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The temperature of chilled foods is an important variable for controlling microbial growth in a production
and distribution chain. Therefore, it is essential to model growth as a function of temperature in order to
predict the number of organisms as a function of temperature and time. This article deals with the correct
variance-stabilizing transformation of the growth parameters A (asymptotic level), F. (specific growth rate),
and A (lag time). This is of importance for the regression analysis of the data. A previously gathered data set
and model for the effect of temperature on the growth of LactobaciUus plantarum (M. H. Zwietering, J. T. de
Koos, B. E. Hasenack, J. C. de Wit, and K. van 't Riet, Appl. Environ. Microbiol. 57:1094-1101, 1991) is
extended with new data. With the total data set (original and new data), a variance-stabilizing transformation
is selected in order to determine which transformation should precede fitting. No transformation for the
asymptote data, a square root for the growth rate, and a logarithmic transformation for the lag time were found
to be appropriate. After these transformations, no significant correlation was found between the variance and
the magnitude of the variable. Model corrections were made and model parameters were estimated by using
the original data. With the new data, the models were validated by comparing the lack of fit of the models with
the measurement error, using an F test. The predictions of the models for ,u and A were adequate. The model
forA showed a systematic deviation, and therefore a new model forA is proposed.

Temperature is a major factor determining the progress of
many food deterioration reactions. For microbial spoilage,
the effect of temperature on the specific growth rate (p,) and
the lag phase (X) is important. Various models are used to
describe the effect of temperature (6). Models often are
compared only with the data on which the model is fitted
(measured versus fitted) and are only rarely validated with
new data (measured versus predicted). Yet such validation
can provide useful information about the accuracy and
predictive value of the models.
The effect of temperature on growth rate is often modeled

after a transformation (square root or logarithm). This trans-
formation, however, changes the distribution of errors.
Unweighted regression may only be performed if the vari-
ance is independent of the magnitude of the growth rate.
Therefore, it is of great importance to determine which type
of transformation gives a constant variance. Ratkowsky (3)
used multiple measurements at each temperature to calcu-
late the variance. He advises the use of a square root
transformation to stabilize variance for the growth rate (or
[generation time]05) and a logarithm for the lag phase
duration. Alber and Schaffner (1) used the in-experiment
error (no replicates) to calculate the variance and recom-
mended the use of a logarithmic transformation to stabilize
the variance of the growth rate. In our earlier article (6), the
growth rate and the asymptote (A) were modeled without
transformation because the variance seemed to be equally
distributed in that particular data set. The lag time was fitted
after a logarithmic transformation, since this transformation
stabilized the variance.
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It is clear that different opinions exist. In order to estimate
the variance, at least duplicate measurements at each tem-
perature are needed. With an extensive data set, which
transformations stabilize the variances ofA, p.m, and A over
a large range were examined.

First, variance-stabilizing transformations were selected
forA, PM., and X (independent at any model). After transfor-
mation of the data, models for the effect of temperature on
A, p,U,, and X were fitted. With a new set of data, these
models were tested. Finally, all data together were used to
update the models.

THEORY

Description of experimental bacterial growth rate data.
Growth curves are defined as the logarithm of the relative
population size [ln (N/NO)] as a function of time. A sigmoidal
growth model (modified Gompertz) with three parameters
can describe the growth curve (7) at a given temperature:

(1)ln (N/No) = A exp {-exp[!m-ies(. - t) + 1]}

where A is the asymptotic level ln(NJN0), Um is the maxi-
mum specific growth rate (per hour), X is the lag phase
duration (hours), t is time (hours), and e is exp(1).

Selection of variance-stabilizing transformations. In order
to determine which transformation should precede fitting,
variance-stabilizing transformations must be selected. At
one temperature, Ti, a total number, mi, of replicate curves
are measured. In our case, mi does not have the same value
at different temperatures. The variances ofA, p.m, and X are
calculated at each temperature by using the mean values of
the measured data. Then the model for the best prediction of
the y value (A, t,u or X) at a certain temperature can be
proposed that is defined as the mean value y(i) of the
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196 ZWIETERING ET AL.

