33 (m, 1H), 1.30 (m, 1H), 1.20 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 6.6 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H), 1.05 (d, J = 7.0 Hz, 3H), 1.01 (d, J = 6.0 Hz, 3Hz), 1.01 (d, J = 6.0 Hz), 1.01 (d, J = 61.00-0.96 (m, 36H), 0.92-0.86 (m, 2H), 0.82 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 5.5 Hz, 3H), 0.19-0.11 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 144.5, 144.4, 134.3, 133.1, 131.5, 130.5, 129.2, 128.6, 127.6, 126.8, 126.4, 113.8, 86.7, 86.0, 81.1, 75.3, 73.6, 72.8, 66.5, 65.1, 65.0, 55.1, 43.0, 42.3, 40.5, 40.0, 36.8, 35.2, 35.1, 34.0, 32.1, 30.4, 26.2, 26.1, 26.0, 25.9, 19.6, 18.9, 18.4, 18.1, 16.5, 15.8, 14.6, 9.9, -2.8, -3.4, -3.5, -3.8, -4.0, -4.2, -4.4; LRMS (ESI) 1329.8 $[M+Na]^+$; HRMS (ESI) calcd for $C_{78}H_{130}O_8Si_4Na$ 1329.8741 $[M+Na]^+$, found 1329.8778; $[\alpha]^{20}{}_D$ -9.9 (*c* 0.36, CHCl₃).

[(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*S*,17*R*,18*R*,19*S*,20*S*,21*Z*)-19-(4-Methoxybenzyloxy)-7,11,17-*tris*(*tert*-butyldimethylsilyloxy)-5-(*tert*-butyldimethylsilyloxy))-4,10,12,14,18,20-hexamethyltetracosa-2,8,21,23-tetraenyloxy]triphenylmethane (70**β**).

The alcohol 69B (0.94 g, 0.72 mmol) in CH_2Cl_2 (20 mL) was treated with Dess-Martin periodinane (0.46 g, 1.08 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (20 mL) and $Na_2S_2O_3$ (20 mL). The aqueous layer was extracted with ethyl ether (20 mL x 2) and the combined extracts were dried over anhydrous MgSO4. Filtration and concentration followed by short flash column chromatography (hexane/EtOAc 9:1) to remove Dess-Martin residue provided crude aldehyde as a colorless oil, which was used for the next reaction without further purification. To a stirred solution of the above crude aldehyde and 1-bromoallyl trimethylsilane **29** (0.89 g) in anhydrous THF (18 mL) under an atmosphere of N_2 at room temperature was added CrCl₂ (0.73 g, 5.94 mmol), and the mixture was stirred for additional 14 h at ambient temperature. The reaction mixture was diluted with hexane followed by filtration through celite. After the evaporation of the solvent under reduced pressure, the residue was purified by short silica gel column chromatography (EtOAc/hexane 1:9) as the eluent. The foregoing product in THF (40 mL) was cooled to 0 °C and NaH (95 % w/w, 0.36 g, 14.4 mmol) was added in one portion. The ice bath was removed after 15 min and the mixture was stirred for 2 h at ambient temperature. The reaction mixture was cooled to 0 °C, quenched with H₂O (5 mL), extracted with ethyl ether (20 mL x 2). The combined organic layers were washed with brine and dried over MgSO₄ followed by the evaporation of the organic solution under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc 49:1) to obtain 708 (0.81 g, 85 % for 3 steps) as a colorless oil: IR (CHCl₃) 2955, 2928, 2856, 1614, 1514, 1471, 1462, 1249, 1076, 835, 772, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.60-7.56 (m, 6H), 7.43-7.27 (m, 11H), 6.99-6.96 (m, 1H), 6.71 (ddd, *J* = 16.9, 10.6, 10.5 Hz, 1H), 6.14 (t, *J* = 11.0 Hz, 1H), 5.97 (dd, J = 15.7, 5.9 Hz, 1H), 5.82-5.77 (m, 1H), 5.74-5.70 (m, 1H), 5.68-5.62 (m, 1H), 5.61-5.56 (m, 1H), 5.46 (dd, J = 11.1, 8.6 Hz, 1H), 5.28 (d, J = 16.9 Hz, 1H), 5.20 (d, {J = 16.9 Hz, 1H), 5.20 (d, {J = 10.3 Hz, 1H), 4.66 (m, 3H), 4.05 (m, 1H), 3.86 (s, 3H), 3.76 (m, 1H), 3.69 (d, J = 5.2 Hz, 1H), 3.48 (m, 1H), 3.35 (m, 1H), 3.15 (m, 1H), 2.76 (m, 1H), 2.53 (m, 1H), 2.34 (m, 1H), 1.82 (m, 1H), 1.70-1.57 (m, 3H), 1.56-1.32 (m, 3H), 1.25 (d, J = 6.8 Hz, 3H), 1.14 (d, J = 7.1 Hz, 3H), 1.12 (m, 2H), 1.11 (d, J = 7.1 Hz, 3H), 1.08-1.03 (m, 36H), 0.98-0.90 (m, 2H), 0.86 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 5.1 Hz, 3H), 0.25-0.13 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 146.2, 144.6, 144.4, 134.5, 134.3, 133.2, 132.4, 131.4, 130.2, 129.0, 128.7, 127.7, 126.8, 126.5, 117.2, 113.7, 86.7, 84.5, 81.3, 75.1, 72.9, 66.6, 65.2, 55.1, 43.0, 42.3, 40.6, 40.2, 35.6, 35.25, 35.19, 33.9, 32.6, 30.3, 26.3, 26.1, 26.04, 25.99, 19.6, 18.9, 18.4, 18.2, 16.6, 14.7, 9.2, -2.8, -3.36, -3.4, -3.5, -3.9, -4.1, -4.4; LRMS (ESI) 1351.8 [M+Na]⁺; HRMS (ESI) calcd for $C_{81}H_{132}O_7Si_4Na \ 1351.8948 \ [M+Na]^+$, found 1351.8973; $[\alpha]^{20}_D + 0.4 \ (c \ 0.51, CHCl_3)$.

(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*S*,17*R*,18*R*,19*S*,20*S*,21*Z*)-19-(4-Methoxybenzyloxy)-5,7,11,17-*tetrakis*(*tert*-butyldimethylsilyloxy)-4,10,12,14,18,20-hexamethyltetracosa-2,8,21,23-tetraen-1-ol (71**β**).

ZnBr₂ solution (0.42 g in 5 mL CH₂Cl₂ and 0.8 mL of MeOH) was added to a stirred solution of trityl ether **70** β (0.50 g, 0.38 mmol) in MeOH (3 mL), CH₂Cl₂ (18 mL) at 0 °C dropwise for 30 min. After 4 h, the reaction mixture was quenched with saturated NaHCO₃ solution (20 mL) and extracted with Et₂O (10 mL x 2). The organic phase was separated, dried with MgSO₄ and concentrated. The residue was purified by flash chromatography (EtOAc/hexane 1:9) to yield