TABLE 1. Parameter values and models for the effect of temperature (1) on the asymptote (A), growth rate (lLm),
and lag time (X) for L. plantarum in MRS mediuma

Parameter Model and equation Variable Value

Asymptote Ratkowsky 4, A = b4 (1 - exp [c4(T - Tmax4)I} b4 () 8.46b
C4 (°C- 1) 1.25
Tm.4 (°C) 43.1

Growth rate Ratkowsky 3, Am,,, = [b3 (T - Tmin3)12 {1 - exp [c3 (T - Tmax3)]} b3 (aC-1 h-05) 0.0410
Tmin3 (OC) 3.99
C3 (°C-i) 0.161
Tm.,3 (°C) 43.7

Lag time Hyperbola,c In (X) = (T ) p (h) 23.9

q (°C) 2.28

aData are from Zwietering et al. (6).
b Parameter b4 depends on the inoculation level according to the equation b4 = 21.58 - ln (No).
c p is a measure for the decrease in the lag time with temperature, and q is the temperature at which the lag time is infinite (no growth).

measured y values at that temperature. This model is called
the general model:

y(i m= 2 - (2)
j= 1 Mi

wherey is A, pu, or X; y(ij) is the jthy value at Ti, andy(i) is
the mean y value at Ti.
The variance at temperature Ti is calculated at tempera-

tures for which more than one observation is obtained, with:
m,

RSSi = z [y(i, j) _ g(i)]2
j=1

2 =
RSSi

Si2 = DF (3)

where RSSi is the residual sum of squares at Ti, DFi is the
degrees of freedom at Ti (equals mi - 1), and si2 is the
residual variance at Ti.
According to Ratkowsky (3), the variance ofA, p.m, and X

can be plotted against the mean value as well as the variance
divided by the mean, the square of the mean, and the cube of
the mean in order to determine the appropriate transforma-
tion. If the variance is dependent on the mean, models
should be fitted after transforming the data or by using
nonnormal error assumptions. If the variance divided by the
mean shows no correlation, a square root transformation is
suitable [var(Vyi) = var(yj)/4yj]. If the variance divided by
the square of the mean shows no correlation, a logarithmic
transformation is suitable to correct for heterogeneity of
variance [var(ln [yj) = var(yi)/yi ].
As an alternative procedure, the variances ofA, p.m, and X

are calculated after carrying out the transformation (the
variance of the transformed data). Then the variances of the
untransformed data, of the square root, and of the logarithm
of the data are plotted against the mean.
To quantify correlation (for both of the abovementioned

methods), linear regression is carried out and the correlation
coefficient is calculated. With Student's t test, it can be
examined whether there is a correlation:

tstud - Vr - r2 (4)

where tstud is Student's t value, r is the correlation coeffi-
cient, and n is the number of observations.

It should be noted that linear regression is used, although the
relations will not be linear. This gives a global indication of the
correlation and not an exact value. If there is no linear
correlation, this does not mean that there is no other correla-
tion. Visual inspection of the variance data is also crucial.

Growth-temperature relations. After transforming the A,
p.U, and X data, the effect of temperature on these variables
can be modeled. The previously proposed models for the
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FIG. 1. Variance (var), ofA, variance ofA divided by the mean,
and variance ofA divided by the square of the mean, plotted against
the mean ofA.
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FIG. 2. Variance (var) of p., variance of ,. divided by the mean,
and variance of p, divided by the square of the mean, plotted against
the mean of p.

effect of temperature on the asymptote (A), growth rate (p,m),
and lag time (X) with parameter values are given in Table 1.
The hyperbolic model for the lag time has the complication

that the lag time at higher temperature approaches asymptoti-
cally to 1 (the logarithm of the lag time approaches zero). This
is of course an arbitrary value, and it is independent of the unit
in which the lag time is expressed. This is an undesirable
imperfection of the hyperbolic model. Furthermore, it can be
assumed that the lag phase increases at temperatures higher
than the optimum, which can also be seen in the data. The
hyperbolic model, however, does not show such behavior.
Therefore, the previously proposed reciprocal of the Rat-
kowsky model (equation 6) is reconsidered, since this model
overcomes these two problems. However, this model contains
four parameters. This can be overcome by assuming that the
Tmjn5 and Tma. values, and possibly also the c5 value, are

equal to the parameters of the equation describing the growth
rate (Tminj2, Tma,2, and c2; equation 5),

,u = (b2(T - Tmin) {1 - exp [C2(T - Tmax2)D) (5)

ln(A) = ln [(b5(T - Tmin5)

{1 - exp [c5(T - Tmax5)]})] (6)

where b2, c2, b5, and c5 are regression coefficients, Tmin2 and
Tmax2 are the minimal and maximal temperatures for the
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FIG. 3. Variance (var) of divided by the mean and divided by

the square and the cube of the mean, plotted against the logarithm of
the mean of X.

growth rate, respectively, and Tmin5 and Tma^ are the mini-
mal and maximal temperatures for the lag time, respectively.
Comparison of the models. The models are validated

statistically with the use of the F ratio test. With the general
model (equation 2), the measurement error is estimated by
determining the deviation of the measured values from the
mean value at one temperature. The cumulative sum of
squares of the deviations between the data and the general
model is calculated for all temperatures (RSSg):

k

RSSg = 2 RSSi
i= 1

(7)

k mi

= z [y(i, j) - y(i)]2 (general model)
i = lj = 1

wherey(i, j) is the jthy value at Ti, y(i) is the meany value at
Ti, and k is the total number of different temperatures
measured.
The sum of squares of the deviations between the data and

the value predicted by a particular growth-temperature
model (RSSm) is calculated as:

k mi

RSSm = , [y(i, j) - 9(i)

i = 11j= 1

(growth-temperature model)

where y(i) is the model prediction at temperature Ti.

(8)
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TABLE 2. Results of determination of the correlation coefficient
by performing linear regression of the variance data as a function
of the mean of the data over the suboptimum temperature range

Pa- Ratkowsky procedure (3) Alternative procedure

eter Testa tstud Transfor- r tstudvaluec mation value

A Var 0.0305 0.118 None 0.0305 0.118
Var/mean -0.00440 -0.0171 V/i4 -0.0178 -0.0689
Var/mean2 -0.0442 -0.171 ln (4A -0.0686 -0.266
Var/mean3 -0.0900 -0.350 1/VA 0.123 0.478

,. Var 0.672 3.51 None 0.672 3.51
Var/mean 0.0375 0.145 \/i 0.0176 0.0681
Var/mean2 -0.357 -1.48 In (A) -0.671 -3.51
Var/mean3 -0.299 -1.22 1/Vp. 0.848 6.19

X Var 0.998 60.9 None 0.998 60.9
Var/mean 0.978 18.1 WA 0.975 17.0
Var/mean2 0.146 0.573 ln (k) 0.331 1.36
Var/mean3 -0.238 -0.949 1/iV 0.321 1.31

a Var, variance; var/mean, variance divided by the mean; var/mean2,
variance divided by the square of the mean; var/mean3, variance divided by
the cube of the mean.

b Correlation coefficient.
I The 95% critical Student's t test value for 15 degrees of freedom is 2.13.

Values in boldface type indicate no significant correlation.

RSSm will always be larger than RSSg. The RSSm of the
growth-temperature model consists of both the measurement
error and the lack of fit; therefore, the difference between the
RSSm of the model and the RSSg (the sum of squares due to
the measurement error) is calculated as an estimate of the
lack of fit. If the mean square of the lack of fit [(RSSm -
RSSg)/(DFm - DFg)] is of the same order of magnitude as
the mean square of the measurement error (MSerror), the
model is adequate. This comparison between the lack of fit
and the measurement error can be quantified statistically by
the f test value:

(RSSm - RSSg)/(DFm - DFg)
MSerror

tested against Fm Dg (9)

where DFg is the number of degrees of freedom due to the
residual variance, which equals the total number of obser-
vations minus the number of different temperatures mea-
sured; DFm is the number of degrees of freedom from the
growth-temperature model that equals the number of obser-
vations minus the number of estimated parameters; and
MSerror is the mean square of the measurement error with
DFerror degrees of freedom.