0.34 g of product **71β** (83 %) as a colorless oil: IR (CHCl₃) 3410, 2956, 2929, 2856, 1613, 1514, 1471, 1251, 1076, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.29 (m, 2H), 6.90-6.87 (m, 2H), 6.60 (ddd, J = 16.8, 10.6, 10.5 Hz, 1H), 6.02 (t, J = 11.0 Hz, 1H), 5.79 (dd, J = 15.6, 5.8 Hz, 1H), 5.62 (d, J = 9.3 Hz, 1H), 5.60 (m, 1H), 5.47 (t, J = 10.3 Hz, 1H), 5.32 (dd, J = 10.7, 8.9 Hz, 1H), 5.18 (d, J = 16.8 Hz, 1H), 5.10 (d, J = 10.2 Hz, 1H), 4.54 (m, 3H), 4.07 (d, J = 5.9 Hz, 2H), 3.89 (m, 1H), 3.81 (s, 3H), 3.64 (m, 1H), 3.35 (m, 1H), 3.24 (br, 1H), 3.00 (m, 1H), 2.61 (m, 1H), 2.40 (m, 1H), 1.68 (m, 1H), 1.55-1.42 (m, 3H), 1.38-1.21 (m, 3H), 1.12 (d, J = 6.7 Hz, 3H), 1.02-0.99 (m, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.94-0.89 (m, 40H), 0.79 (d, J = 6.9 Hz, 3H), 0.76 (d, J = 6.3 Hz, 3H), 0.11-0.06 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 134.9, 134.5, 133.1, 132.4, 131.5, 131.4, 129.1, 128.9, 128.7, 117.2, 113.7, 84.5, 81.3, 75.1, 72.7, 66.4, 64.1, 55.3, 42.7, 42.0, 40.5, 40.4, 35.5, 35.23, 35.20, 33.9, 32.6, 30.5, 26.3, 26.03, 26.00, 25.96, 19.7, 18.9, 18.8, 18.5, 18.2, 18.1, 16.6, 14.7, 9.2, -2.8, -3.47, -3.53, -4.03, -4.05, -4.2, -4.5, -4.7; LRMS (ESI) 1109.7 [M+Na]⁺; HRMS (ESI) calcd for C₆₂H₁₁₈O₇Si₄Na 1109.7852 [M+Na]⁺, found 1109.7898; [α]²⁰ – 2.0 (c 2.6, CHCl₃).

(2Z,4E,6S,7S,9S,10Z,12S,13R,14R,16S,19R,20R,21S,22S,23Z)-Methyl-21-(4methoxybenzyloxy)-7,9,13,19-*tetrakis(tert*-butyldimethylsilyloxy)-6,12,14,16,20,22hexamethylhexacosa-2,4,10,23,25-pentaenoate (72**β**).

The alcohol 71ß (0.34 g, 0.31 mmol) in CH₂Cl₂ (20 mL) was treated with Dess-Martin periodinane (0.20 g, 0.47 mmol). After 1 h, the mixture was quenched with saturated NaHCO₃ (5 mL) and Na₂S₂O₃ (5 mL). The aqueous layer was extracted with ethyl ether (10 mL x 2) and the combined extracts were dried over anhydrous MgSO₄. Filtration and concentration followed by short flash column chromatography (hexane/EtOAc 9:1) to remove the Dess-Martin residue provided the crude aldehyde as a colorless oil, which was used for the next reaction without further purification. To a stirred solution of *bis*(2,2,2-trifluoroethyl)-(methoxycarbonylmethyl) phosphate (0.080 mL, 0.37 mmol), 18-crown-6 (0.41 g, 1.55 mmol) in THF (6 mL) cooled to – 78 °C was added dropwise potassium *bis*(trimethylsilyl)amide (0.75 mL, 0.37 mmol, 0.5M solution in toluene). Thereafter the above aldehyde in THF (1 mL) was added and the solution was stirred for 4 h at -78 °C. The reaction mixture was quenched by addition of a sat'd NH₄Cl solution (5 mL) and diluted with diethyl ether (20 mL). The layers were separated and organic phase was washed with brine (30 mL) and dried with MgSO₄, filtered, and concentrated. The residue was purified by flash chromatography (EtOAc/hexane 1:19) to obtain (E,Z)-doubly unsaturated ester 726 (0.32 g, 90 % for 2 steps) as a colorless oil: IR (CHCl₃) 2956, 2929, 2885, 1722, 1641, 1514, 1471, 1250, 1174, 1075, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.34 (dd, J = 15.5, 11.2 Hz, 1H), 7.29-7.26 (m, 2H), 6.87-6.84 (m, 2H), 6.56 (ddd, J = 17.0, 10.6, 10.5 Hz, 1H), 6.52 (t, J = 11.4 Hz, 1H), 6.19 (dd, J = 15.5, 6.4 Hz, 1H), 5.99 (t, J = 11.0 Hz, 1H), 5.57(t, J = 10.5 Hz, 1H), 5.54 (d, J = 11.3 Hz, 1H), 5.42 (m, 1H), 5.30 (m, 1H), 5.15 (d, J = 16.8 Hz, 10.5 Hz)1H), 5.07 (d, J = 10.1 Hz, 1H), 4.51 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.61 (m, 3H), 3.92 (m, 1H), 3.32 (dd, J = 7.9, 2.8 Hz, 1H), 3.20 (m, 1H), 2.97 (m, 2H), 2.57 (m, 2H), 1.65 (m, 1H), 1.56-1.39 (m, 3H), 1.29-1.16 (m, 3H), 1.10 (d, J = 6.8 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H), 0.98 (J = 7.0 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H), 0.93-0.83 (m, 39H), 0.77 (m, 1H), 0.91 (s, 9H), 0.87 (s, 9H), 0.83 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.0 Hz, 3H), 0.13 (s, 3H), 0.76 (d, J = 6.6 Hz, 3H), 0.71 (d, J = 5.9 Hz, 3H), 0.10-0.02 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 159.0, 147.2, 145.6, 134.5, 133.1, 132.4, 131.5, 131.4, 129.0, 128.9, 126.4, 117.1, 115.1, 113.7, 84.4, 81.3, 75.0, 72.8, 72.7, 66.4, 55.2, 50.9, 42.9, 42.6, 40.5, 40.2, 35.3, 35.2, 33.8, 32.6, 30.5, 26.3, 26.0, 25.9, 19.6, 18.9, 18.8, 18.4, 18.2, 18.1, 16.7, 14.5, 9.2, -2.8, -3.4, -3.5, -3.6, -4.07, -4.14, -4.24, -4.49; LRMS (ESI) 1163.8 $[M+Na]^+$; HRMS (ESI) calcd for C₆₅H₁₂₀O₈Si₄Na 1163.7958 $[M+Na]^+$, found 1163.8004; $[\alpha]^{20}_D - 27.3$ (c 5.0, CHCl₃).

(2Z,4E,6S,7S,9S,10Z,12S,13R,14R,16S,19R,20R,21S,22S,23Z)-Methyl-7,9,13,19-*tetrakis*(*tert*-butyldimethylsilyloxy)-21-hydroxy-6,12,14,16,20,22-hexamethylhexacosa-2,4,10,23,25-pentaenoate (73**B**).

The ester 726 (0.15 g, 0.14 mmol) was added to CH_2Cl_2 (5 mL) and H_2O (0.2 mL) and DDQ (34 mg, 0.15 mmol) was added at 0 °C. After 1 h of stirring at 0 °C, the reaction mixture was quenched by adding sat'd NaHCO₃ (5 mL). The organic phase was washed by sat'd NaHCO₃ solution (3 x 10 mL) and brine, dried over MgSO₄ and concentrated. Purification by flash column chromatography (EtOAc/hexane 1:9) furnished 73ß (0.12 g, 90 %) as a colorless oil (Caution! Do not use excess DDQ. It will react with the C2-C4 diene to form Diels-Alder adducts): IR (CHCl₃) 3540, 2956, 2929, 2856, 1641, 1601, 1471, 1462, 1407, 1379, 1361, 1255, 1174, 1089, 1004, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.33 (dd, *J* = 15.5, 11.2 Hz, 1H), 6.61 (ddd, J = 16.9, 10.5, 10.4 Hz, 1H), 6.51 (t, J = 11.4 Hz, 1H), 6.17 (dd, J = 15.5, 5.9 Hz, 1H), 6.07 (t, J = 11.0 Hz, 1H), 5.54 (d, J = 11.3 Hz, 1H), 5.45-5.37 (m, 2H), 5.28 (m, 1H), 5.18 (d, J = 16.8 Hz, 1H), 5.09 (d, J = 10.1 Hz, 1H), 4.51 (m, 1H), 3.91 (m, 1H), 3.74 (m, 1H), 3.69(s, 3H), 3.45 (m, 1H), 3.23 (m, 1H), 3.76 (m, 1H), 2.56 (m, 2H), 2.29 (br, 1H), 1.68 (m, 1H), 1.56-1.41 (m, 3H), 1.34-1.17 (m, 3H), 1.02 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.90-0.84 (m, 40H), 0.81 (d, J = 5.8 Hz, 3H), 0.77 (d, J = 6.5 Hz, 3H), 0.76 (d, J = 6.5= 6.2 Hz, 3H, 0.08-0.01 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 147.3, 145.5, 135.3, 133.0, 132.3, 131.5, 129.9, 126.4, 117.6, 115.2, 81.3, 77.5, 76.7, 72.7, 66.4, 50.9, 42.9, 42.6, 40.1, 37.9, 36.1, 35.4, 35.2, 33.8, 32.2, 30.6, 26.2, 26.0, 25.9, 19.6, 19.0, 18.4, 18.10, 18.05, 17.7, 16.6, 14.4, 6.9, -2.8, -3.5, -3.6, -3.7, -4.1, -4.15, -4.21, -4.4; LRMS (ESI) 1043.7 [M+Na]⁺; HRMS (ESI) calcd for $C_{57}H_{112}O_7Si_4Na \ 1043.7383 \ [M+Na]^+$, found 1043.7433; $[\alpha]^{20}_D - 40.3$ (c 2.1, CHCl₃).