MATERIALS AND METHODS

Microbial experiments. In 60 experiments at 17 different
temperatures, Lactobacillus plantarum (American Type
Culture Collection [ATCC] determined; no ATCC number)
was cultivated in MRS medium (Difco Laboratories). The
culture was stored frozen (-16°C). The bacteria were culti-
vated twice at 30°C, for 24 h and for 16 h. These preincuba-
tions were performed to get the organisms in a reproducible
condition. Growth was monitored in 20-ml tubes, each
containing 10 ml of MRS medium and inoculated with the
(preincubated) test organism to reach a target initial titer of

TABLE 3. Parameter estimates of the Ratkowsky model
for the vii data

95%
Parameter Estimate Confidence Model

interval

b2 (OC-l h-0-5) 0.0385 0.0343-0.0427 \; = b2(T - Tmin2)
Tmin2 (°C) 3.37 1.60-5.13 {1 - exp [c2(T - Tm.2)]}
c2 (OC-1) 0.256 0.175-0.336
Tm.2 (°C) 44.7 44.145.4

5 x 105 CFU/ml. The test tubes were incubated statically at
different temperatures from 6 up to 40°C as follows (temper-
atures in degrees centigrade and number of experiments in
parentheses): 6.0 (1); 8.9 (1); 9.8 (7); 10.0 (5); 11.9 (1); 14.0
(1); 14.9 (6); 15.2 (5);-16.7 (3); 18.2 (1); 19.8 (6); 20.2 (7); 24.8
(7); 25.0 (6); 30.0 (1); 34.9 (1); and 40.8 (1). At appropriate
time intervals (depending on the temperature), the inocu-
lated cultures were vortexed, and 0.1-ml samples were
removed for serial dilution in sterile peptone saline solution
(1 g of Bacto-Peptone [Difco] and 8.5 g of NaCl [Merck p.a.]
per liter). The number of bacteria was determined on a pour
plate (MRS medium with 12 g of agar [Agar Technical, Oxoid
Ltd.] per liter). The pour plates were incubated for 48 h at
30°C before bacteria were counted.

Fitting of data. The model equations were fitted to the data
by nonlinear regression with a Marquardt algorithm (6, 7).

RESULTS AND DISCUSSION

Selection of variance-stabilizing transformations. The pre-
viously measured data set (38 growth curves, from Zwieter-
ing et al. [6]) was extended with new data (60 growth
curves). Of this total data set (98 growth curves), only the
subset of growth parameters (A, ,u, and X) up to 35°C (80
growth curves at 17 different temperatures) were used to
determine the variance at different temperatures. This subset
is used because, above the optimum temperature (35°C), the
variances are much larger than below the optimum, since
growth decreases rapidly, resulting in large errors. These
variances cannot be reduced by carrying out a transforma-
tion. With this subset, the variance is analyzed to find which
transformations for A, ,u, and X are necessary: none, a
square root, or a logarithm. The variance at different tem-
peratures as a function of the mean value of the variable is
given in Fig. 1, 2, and 3. Furthermore, the variances divided
by the mean, by the square of the mean, and by the cube of
the mean are given, according to the procedure proposed by
Ratkowsky (3). For these data, the correlation coefficient
was determined by performing a linear regression of the
variance data. With Student's t test, it was determined
whether correlation was significant. The results are given in
Table 2.

TABLE 4. Statistical test of the Ratkowsky model
for the \,u dataa

Model No. of DF RSS MS f Fparameters

Ratkowsky 4 34 0.125 0.00367
LOF 14 0.023 0.00162 0.317 2.2
General 18 20 0.102 0.00511

a LOF, lack of fit; DF, degrees of freedom; RSS, residual sum of squares;
MS, mean square; f, MSLOF/MSgenera1; F, F table value (95% confidence).

APPL. ENvIRON. MICROBIOL.
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TABLE 5. Parameter estimates for the In (X) models

Parameter' Estimate interval Model

p (h) 23.9 19.1-28.7 p
q (°C) 2.28 1.19-3.37 in ( T)= )(mode 1)

b5 (°C-1 h-0.5) 0.0274 0.0240-0.0308
Tmin5 (OC) 3.37 Fixed In (X) = - 21n b5(T - 3.37) {1 - exp [C5(T - 44.7)]}) (model 2)
C5 (°C-1) 0.373 0.228-0.518
Tma.5 (°C) 44.7 Fixed

b5 (°C-1 h-0 5) 0.0299 0.0268-0.0329
Tmin5 (OC) 3.325 Fixed In (X) = - 21n (b5(T - 3.37) {1 - exp [0.256(T - 44.7)]}) (model 3)
c5 ("C'1) 0.256 Fixed
Tma.5 (°C) 44.7 Fixed

a See Table 1, footnote c.

Additionally, theA, ,u, and X data are transformed (square
root, logarithmic, and reciprocal root transformations) and
the variances of the transformed data are calculated (alter-
native procedure). A linear regression is also performed with
these data. These regression data with Student's t test values
are also given in Table 2.

Figure 1 shows that the variance of the asymptote (A)
shows no clear correlation with the mean. This also holds for
the variance divided by the mean and divided by the square
of the mean. This is confirmed in Table 2, where it can be
seen that with both methods (Ratkowsky [3] and an alterna-
tive procedure), no significant correlation is found for all
cases. Therefore, it can be concluded that no transformation
should be used for the asymptote data.

In Fig. 2, it can be seen that the variance of the growth rate
(p,) shows a positive correlation with the mean. The variance
divided by the mean shows no clear correlation, and the
variance divided by the square of the mean shows a negative
correlation. In Table 2, it can be seen that the variance of the
growth rate is indeed significantly correlated with the mean.
The variance divided by the mean, divided by the square of
the mean, and divided by the cube of the mean shows no
significant correlation. If the growth rate data are trans-
formed (alternative procedure), all cases give a significant
correlation except for the square root transformation. There-
fore, the square root transformation was chosen to stabilize
the variance of the growth rate data.

In Fig. 3, it can be seen that the variance of the lag time (X)
divided by the mean shows a positive correlation with the
logarithm of the mean (because of the large range of lag time
values, a logarithmic transformation is used in these graphs).
The variance divided by the square of the mean shows no

correlation, and the variance divided by cube of the mean
shows a negative correlation. In Table 2, it can be seen that
the variance and the variance divided by the mean shows a
significant correlation. If the lag time data are transformed
(alternative procedure), no transformation and a square root
transformation give a significant correlation. The logarithm
and reciprocal root transformation give no significant corre-
lation. Therefore, the logarithmic transformation was chosen
to stabilize the variance of the lag time data.
Model update. Now that the correct stabilizing transfor-

mations for A, p,, and A have been found, the parameter
values of the previously proposed models (6) can be up-
dated. For the asymptote (A), no transformation was used in
our former model development, and now it has been shown
that transformation is not necessary. Therefore, the model
and model parameters determined from the original data set
remain unchanged (Table 1). The square root transformation
is the best transformation to stabilize the variance of the
growth rate data (p.). Therefore, the model should be fitted to
the square root of the data. The results of fitting the
previously measured data (6) to the square root relation are
given in Table 3. The lack of fit of the model is compared
with the measurement error, and the square root relation
was accepted on basis of the F test (Table 4).

For the lag time data (A), the logarithmic transformation
stabilizes the variance and was already used (Table 1).