(2Z,4E,6S,7S,9S,10Z,12S,13R,14R,16S,19R,20R,21S,22S,23Z)-7,9,13,19-*tetrakis(tert*-Butyldimethylsilyloxy)-21-hydroxy-6,12,14,16,20,22-hexamethylhexacosa-2,4,10,23,25-pentaenoic acid (74**β**).

1N aqueous KOH solution (1.2 mL) was added to a stirred solution of the above 73B (0.12 g, 0.12 mmol) in EtOH (12 mL), THF (1 mL) and the mixture was refluxed gently until the ester disappeared (about 5 h) as determined by TLC analysis. The ethanolic solution was concentrated and then diluted with ether (4 mL). After the solution was acidified to pH 3 with 1N HCl solution, organic phase was separated and aqueous phase was extracted with Et₂O (2 x 5 mL). The combined organic phases were dried with MgSO₄, concentrated and used without further purification: IR (CHCl₃) 2957, 2929, 2857, 1692, 1471, 1462, 1254, 1089, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.34 (dd, J = 15.1, 11.4 Hz, 1H), 6.64 (ddd, J = 16.0, 10.8, 10.5 Hz, 1H), 6.61 (t, J = 11.2 Hz, 1H), 6.22 (dd, J = 15.4, 6.0 Hz, 1H), 6.09 (t, J = 11.0 Hz, 1H), 5.58 (d, *J* = 11.3 Hz, 1H), 5.49-5.39 (m, 2H), 5.34-5.28 (m, 1H), 5.20 (d, *J* = 16.7 Hz, 1H), 5.11 (d, *J* = 10.2 Hz, 1H), 4.55 (m, 1H), 3.95 (m, 1H), 3.76 (m, 1H), 3.50 (m, 1H), 3.27 (m, 1H), 2.81 (m, 1H), 2.58 (m, 2H), 1.71 (m, 1H), 1.57-1.50 (m, 3H), 1.44-1.31 (m, 3H), 1.25 (d, J = 7.3 Hz, 3H), 1.21 (d, J = 6.1 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H), 0.96-0.89 (m, 40H), 0.81 (d, J = 6.2 Hz, 3H), 0.79 (d, J = 5.9 Hz, 3H), 0.11-0.05 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) & 171.1, 148.1, 147.3, 135.2, 132.8, 132.3, 131.6, 129.9, 126.6, 117.6, 115.0, 81.3, 77.6, 72.7, 66.4, 58.3, 43.0, 42.6, 40.1, 37.9, 36.0, 35.4, 35.2, 33.8, 32.2, 30.6, 26.3, 26.0, 25.9, 25.2, 19.6, 19.0, 18.4, 18.09, 18.05, 17.7, 16.6, 14.5, 7.0, -2.8, -3.45, -3.54, -3.7, -4.1, -4.2, -4.4; LRMS (ESI) 1029.7 $[M+Na]^{+}$; HRMS (ESI) calcd for C₅₆H₁₁₀O₇Si₄Na 1029.7226 $[M+Na]^{+}$, found 1029.7257; $[\alpha]^{20}_{D}$ –41.7 (*c* 1.4, CHCl₃).

8(S),10(S),14(R),20(R)-tetrakis(tert-Butyldimethylsilyloxy)-7(S),13(S),15(R),17(S),21(S)-pentamethyl-22(S)-(1(S)-methylpenta-2,4-dienyl)oxacyclodocosa-3,5,11-trien-2-one (75 β).

A solution of above acid 748 in THF (2 mL) was treated at 0 °C with Et₃N (0.10 mL, 0.72 mmol) and 2,4,6-trichlorobenzoyl chloride (0.095 mL, 0.60 mmol). The reaction mixture was stirred at 0 °C for 30 min and then added to 4-DMAP (60 mL, 0.02 M solution in toluene) at 25 °C and stirred overnight. The reaction mixture was concentrated, Et₂O (10 mL) was added and the crude was washed with 0.5 N HCl (2 x 10 mL), dried over MgSO₄. Purification by flash column chromatography (EtOAc/hexane 1:49) furnished macrolactone 756 (81 mg, 68 % for 2 steps) as a colorless oil along with an impure fraction (31 mg, 21%) containing mostly the 2Z isomer of **756**: **756**, IR (CHCl₃) 2957, 2929, 2856, 1745, 1715, 1581, 1471, 1369, 1270, 1117, 1082, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.11 (dd, J = 15.3, 10.5 Hz, 1H), 6.59 (ddd, J = 16.8, 10.7, 10.5 Hz, 1H), 6.22 (dd, J = 15.4, 6.0 Hz, 1H), 6.07 (dd, J = 15.4, 10.6 Hz, 1H), 5.92 (t, J = 10.9 Hz, 1H), 5.70 (d, J = 15.4 Hz, 1H), 5.46 (t, J = 10.5 Hz, 1H), 5.35-5.27 (m, 2H), 5.20 (d, J = 8.4 Hz, 1H), 5.12 (d, J = 16.8 Hz, 1H), 5.04 (d, J = 10.3 Hz, 1H), 4.53 (m, 1H), 3.91 (m, 1H), 3.41 (m, 1H), 3.19 (m, 1H), 2.94 (m, 1H), 2.55 (m, 2H), 1.94 (m, 1H), 1.40-1.29 (m, 3H), 1.26-1.15 (m, 3H), 1.00-0.85 (m, 52H), 0.74 (d, J = 6.7 Hz, 3H), 0.63 (d, J = 6.2 Hz, 3H), 0.08-0.00 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 144.93, 144.88, 136.0, 135.0, 133.5, 132.4, 130.7, 129.3, 120.2, 117.2, 80.3, 75.7, 73.9, 72.7, 66.3, 42.4, 41.0, 40.6, 39.3, 36.5, 35.8, 35.1, 34.5, 31.9, 29.7, 26.2, 26.0, 25.9, 21.6, 19.8, 19.7, 18.4, 18.11, 18.07, 17.9, 14.9, 11.3, -2.6, -3.6, -3.8, -4.2, -4.5, -4.6; LRMS (ESI) 1011.8 [M+Na]⁺; HRMS (ESI) calcd for $C_{56}H_{108}O_6Si_4Na 1011.7121 [M+Na]^+$, found 1011.7148; $[\alpha]^{20}D - 16.9 (c \ 1.24, CHCl_3)$. 2Z isomer of **75** β , ¹H NMR (300 MHz, CDCl₃) δ 7.35 (dd, J = 11.2, 15.5 Hz, 1H), 6.63 (dt, J = 10.5, 16.8 Hz, 1H), 6.44 (t, J = 11.3 Hz, 1H), 6.01–5.80 (m, 2H), 5.57 (t, J = 10.6 Hz, 1H), 5.50 (d, J = 11.4 Hz, 1H), 5.38 (t, J = 10.3 Hz, 1H), 5.30 (dd, J = 8.5, 11.0 Hz, 1H), 5.22–5.01 (m, 3H), 4.47 (m, 1H), 3.77 (m, 1H), 3.48 (m, 1H), 3.30 (m, 1H), 2.97 (m, 1H), 2.56 (m, 1H), 2.44 (m, 1H), 1.91 (m, 1H), 1.65 (m, 1H), 1.52–0.71 (m, 63H), 0.12–0.04 (m, 24H).