11*(

10 -

TABLE 6. Statistical tests for the In (X) models'

Model no.
No. of DF RSS MS f Fparameters

Model 1 2 36 9.70 0.269
LOF 1 16 2.00 0.125 0.325 2.2
Model 2 2 36 12.65 0.351
LOF 2 16 4.95 0.309 0.803 2.2
Model 3 1 37 14.03 0.379
LOF 3 17 6.33 0.372 0.967 2.2

General 18 20 7.70 0.385

a See Table 4, footnote a.
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TABLE 7. Parameter values and models for the effect of temperature on the asymptote (A), growth rate (I'm)' and lag time (A) for L.
plantarum in MRS medium based on original data set (6)

Parameter Model and equation Variable Value

A Ratkowsky 4, A = b4{1 - exp [c4(T - Tm.4)]} b4 H 8.46
c4 (OC-1) 1.25
Tm.4 (OC) 43.1

A'm Ratkowsky, \/'m = b2(T - Tmin2) {1 - exp [C2(T - Tmax2)]} b2 (OC-i h-05) 0.0385
Tmin2 (°C) 3.37
c2 (0C-1) 0.256
Tm.2 (OC) 44.7

X Reciprocal atkowsky, n (X) = - In (b5(T - Tmin5) {1 - exp [c5(T - Tmax5)]}) b5 (OC-i h-0°5) 0.0299

Tmin5 (°C) 3.37
c5 (OC-1) 0.256
Tma5 (°C) 44.7

However, the previously proposed reciprocal of the Rat-
kowsky model (equation 6) was also tested. If it is assumed
that the Tmin5 and Tma values are equal to the Tmin2 and
Tma,2 values of the equation describing the growth rate
(equation 5), this model also contains two parameters. If the
c5 value is also fixed, the model contains only one parame-
ter. The results of fitting the previously measured lag time
data to the hyperbolic model and reciprocal square root
relation are given in Table 5. The reciprocal Ratkowsky
model with all parameters fixed (equation 10) except for b is
accepted by the F test (Table 6):

= b2(T -

x = b5(T -

Tmin2) *{1 - exp [C2(T - Tmax2)]})

(5)

Tmnin2) {1 - exp [C2(T -
-2

Tmax2)]}

/b22 1

b5 1.

A

10 -

O-

5 -

0

This result indicates that the lag time is reciprocally propor-
tional to the growth rate. This has been suggested by
Simpson et al. (4). Similar results for the Tmin value for the
growth rate and lag time are also given by Chandler and
McMeekin (2) and Smith (5). The multiplication of the
growth rate and lag time is given in Fig. 4. This graph shows
that the growth rate and the lag time are reciprocally
proportional (except for one point) over a large range of
growth rate values. This model now contains only one
parameter and predicts a lag time increase at higher temper-
ature.
The updated models and parameter values, based on the

previously measured data (6), are given in Table 7.
Model validation. Now the updated model (based on the

earlier 38 experiments) can be used to predict the newly
measured data (60 growth curves measured at 17 different
temperatures). The newly measured growth parameters are
plotted with the predictions in Fig. 5, 6, and 7. The growth
rate is transformed with a square root, and the lag time is
transformed with a logarithmic transformation. From these
graphs, it can be concluded that the curves predicted from
the parameter estimates obtained for the earlier data set (6)
are not inconsistent with the A, ,u, and A values that were
obtained from the new (independent) data set. For the

VFy

0.5

0

T (0C)
FIG. 5. New asymptote data and model predictions ( ) based

on previous data.

T (°C)

FIG. 6. New growth rate data and model predictions ( )
based on previous data.
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TABLE 8. Results of the F test comparing new data and modela

Test A VTjm In (A)

RSSerror 31.3 0.125 14.0
DFeffor 35 34 37
MSerror 0.895 0.00367 0.379

Ratkowsky 4 Ratkowsky Hyperbola (Ratk)-

RSSg (DFg = 43) 9.79 0.0269 2.39 2.39
RSSm (DFm = 60) 59.0 0.0425 13.1 10.4
LOF (DFLOF = 17) 49.2 0.0157 10.8 8.00
MSLOF 2.90 0.000921 0.633 0.470
f 3.24 0.251 1.67 1.24

a RSS, residual sum of squares; DF, degrees of freedom; MS, mean square;
error, error of previous data; RSSg, RSS of general model (mean of repli-
cates); RSSm, RSS of model prediction; (Ratk)-1 reciprocal Ratkowsky model
(equation 6); LOF, lack of fit (RSSm - RSSg);f, MSLOF/MSe,.Or. F table value
(95% confidence), F34- 2.00.