8(S),10(S),14(R),20(R)-Tetrahydroxy-7(S),13(S),15(R),17(S),21(S)-pentamethyl-22(S)-(1(S)-methyl-penta-2,4-dienyl)-oxa-cyclodocosa-3(E),5(E),11(Z)-trien-2-one (76).

3 N HCl (3 mL from a solution prepared by adding 2.5 mL of conc. HCl to 7.5 mL MeOH) was added to a stirred solution of the above macrolactone 758 (81 mg, 0.082 mmol) in THF (1 mL) at 0 °C. After 24 h at room temperature, the reaction mixture was diluted with EtOAc (4 mL) and H₂O (4 mL) and the organic phase was separated and aqueous phase was extracted with EtOAc (2 x 4 mL). The combined organic phases were washed with sat'd NaHCO₃ (10 mL), dried with $MgSO_4$, concentrated and the residue was purified by flash chromatography (EtOAc/hexane 3:2) to yield the product **76** (6.6 mg, 15%) as a colorless oil: IR (CHCl₃) 3404, 2962, 2916, 1692, 1639, 1455, 1244, 1061, 1001 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 7.15 (dd, J = 15.3, 10.5 Hz, 1H), 6.64 (ddd, J = 16.8, 10.6, 10.3 Hz, 1H), 6.29 (dd, J = 15.4, 6.3 Hz, 1H), 6.22 (dd, J = 15.5, 10.5 Hz, 1H), 5.92 (t, J = 10.9 Hz, 1H), 5.72 (d, J = 15.3 Hz, 1H), 5.44-5.37 (m, 2H), 5.25 (t, J = 10.3 Hz, 1H), 5.13 (dd, J = 16.8, 1.8 Hz, 1H), 5.06 (d, J = 10.8 Hz, 1H), 5.04 (dd, J = 9.1, 1.8 Hz, 1H), 4.68 (ddd, J = 9.9, 7.2, 2.4 Hz, 1H), 3.82 (ddd, J = 9.2, 6.2, 2.7 Hz, 1H), 3.40 (ddd, J = 10.2, 6.2, 2.3 Hz, 1H), 3.06 (m, 1H), 2.99 (dd, J = 8.0, 3.3 Hz, 1H), 2.62 (m, 1H), 2.58 (m, 1H), 1.88 (m, 1H), 1.62 (m, 1H), 1.55 (ddd, J = 14.0, 10.5, 2.7 Hz, 1H), 1.38 (ddd, J = 12.3, 9.6, 2.7 Hz, 1H), 1.34-1.23 (m, 4H), 1.12 (d, J = 7.0 Hz, 3H), 1.06 (d, J = 6.9 Hz, 1.12 Hz,3H), 1.04 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H), 0.95-0.88 (m, 2H), 0.87-0.82 (m, 1H), 0.79 (d, J = 5.3 Hz, 3H), 0.68 (d, J = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 168.5, 147.7, 147.4, 135.7, 134.4, 133.6, 131.7, 130.8, 129.1, 120.7, 118.0, 80.7, 76.9, 74.2, 72.8, 65.9, 44.0, 42.5, 40.9, 39.5, 36.5, 36.3, 36.1, 35.5, 31.7, 31.2, 21.1, 19.0, 17.9, 17.7, 15.7, 11.3; LRMS (ESI) 555.6 $[M+Na]^+$; HRMS (ESI) calcd for C₃₂H₅₂O₆ 555.3662 $[M+Na]^+$, found 555.3684; $[\alpha]^{20}_{D}$ – 6.5 (c 0.17, MeOH).

(4*S*,5*S*)-4-((2*R*,3*S*,6*S*,8*R*,9*R*,10*S*,11*Z*,13*S*,15*S*,16*S*,17*E*)-3,9,13,15-*tetrakis*(*tert*-Butyldimethylsilyloxy)-6,8,10,16-tetramethyl-19-(trityloxy)nonadeca-11,17-dien-2-yl)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxane (68**α**).

The same procedure for **68** was used with above **67a** (0.60 g, 0.50 mmol), TBSOTf (0.17 mL, 0.75 mmol) and 2,6-lutidine (0.12 mL, 1.0 mmol) to yield 0.61 g (93 %) of the product by flash column chromatography (EtOAc/hexane 1:9) as a colorless oil: IR (CHCl₃) 2956, 2928, 2856, 1518, 1471, 1462, 1251, 1075, 835, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.56-7.48 (m, 8H), 7.38-7.26 (m, 9H), 6.97-6.94 (m, 1H), 5.91 (dd, J = 15.6, 5.9 Hz, 1H), 5.63 (dt, J = 15.7, 5.3 Hz, 1H), 5.58-5.50 (m, 1H), 5.52 (s, 1H), 5.41 (dd, J = 10.8, 8.6 Hz, 1H), 4.65 (m, 1H), 4.19 (dd, J = 11.1, 4.5 Hz, 1H), 4.01 (m, 1H), 3.90 (m, 1H), 3.84 (s, 3H), 3.66 (d, J = 5.0 Hz, 2H), 3.56 (t, J = 11.1 Hz, 1H), 3.36 (m, 1H), 2.71 (m 1H), 2.48 (m, 1H), 2.12 (m, 1H), 1.88 (m, 1H), 1.76-1.56 (m, 3H), 1.52-1.42 (m, 2H), 1.40-1.31 (m, 2H), 1.09 (d, J = 7.7 Hz, 3H), 1.07 (d, J = 7.5 Hz, 3H), 1.05-0.94 (m, 42H), 0.93-0.90 (m, 2H), 0.86 (d, J = 6.6 Hz, 3H), 0.81 (d, J = 6.3 Hz, 3H), 0.21-0.13 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) & 159.7, 144.6, 144.4, 134.4, 133.0, 131.9, 131.8, 128.7, 127.7, 127.3, 126.8, 126.4, 113.4, 100.8, 86.7, 81.6, 81.3, 73.4, 72.8, 72.0, 66.6, 65.2, 55.1, 43.1, 42.3, 39.7, 38.2, 35.4, 35.3, 31.3, 30.8, 30.7, 30.3, 26.2, 26.1, 26.04, 25.97, 19.5, 18.8, 18.4, 18.1, 16.6, 14.6, 12.2, 9.1, -2.8, -3.4, -3.6, -3.9, -4.0, -4.1, -4.3; LRMS (ESI) 1327.9 [M+Na]⁺; HRMS (ESI) calcd for C₇₈H₁₂₈O₈Si₄Na 1327.8584 [M+Na]⁺, found 1327.8622; $[\alpha]^{20}_{D} + 5.9$ (c 0.3, CHCl₃).

(2S,3S,4R,5S,8S,10R,11R,12S,13Z,15S,17S,18S,19E)-3-(4-Methoxybenzyloxy)-5,11,15,17tetrakis(tert-butyldimethylsilyloxy)-2,4,8,10,12,18-hexamethyl-21-(trityloxy)henicosa-13,19dien-1-ol (69**a**).

The procedure for **69β** was used with **68α** (0.61 g, 0.47 mmol), DIBALH (4.6 mL, 4.6 mmol) to yield 0.53 g (87 %) of the product by flash column chromatography (EtOAc/hexane 1:19) as a colorless oil: IR (CHCl₃) 3453, 2956, 2929, 1514, 1471, 1251, 1075, 835, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.52 (m, 6H), 7.38-7.26 (m, 11H), 6.96-6.93 (m, 2H), 5.91 (dd, J = 15.7, 6.0 Hz, 1H), 5.64 (dt, J = 15.4, 5.5 Hz, 1H), 5.55-5.50 (m, 1H), 5.42 (dd, J = 11.1, 8.4 Hz, 1H), 4.70-4.58 (m, 3H), 4.01 (m, 1H), 3.83 (s, 3H), 3.79 (m, 2H), 3.67-3.61 (m, 3H), 3.35 (m, 1H), 3.30 (m 1H), 2.72 (m, 1H), 2.48 (m, 1H), 1.93 (m, 2H), 1.76-1.55 (m, 3H), 1.51-1.26 (m, 1H), 1.10 (d, J = 6.6 Hz, 3H), 1.09 (d, J = 6.6 Hz, 3H), 1.07 (d, J = 6.7 Hz, 3H), 1.01-0.98 (m, 39H), 0.93-0.89 (m, 2H), 0.86 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 4.6 Hz, 3H), 0.21-0.13 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 144.5, 144.4, 134.3, 133.1, 131.7, 130.6, 129.1, 128.6, 127.6, 126.8, 126.7, 126.4, 113.8, 86.7, 85.1, 81.3, 74.9, 74.4, 72.8, 66.5, 65.9, 65.1, 55.1, 43.0, 42.3, 41.8, 40.1, 38.4, 35.3, 35.1, 32.8, 30.7, 30.5, 26.2, 26.1, 26.0, 25.9, 19.5, 18.6, 18.4, 18.13, 18.10, 16.5, 15.4, 14.6, 10.5, -2.8, -3.4, -3.6, -3.9, -4.0, -4.2, -4.4; LRMS (ESI) 1329.8 [M+Na]⁺; HRMS (ESI) calcd for C₇₈H₁₃₀O₈Si₄Na 1329.8741 [M+Na]⁺, found 1329.8788; [α]²⁰ – 9.8 (c 2.6, CHCl₃).

[(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*S*,17*S*,18*R*,19*S*,20*S*,21*Z*)-19-(4-Methoxybenzyloxy)-5,7,11,17-*tetrakis*(*tert*-butyldimethylsilyloxy)-4,10,12,14,18,20-hexamethyltetracosa-2,8,21,23-tetraenyloxy]triphenylmethane (70**α**).

The procedure for **70** β was used with **69** α (0.52 g, 0.40 mmol), Dess-Martin reagent (0.25 g, 0.59 mmol) and 1-bromoallyl trimethylsilane (0.49 g, 2.0 mmol), CrCl₂ (0.41 g, 3.32 mmol) and NaH (0.20 g, 8.0 mmol) to yield 0.46 g (88 %) of the product by flash column chromatography (EtOAc/hexane 1:19) as a colorless oil: IR (CHCl₃) 2956, 2856, 1614, 1514, 1471, 1249, 1074, 835, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.56 (m, 6H), 7.41-7.27 (m, 11H), 6.98-6.95 (m, 2H), 6.71 (ddd, J = 16.7, 10.6, 10.5 Hz, 1H), 6.14 (t, J = 11.0 Hz, 1H), 5.94 (dd, J = 15.6, 5.6 Hz, 1H), 5.80-5.67 (m, 2H), 5.64-5.55 (m, 1H), 5.46 (dd, J = 11.0, 8.5 Hz, 1H), 5.31 (d, J = 16.8

Shin, et al.

Hz, 1H), 5.21 (d, J = 10.2 Hz, 1H), 4.70-4.62 (m, 3H), 4.04 (m, 1H), 3.86 (s, 3H), 3.69 (d, J = 4.7 Hz, 1H), 3.34 (m, 2H), 2.96 (m, 1H), 2.77 (m, 1H), 2.51 (m, 1H), 1.93 (m, 1H), 1.78 (m, 1H), 1.75-1.63 (m, 3H), 1.57-1.31 (m, 5H), 1.21 (d, J = 6.7 Hz, 3H), 1.15 (d, J = 6.1 Hz, 3H), 1.12 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 7.3 Hz, 3H), 1.05-1.01 (m, 36H), 0.96-0.93 (m, 2H), 0.89 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 5.3 Hz, 3H), 0.25-0.11 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 146.2, 144.6, 144.4, 134.4, 134.3, 132.2, 131.3, 130.2, 129.0, 128.7, 127.7, 126.8, 126.5, 117.5, 113.7, 86.7, 84.9, 81.4, 74.9, 73.1, 72.9, 66.6, 65.2, 55.1, 43.1, 42.9, 42.3, 40.4, 35.9, 35.6, 35.3, 35.1, 34.5, 30.2, 29.4, 26.3, 26.1, 26.0, 19.6, 18.8, 18.6, 18.5, 18.2, 18.14, 18.11, 16.5, 14.7, 10.5, -1.1, -2.8, -3.0, -3.3, -3.5, -3.9, -4.2, -4.3; LRMS (ESI) 1351.8 [M+Na]⁺; HRMS (ESI) calcd for C₈₁H₁₃₂O₇Si₄Na 1351.8948 [M+Na]⁺, found 1351.8998; [α]²⁰D -9.3 (c 1.5, CHCl₃).

(2*E*,4*S*,5*S*,7*S*,8*Z*,10*S*,11*R*,12*R*,14*S*,17*S*,18*R*,19*S*,20*S*,21*Z*)-19-(4-Methoxybenzyloxy)-5,7,11,17-*tetrakis(tert*-butyldimethylsilyloxy)-4,10,12,14,18,20-hexamethyltetracosa-2,8,21,23-tetraen-1-ol (71**α**).

The procedure for 71 β was used with 70 α (0.33 g, 0.25 mmol) and ZnBr (0.28 g, 1.25 mmol) to yield 0.18 g (65 %) of the product by flash column chromatography (EtOAc/hexane 1:9) as a colorless oil: IR (CHCl₃) 3417, 2956, 2856, 1613, 1514, 1471, 1250, 1074, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.31-7.27 (m, 2H), 6.90-6.87 (m, 2H), 6.60 (ddd, *J* = 16.9, 10.6, 10.5 Hz, 1H), 6.04 (t, J = 11.0 Hz, 1H), 5.81 (dd, J = 15.7, 5.9 Hz, 1H), 5.67-5.60 (m, 2H), 5.51-5.44 (m, 1H), 5.34 (dd, J = 11.2, 8.7 Hz, 1H), 5.21 (d, J = 16.8 Hz, 1H), 5.12 (d, J = 10.2 Hz, 1H), 4.60-4.52 (m, 3H), 4.10 (d, J = 5.7 Hz, 1H), 3.91 (m, 1H), 3.81 (s, 3H), 3.59 (m, 1H), 3.31-3.23(m, 2H), 2.86 (m, 1H), 2.65 (m, 1H), 2.40 (m, 1H), 1.82 (m, 1H), 1.66-1.42 (m, 5H), 1.36-1.20 (m, 3H), 1.11 (d, J = 6.8 Hz, 3H), 1.03 (d, J = 7.3 Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6. 5.8 Hz, 3H), 0.94-0.89 (m, 38H), 0.84 (d, J = 7.2 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H), 0.13-0.00 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 135.0, 134.5, 133.2, 132.2, 131.5, 131.4, 129.1, 129.0, 128.7, 117.4, 113.7, 84.8, 81.4, 74.8, 73.1, 72.7, 66.5, 64.1, 55.2, 42.8, 42.7, 42.0, 40.4, 35.9, 35.4, 35.2, 34.4, 30.3, 29.4, 26.3, 26.03, 26.97, 25.95, 19.6, 18.7, 18.6, 18.5, 18.1, 16.6, 14.7, 10.5, -2.8, -3.4, -3.5, -4.0, -4.1, -4.2, -4.3, -4.4; LRMS (ESI) 1109.8 [M+Na]⁺; HRMS (ESI) calcd for $C_{62}H_{118}O_7Si_4Na$ 1109.7852 [M+Na]⁺, found 1109.7874; $[\alpha]^{20}D_{-15.0}$ (c 0.94, CHCl₃).