growth rate data, the residuals show no trend. However, the
lag time data and the asymptote data show some discrepan-
cies (the residuals are not randomly distributed around
zero). It should be noted that the new data were all obtained
at temperatures below 40°C. Therefore, the models are only
validated within the range from 6 to 40°C. Furthermore, it
should be noted that the new data in Fig. 5, 6, and 7 are
compared with predictions obtained by using parameter
values determined with other data (no fitting).
The lack of fit of the models is compared with the

measurement error by the F test (Table 8). The mean square
of the lack of fit must be tested against the mean square of
the measurement error. The measurement error is estimated
by calculating the deviation of the first set of data with the
growth model (6). The lack of fit of the new data is calculated
by subtracting the RSS of the growth-temperature model
(RSSm with DFm = 60 - 0 = 60 [number of observations
minus number of estimated parameters]) and the RSS due to
the residual variance (RSSg with DFg =60 - 17 = 43 [total
number of observations minus number of different tempera-
tures measured]).
From this statistical test, we can conclude that for the

growth rate data and the lag time data, the deviation between
the model prediction and the data is of the same order as the
measurement error. The reciprocal Ratkowsky model had a

8-

6

4-

o
0 10 20 30 40

T (0C)

FIG. 7. New lag time data and reciprocal Ratkowsky model
( ) and hyperbolic model ---) predictions based on previous
data.

better predictive ability (in this case) than the hyperbola
model.
For the asymptote data, however, there is a significant

deviation between the model and the data (this can also be
seen globally in Fig. 5).
Parameter update. Now that the model has been tested,

the parameters can be updated by using all the data together.
The parameter values were updated by using all 98 growth
curves. The final parameter values are given in Table 9. By
comparing the parameters in Table 9 (parameters based on

98 growth curves) and Table 7 (parameters based on 38
growth curves), it can be seen that the update resulted in
only small changes. The results are shown graphically in Fig.
8 to 10.
Asymptote model. It is shown that there is a systematic

deviation between the model and the asymptote data (Fig. 5
and 8 and Table 8). Therefore, another model was at-
tempted. The following model is proposed:

A = a
(T - Tmin6) (T - Tmax6)

(11)
(T - b6) (T - C6)

TABLE 9. Parameter values and models for the effect of temperature on the asymptote (A), growth rate (LJ),
and lag time (A) for L. plantarum in MRS medium, final parameter values based on full data set

95% Confidence
Parameter Model and equation Variable Estimate interval

A Ratkowsky 4,A = b4 {1 - exp [C4(T - Tm.4)]} b4 () 8.83 8.63-9.02
c4 (oC-1) 1.05 0.679-1.43
Tm.4 (°C) 43.2 42.9-43.4

lLm Ratkowsky, \IT. = b2(T - Tmin2) {1 - exp [C2(T -Tm2)]} b2 (OC-1 h-0.5) 0.0385 0.0368-0.0402
Tmin2 (OC) 3.29 2.63-3.95
c2 (OC-1) 0.247 0.207-0.288
Tma.2 (°C) 44.8 44.4-45.2

A Reciprocal Ratkowsky, In (A) = b5 ('C-1 h-0.5) 0.0276 0.0263-0.0289

-21n (b5(T - Tmin5) {1 - exp [C5(T - Tmax5)]}l) Tmin5 (OC) 3.29 Fixed
c5 (0C-1) 0.247 Fixed
Tma.5 (°C) 44.8 Fixed
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A 12

10

T(°C)
FIG. 8. All asymptote data and updated model fit ( ). Solid

squares are outlyers.

In this model, parameter b6 must be somewhat lower than
Tmin6 and c6 must be a little higher than Tm,.6 (b6 and c6

being the temperatures at which the asymptote will reach
minus infinity). The results of fitting this equation are given
in Table 10. The datum points indicated with a solid box in
Fig. 8 are not taken into account, since these data deviate
widely (outside the 99% prediction interval). The rejection of
three points out of 98 seems justified.