(2Z,4E,6S,7S,9S,10Z,12S,13R,14R,16S,19S,20R,21S,22S,23Z)-Methyl-21-(4methoxybenzyloxy)-7,9,13,19-*tetrakis(tert*-butyldimethylsilyloxy)-6,12,14,16,20,22hexamethylhexacosa-2,4,10,23,25-pentaenoate (72**a**).

The procedure for **72β** was used with **71α** (0.18 g, 0.16 mmol), Dess-Martin reagent (0.10 g, 0.24 mmol) and *bis*(2,2,2-trifluoroethyl)-(methoxycarbonylmethyl) phosphate (0.041 mL, 0.19 mmol), 18-crown-6 (0.21 g, 0.19 mmol) and KHMDS (0.39 mL, 0.19 mmol) to yield 0.16 g (84 %) of the product by flash column chromatography (EtOAc/hexane 1:19) as a colorless oil: IR (CHCl₃) 2956, 2929, 2856, 1721, 1514, 1462, 1250, 1174, 1074, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (dd, J = 15.4, 11.2 Hz, 1H), 7.32-7.29 (m, 2H), 6.91-6.86 (m, 2H), 6.60 (ddd, J = 17.0, 10.6, 10.5 Hz, 1H), 6.56 (t, J = 11.3 Hz, 1H), 6.23 (dd, J = 15.5, 5.9 Hz, 1H), 6.05 (t, J = 11.0 Hz, 1H), 5.68-5.56 (m, 2H), 5.50-5.43 (m, 1H), 5.38-5.31 (m, 1H), 5.23 (d, J = 16.8 Hz, 1H), 5.12 (d, J = 10.2 Hz, 1H), 4.61-4.52 (m, 3H), 3.98 (m, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 3.59 (m, 1H), 3.29-3.23 (m, 2H), 2.86 (m, 1H), 2.68-2.59 (m, 2H), 1.83 (m, 1H), 1.63-1.51 (m, 2H), 1.49-1.35 (m, 3H), 1.34-1.22 (m, 2H), 1.12 (d, J = 6.8 Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 5.0 Hz, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.94-0.89 (m, 38H), 0.84 (d, J = 6.6 Hz, 3H), 0.80 (d, J = 6.1 Hz, 3H), 0.14-0.00 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 159.1, 147.2, 145.7, 134.4, 133.2, 132.2, 131.6, 131.4, 129.2, 129.0, 126.4, 117.5, 115.2, 113.7, 84.7, 81.5, 74.9, 73.0, 72.7, 66.4, 55.2, 50.9, 42.9, 42.8, 42.6, 40.3, 35.9, 35.4, 35.2, 34.4, 30.4, 29.5, 26.3

26.03, 25.98, 19.6, 18.8, 18.7, 18.5, 18.1, 16.7, 14.5, 10.5, -2.8, -3.3, -3.5, -4.0, -4.1, -4.17, -4.22, -4.4; LRMS (ESI) 1163.8 $[M+Na]^+$; HRMS (ESI) calcd for $C_{65}H_{120}O_8Si_4Na$ 1163.7958 $[M+Na]^+$, found 1163.7981; $[\alpha]^{20}_D$ -45.3 (*c* 0.36, CHCl₃).

(2Z,4E,6S,7S,9S,10Z,12S,13R,14R,16S,19S,20R,21S,22S,23Z)-Methyl-7,9,13,19-*tetrakis(tert*butyldimethylsilyloxy)-21-hydroxy-6,12,14,16,20,22-hexamethylhexacosa-2,4,10,23,25pentaenoate (73α).

The procedure for 73 β was used with 72 α (0.16 g, 0.14 mmol) and DDQ (0.034 g, 0.15 mmol) to yield 0.13 g (90 %) of the product by flash column chromatography (EtOAc/hexane 1:19) as a colorless oil: IR (CHCl₃) 3512, 2956, 2929, 2857, 1772, 1639, 1471, 1462, 1255, 1193, 1076, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35 (dd, J = 15.4, 11.2 Hz, 1H), 6.61 (ddd, J =16.9, 10.6, 10.5 Hz, 1H), 6.53 (t, J = 11.3 Hz, 1H), 6.19 (dd, J = 15.6, 6.0 Hz, 1H), 6.09 (t, J = 11.0 Hz, 1H), 5.56 (d, J = 11.3 Hz, 1H), 5.44 (t, J = 11.0 Hz, 1H), 5.31 (dd, J = 11.0, 8.4 Hz, 1H), 5.19 (d, J = 16.8 Hz, 1H), 5.10 (d, J = 10.1 Hz, 1H), 4.55 (m, 1H), 3.94 (m, 1H), 3.71 (s, 3H), 3.25 (m, 2H), 2.75 (m, 1H), 2.58 (m, 2H), 1.72 (m, 1H), 1.67-1.60 (m, 1H), 1.59-1.49 (m, 2H), 1.40 (m, 1H), 1.32-1.25 (m, 2H), 1.22-1.13 (m, 2H), 1.04 (d, J = 7.0 Hz, 3H), 1.01 (d, J = 7.1 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.91-0.86 (m, 41H), 0.81 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 6.5 Hz, 3H) 6.0 Hz, 3H), 0.11-0.05 (m, 24H); 13 C NMR (75 MHz, CDCl₃) δ 166.8, 147.2, 145.6, 136.4, 133.2, 132.6, 131.5, 129.5, 126.4, 117.3, 115.2, 81.3, 78.6, 74.3, 72.7, 66.4, 50.9, 42.9, 42.6, 39.7, 36.2, 35.8, 35.4, 35.3, 34.1, 32.4, 30.6, 26.3, 26.0, 25.9, 19.6, 19.2, 18.5, 18.1, 18.0, 17.4, 16.7, 14.5, 10.9, -2.8, -3.4, -3.5, -4.06, -4.11, -4.2, -4.3, -4.4; LRMS (ESI) 1043.7 [M+Na]⁺; HRMS (ESI) calcd for $C_{57}H_{112}O_7Si_4Na \ 1043.7383 \ [M+Na]^+$, found 1043.7424; $[\alpha]^{20}_D - 37.8 \ (c$ 1.4, CHCl₃).

(2Z,4E,6S,7S,9S,10Z,12S,13R,14R,16S,19S,20R,21S,22S,23Z)-7,9,13,19-*tetrakis(tert*-Butyldimethylsilyloxy)-21-hydroxy-6,12,14,16,20,22-hexamethylhexacosa-2,4,10,23,25-pentaenoic acid (75**a**).

The procedure for **75β** was used with **73α** (0.13 g, 0.13 mmol) and 1N KOH (1.2 mL, 1.3 mmol), 2,4,6-trichlorobenzoyl chloride (0.094 mL, 0.60 mmol) and Et₃N (0.10 mL, 0.78 mmol), 4-DMAP (60 mL, 1.3 mmol) to yield 0.054 g (45 % for 2 steps) of the product by flash column chromatography (EtOAc/hexane 1:19) as a colorless oil: (seco acid) IR (CHCl₃) 2956, 2857, 1692, 1634, 1471, 1462, 1254, 1076, 836, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.34 (dd, J = 15.2, 11.3 Hz, 1H), 6.66 (ddd, J = 16.8, 10.8, 10.6 Hz, 1H), 6.62 (t, J = 11.3 Hz, 1H), 6.23 (dd, J = 15.3, 6.0 Hz, 1H), 6.09 (t, J = 11.0 Hz, 1H), 5.57 (d, J = 11.2 Hz, 1H), 5.48-5.42 (m, 1H), 5.35-5.28 (m, 1H), 5.20 (d, J = 16.8 Hz, 1H), 5.10 (d, J = 10.2 Hz, 1H), 4.55 (m, 1H), 3.95 (m, 1H), 3.74 (m, 1H), 3.26 (m, 1H), 2.78 (m, 1H), 2.58 (m, 2H), 1.75-1.64 (m, 2H), 1.62-1.49 (m, 3H), 1.44-1.37 (m, 1H), 1.32-1.19 (m, 3H), 1.04 (d, J = 7.0 Hz, 3H), 0.81 (d, J = 6.4 Hz, 3H), 0.95-0.86 (m, 41H), 0.82 (d, J = 7.1 Hz, 3H), 0.81 (d, J = 6.4 Hz, 3H), 0.12-0.05 (m, 24H); ¹³C NMR (75 MHz, CDCl₃) & 171.5, 148.3, 147.4, 136.4, 133.1, 132.6, 131.5, 129.5, 126.6, 117.3, 115.0, 81.3, 78.6, 74.3, 72.7, 66.4, 43.0, 42.7, 39.7, 36.2, 35.8, 35.5, 35.3, 34.1, 32.4, 30.6, 26.3, 26.0, 25.94, 25.92, 19.6, 19.2, 18.5, 18.1, 18.0, 17.4, 16.7, 14.5, 11.0, -2.8, -3.4, -3.5, -4.1, -4.25, -4.32, -4.7; LRMS (ESI) 1029.7 [M+Na]⁺; HRMS (ESI) calcd for C₅₆H₁₁₀O₇Si₄Na 1029.7226 [M+Na]⁺, found 1029.7252; [α]²⁰D -32.7 (*c* 0.51, CHCl₃).

8(S),10(S),14(R),20(S)-Tetrahydroxy-7(S),13(S),15(R),17(S),21(S)-pentamethyl-22(S)-(1(S)-methyl-penta-2,4-dienyl)oxacyclodocosa-3(Z),5(E),11(Z)-trien-2-one (37) and 8(S),10(S),14(R),20(S)-Tetrahydroxy-7(S),13(S),15(R),17(S),21(S)-pentamethyl-22(S)-(1(S)-methyl-penta-2,4-dienyl)oxacyclodocosa-3(E),5(E),11(Z)-trien-2-one (77).

The procedure for 76^β was used with 75^α (0.054 g, 0.054 mmol) in 3N HCl (5 mL) and THF (2 mL) to yield 13 mg (45 %) of 37 and 4.5 mg (15 %) of 77 by flash column chromatography (EtOAc/hexane 7:3) as a colorless oil: (37) IR (CHCl₃) 3416, 2961, 2927, 2873, 1692, 1635, 1455, 1421, 1379, 1190, 1086, 998 cm⁻¹, ¹H NMR (600 MHz, CD₃OD) δ 7.26 (dd, J = 15.2, 11.3Hz, 1H), 6.65 (ddd, J = 16.8, 10.6, 10.3 Hz, 1H), 6.56 (t, J = 11.3 Hz, 1H), 5.97 (t, J = 10.9 Hz, 1H), 5.91 (dd, J = 15.2, 9.3 Hz, 1H), 5.49 (d, J = 10.7 Hz, 1H), 5.42 (t, J = 8.6 Hz, 1H), 5.20 (t, J = 10.4 Hz, 1H), 5.15 (dd, J = 16.9, 1.3 Hz, 1H), 5.08 (d, J = 10.1 Hz, 1H), 5.05 (dd, J = 9.6, 1.3 Hz, 1H), 4.62 (ddd, J = 11.5, 7.7, 4.3 Hz, 1H), 3.65 (ddd, J = 10.0, 7.3, 3.1 Hz, 1H), 3.07 (dd, J = 10.0, 7.3, 3.1 6.7, 4.0 Hz, 1H), 3.01 (m, 1H), 2.66 (m, 1H), 2.26 (m, 1H), 1.90 (m, 1H), 1.66 (ddd, J = 11.5, 8.4, 3.4 Hz, 1H), 1.49 (ddd, J = 14.1, 10.0, 4.0 Hz, 1H), 1.45 (m, 1H), 1.38 (m, 1H), 1.32 (m, 1H), 1.32 (m, 1H), 1.32 (m, 1H), 1.33 (m, 1H 1H), 1.27 (m, 1H), 1.11 (d, J = 6.7 Hz, 3H), 1.06 (m, 1H), 1.03 (ddd, J = 11.3, 7.2, 4.4 Hz, 3H), 1.01 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.93 (m, 1H), 0.89(m, 1H), 0.85 (d, J = 6.7 Hz, 3H), 0.75 (d, J = 5.9 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 168.1, 148.7, 146.6, 135.7, 134.0, 133.7, 132.9, 131.1, 128.2, 118.0, 117.0, 80.9, 78.4, 74.4, 72.4, 66.3, 46.4, 43.4, 42.5, 40.9, 36.3, 35.90, 35.88, 35.7, 31.8, 31.5, 19.9, 19.3, 18.3, 17.5, 8.5; LRMS (ESI) 555.3 $[M+Na]^+$; HRMS (ESI) calcd for $C_{32}H_{52}O_6$ 555.3662 $[M+Na]^+$, found 555.3680; $[\alpha]^{20}_{D}$ +76.5 (*c* 0.52, MeOH): (77) IR (CHCl₃) 3428, 2962, 2928, 1690, 1635, 1380, 1243, 1145, 1064, 1000 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ 7.20 (dd, J = 15.2, 10.8 Hz, 1H), 6.65 (ddd, J = 17.0, 10.6, 10.5 Hz, 1H), 6.38 (dd, J = 15.5, 5.4 Hz, 1H), 6.23 (dd, J = 14.4, 10.9 Hz, 1H), 5.95 (t, J = 11.0 Hz, 1H), 5.77 (d, J = 15.3 Hz, 1H), 5.40-5.39 (m, 2H), 5.23 (t, J = 10.5 Hz, 1H), 5.13 (d, J = 18.1 Hz, 1H), 5.12 (dd, J = 8.2, 1.5 Hz, 1H), 5.07 (d, J = 10.2 Hz, 1H), 4.66 (m, 1H), 3.90 (ddd, J = 7.6, 5.1, 2.5 Hz, 1H), 3.22 (dd, J = 9.8, 7.9 Hz, 1H), 3.04 (m, 1H), 2.95 Hz(dd, J = 9.7, 2.1 Hz, 1H), 2.72 (m, 1H), 2.65 (m, 1H), 1.83 (m, 1H), 1.58 (m, 1H), 1.46 (m, 1H), 11.35-1.23 (m, 4H), 1.05 (d, J = 6.8 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.94 (m, 2H), 0.78 (m, 1H), 0.71 (d, J = 6.4 Hz, 3H), 0.68 (d, J = 6.5Hz, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 169.4, 147.5, 147.4, 135.9, 134.3, 133.7, 131.0, 128.9, 120.0, 118.0, 80.5, 78.5, 72.6, 72.0, 65.2, 43.6, 42.6, 42.1, 39.3, 36.3, 35.8, 35.6, 35.3, 31.4, 29.7, 19.3, 18.5, 17.4, 17.1, 14.8, 9.0; LRMS (ESI) 555.5 $[M+Na]^+$; HRMS (ESI) calcd for $C_{32}H_{52}O_6$ 555.3662 $[M+Na]^+$, found 555.3687; $[\alpha]^{20}_{D}$ –17.3 (*c* 0.15, MeOH).