It can be seen in Table 11 that the Ratkowsky 4 model is
rejected on the basis of the F test and the newly proposed
model is accepted. The confidence interval of Tmin6 includes
the Tmin2 value of the growth rate data (Tables 9 and 10), so
this value can be fixed. The confidence interval of Tm~,6 does
not include the Tmn,2 value of the growth rate data. With a

fixed Tmin6 value, the model is also accepted by the F test,
and this model is shown graphically in Fig. 11. It shows a

decrease in the asymptote values (number of cells ultimately
produced) at extremes of temperatures. These effects may
result from a relative increase in the maintenance energy at
low growth rates. If more energy is consumed for mainte-
nance, a lower cell number will be reached. The decline at
low temperatures was mentioned in our previous article (6)
but could not be proven statistically with 38 observations.

V 1.2-

0.8

0.6-

0.4-

0 10 20 30 40

T(C)
FIG. 9. All growth rate data and updated model fit ( ).

With the current 95 observations, this effect is shown to be
statistically significant.

Conclusions. It has been shown with 80 growth curves

(curves at suboptimum temperatures) for L. plantarum at 17
different temperatures that the asymptote can best be mod-
eled without transformation, the growth rate with a square
root transformation, and the lag time with a logarithmic
transformation. The choice of the transformation is of emi-
nent importance for the regression analysis of the data.
The previously proposed lag time model has the compli-

cation that the lag time at higher temperatures approaches an

arbitrary value of 1, whereas at higher temperatures, it can
be assumed that the lag phase increases. Therefore, the
previously proposed reciprocal of the Ratkowsky model
(equation 6) seems better. For this reason, the hyperbolic
model is replaced by the reciprocal Ratkowsky model.
The models are validated with new data (60 growth curves

at 17 different temperatures). The growth rate data are very
well predicted. The reciprocal Ratkowsky model appears to
be somewhat better than the hyperbolic model for prediction
of the lag phase duration and has the desired ability to
increase at higher temperatures. The asymptote data are

reasonably well predicted by the Ratkowsky 4 model, but at

TABLE 10. Parameter estimates of the asymptote models

Parameter Estimate 95% Confidence interval Model

b4 (-) 8.80 8.62-8.99 b4{1 - exp [c4(T - Tm.4)]} (model 1,
c4 (0C-1) 1.06 0.711-1.41 Ratkowsky 4)
Tm.,4 (OC) 43.2 42.9-43.4

a (-) 10.8 9.83-11.7 (T - Tm)in(T - Tm.6)
Tmin6 (°C) 2.20 -1.51-5.92 a (model 2)
Tm-6 (°C) 43.1 42.9-43.2 (T - b6)(T -c6)
b6 (°C) -0.352 -6.11-5.41
C6 (°C) 43.7 43.4-44.1

a (-) 10.5 10.1-11.0 (T - 3.29)(T - Tmax6)
Tmin6 (0C) 3.29 Fixed a*
Tm.6 (OC) 43.1 42.9-43.2 (T - b6)(T -c6)
b6 (°C) 1.29 0.770-1.82 (model 3)
C6 (°C) 43.7 43.4-44.0
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FIG. 10. All lag time data and updated reciprocal Ratkowsky
model ( ) and hyperbolic model(--. ) fit.

low temperatures, there is a systematic deviation. There-
fore, another model (equation 11) is proposed which de-
scribes the behavior at low temperatures much better. The
decline at low temperatures can now be proven statistically
with the current 95 observations. For kinetic predictions, the
lag time and the growth rate are the most important param-
eters.

A

10~~~~~~~~~1

6

4

2

0
15 25

FIG. 11. All asymptote data and new mod

35 45

T (°C)
[el fit ( ).

TABLE 11. Statistical test of the asymptote modelsa

No. of
Model no. parame- DF RSS MS f F

ters

Model 1 3 92 65.4 0.711
LOF 1 26 46.1 1.77 6.08
Model 2 5 90 32.3 0.359
LOF 2 24 13.0 0.543 1.86 2.0
Model 3 4 91 32.6 0.359 I
LOF 3 25 13.4 0.536 1.84

General 29 66 19.2 0.292

a See Table 4, footnote a.
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