¹ Phukan, P.; Sasmal, S.; Maier, M. E. Eur. J. Org. Chem. 2003, 1733.

F2 - Acquisition Parameters 55.600 use 9.60 USE 8992.806 Hz 3.6438515 set 6.00 USE 0.137219 Hz 12.00000000 set 0.00 dB 600.8336050 MHz ï 600.8300272 MH; 290.0 K - Processing parameters 8.000 ppr 0.10 Hz EU 4806.64 Hz 0.000 ppr 0.40000 ppr 0.00 Hz 240.33200 Hz Current Data Parameters y55479 14.55 spect 65536 CD2C12 29 32 TBI 1H/ 10 == CHANNEL f1 H 20.00 Σ 0 0 00 65536 10 NMR plot parameters CX 20.00 F1P 8.000 шш ŋ TD SOL VENT INSTRUM PUL PROG **DHOBHD** PROCNO Date_ FIDRES EXPNO -----NAME Time HMS NUC1 PL 1 SF01 PPMCM NS DS HZCM AG DW DE D1 D1 51 SF WDW SSB F2P Ы 892 Ē 52 \$8777.0 0.2054 3.3802 7.0607 7.0607 7.0602 72887.0-71888.0· 0.89922 297K, 06779.0 07686.0 19266.0 £6£00.1 600.83 MHz 1H NMR spectrum of YSS479 in CDC13 at 57810.1. 18870.1 SE090.1 1.2055 11466 ٠ţ 1.0021 15639 · ţ 1021.0 56329 ٦, P701.0 SE83S.1 1245 0 1.61200 0.4623 791873 ۲. 1.0355 2278.0 97858 · ľ 2.05445 8066.0 45181.S 9446.0 96860'E-ÞE83.0 d1=12 sec., 17501.E 1.0125 9969E . E 3.84025 G7E2.0 4.12471 1531.0 4.13660 779E.0 E1510.2 0.7254 21910.C 5.02698 \$11E0.2 Ê 1.1044 66570.2 1261.1 5.09293 1.0252 5.1433S 2534 0 -5.27126 -5.26120 -5.26120 ITBE.0 6598.0 8149.0 572865.3 5728555 0.2159 E119.0 05805.2 1.0192 89582.č 1188.0 Þ5030.2 1.1269 E88E1 . 3 19724.8. 95974.8 15582.0 1.0000 6.61093 7.27002 32 of 55 wdd bpm Integral

155

-

· New York

37 of 55

41 of 55

wdd

Isngafni 🗧

Current Data Parameters NAME yss629-ft]	PROCND 1	F2 - Acquisition Parameters	Time 19.45	INSTRUM spect	PROBHD 5 mm TBI 1H/	PULPROG ZG TD EEE2E	SOLVENT MEDH	NS B	D SD	SWH 8992.806 Hz	AN 3 6438515 SE	RG 40	DW 55.600 usec	DE 6.00 usec	TE 290.0 K	01 12 0000000 SPC		CHANNEL f1	NUC1 1H	P1 9.00 usec	PL1 0.00 dB	SF01 600.8336050 MHz	F2 – Processing parameters	SI 65536	SF 600.8300180 MHz	MDM		PC 1.00	1D NMR plot parameters	CX 20.00 cm	F1P 11.000 ppm	F2P	F2	PPMCM 0.60000 ppm/cm HZCM 360.49802 Hz/cm
yss629 cdc13 298K 600MHz 1H delay 12sec 5/27/04 ft1	2729 1110 1225 1225 1225 1225 1225 1225 1225											HO CO.Me		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	HO OH	1208																		
	ш	dd											4	6	of	5	5														[e	JDag	'nI	T widd

lengejni 🛛 🖉

urrent Data Parameters AME yss629-ft1 XPNO 2 ROCNO 1	2 - Acquisition Parameters ate20040604 ime 11.30 NSTRUM spect ROBHD 5 mm TBI 1H/ ULPROG c13wonce D 65536 OLVENT CDC13	8399 8399 AH 37878.789 AH 37878.789 IDRES 0.577984 0 0.577984 13.200 usec 13.200 usec 20.00 usec 13.200 usec 13.200 usec 1 0.00100000 1 0.00100000	Cd CANNEL f1 Cd 13C 13.50 usec 1 0.00 dB 01 151.0953827 MHz	CC2 CHANNEL F2 F2 ODPRG2 waltz16 111 CC2 141 100.00 PDD2 100.00 Usec .12 12.00 08 .12 12.00 08 .12 500.8336050 MHz	 Processing parameters 65536 65536 65536 MAz 451.0786153 MHz MHz	NWR plot parameters 20.00 cm 225.000 ppm 33992.69 Hz -15.000 ppm -2266.18 Hz 4CM 12.00000 ppm/cm XM 1812.94336 Hz/cm
3266	R B L A E E E S E	225522222222 2255222222222222222222222	19778 1977		EB SSIO	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
yss629 cd3od 29BK 151MHz 13C 1H decp delay Bsec 6/3/04 ft1	шqq		· · · · · · · · · · · · · · · · · · ·			

47 of 55

Current Data Parameters NAME yss652-2-ft1 Evonn	PROCNO 1 F2 - Acquisition Parameter: Date_ 20040702	lime 11.44 INSTRUM spect PROBHD 5 mm TBI 1H/	PULPROG 29 TD 65536	SULVENI CUZUZ NS DS	SWH 8992.806 Hz	AQ 3.6438515 Set	RG 10 DW 55.600 use	DE 6.00 USE TE 290 0 K	D1 12.0000000 set	======== CHANNEL f1 ==:	NUC1 1H	PL1 9.00 USF 0.00 dB	SF01 600.8336050 MH;	F2 - Processing parameters er	SF 600.8300180 MH;	MDW EM	SSB 0 10 H7 LB 0 10 H7	GB 0	PC 1.00	1D NMR plot parameters	CX 20.00 cm	F1P 8.000 ppr F1 4806 64 H2	F2P 0.000 ppr	F2 0.00 Hz	PPMCM 0.40000 ppr HZCM 240.33200 Hz,
yss652-2 cd3od 298K 600MHz 1H delay 12sec 7/2/04 ftl	0, 75356 0, 75356 0, 75356 0, 75356 0, 93354 1, 01674 1, 02787 1, 02787 1, 02787 1, 1003 1, 10				HO	HOI,		of	11				~?									日本 137 137 137 137 137 137 137 137			
							51		00											1		[61	Dedni		D.

[engedni =

Current Data Parameters NAME yss652-2-ft1 EXPN0 2 PHOCN0 1	HO. OF HO. OF	121 121 A0 0.8651252 sec RG 0.8651252 sec RG 32768 DW 13.200 usec DE 6.00 usec TE 290.0 K D1 8.00000000 sec D3 0.00100000 sec	====== CHANNEL f1 ====== NUC1 13C P1 13.50 usec P1 13.50 usec PL1 151.0953827 MHz	======== CHANNEL f2 ====== CPDPHG2 walt216 NUC2 1H NUC2 100.00 USEC PCPD2 100.00 dB PL12 00.018 PL12 600.8336050 MHz	F2 - Processing parameters SI 65536 SF 151.0786118 MHz MDW EM SSB 0 LB 1.00 Hz CB 0 CB 0 CB 0 CB 0 CB 0 CB 0 CB 0 CB 0	1D NMR plot parameters CX 20.00 cm F1P 200.000 ppm F1 30215.72 Hz F2P 0.000 ppm F2P 0.000 ppm F2 10.00000 ppm/cm H2CM 1510.78613 Hz/cm
13C 1H decp delay Bsec 7/2/04 ftl	29.86 35.59 36.03 36.03 48.92 48.92 48.92 48.93 48.93 49.07 40.07 40					
2-2 cd3od 298K 151MHz	22.741 35.741 35.251 36.350 561 36.351 56.15					140
yss652	mqq 75.871		52 of 55	-		ррта 180 150
