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Denitrification has been known for more than a century and
is widely recognized as a key process in the biogeochemical
nitrogen cycle. It is the major mechanism that converts com-
bined nitrogen, the form available to eukaryotes, to dinitrogen
gas, thereby completing the nitrogen cycle. In recent years,
denitrification has taken on added importance for the follow-
ing reasons. First, it is a major source of NO and N20, gases
that are of focal importance to atmospheric ozone destruction
and to global warming. Indeed, N20 concentrations in the
atmosphere have been increasing at 0.2 to 0.3% per year for at
least 20 to 30 years (44), and N20 along with CO2 and CH4 are
the most important gases thought to be driving climate change.
More recently, significant fluxes of NO from soils to the
atmosphere have been measured (13), raising questions about
the microbial sources of this gas. Second, denitrification is
important to waste treatment as a means of both removing
excess nitrate and stimulating carbon removal when aeration is
difficult. In the latter case, there is increased interest in using
nitrate to drive pollutant bioremediation in aquifers (33),
because nitrate is more water soluble and mobile in soil than is
oxygen. Third, denitrification below the rooting zone has been
largely ignored, but recent evidence shows that it is important
to an understanding of the carbon, nitrogen, and mineral
cycling in the vadose zone, aquifers, and deeper geological
formations. Fourth, the discovery that NO is a key chemical
signal in a variety of mammalian functions, including the cell
killing function of macrophages, neurotransmission, and con-
trol of smooth muscle, led to NO being named 1992 Molecule
of the Year by Science magazine (37). Whether microbial
colonizers of mammals play any role in production or con-
sumption of bioactive NO is unknown. Similarly, whether there
is any mechanistic insight to be gained by comparing microbial
and mammalian NO binding or transformation is just begin-
ning to be explored. These reasons all speak to the importance
of gaining a basic understanding of denitrification. This review
summarizes recent advances in the physiology, biochemistry,
and genetics of the central steps in denitrification, nitrite and
nitric oxide reduction.

NITRIC OXIDE AS AN INTERMEDIATE IN
DENITRIFICATION

One of the most important recent developments in denitri-
fication has been the elucidation of the pathway from NO2- to
N20. Several models had been proposed for this conversion,
but it is now clear that at least in most denitrifiers reduction of
NO2- occurs in two enzymatic steps, with NO as an obligatory
intermediate. Thus, four enzymatic steps are now thought to be
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required to convert nitrate to dinitrogen gas during denitrifi-
cation. The current understanding of this pathway and the
organization of its enzymes with respect to the cell membrane
in gram-negative bacteria are summarized in Fig. 1. The
overall organization of denitrification in gram-positive bacteria
has not been well studied.
Two main hypotheses have guided denitrification pathway

research over the past decade. One hypothesis stated that
conversion of NO2- to N20 might be carried out entirely by
nitrite reductase via a process in which an enzyme-bound
nitrosyl (NO') formed by dehydration of N02- underwent
nucleophilic attack by a second nitrite to form enzyme-bound
N203 (3). This hypothesis is referred to as the direct pathway,
since NO is not an obligatory free intermediate. The other
hypothesis describes a sequential pathway involving two en-
zymes, nitrite reductase and nitric oxide reductase, with NO as
a free intermediate (NO2 -->NO->N2O). This classical hy-
pothesis is known as the indirect pathway. NO was suggested as
an intermediate in 1910, but it was not until Payne's 1973
review that evidence was sufficient to hypothesize its pathway
stature (43b). The understanding of the role of NO was
preliminary, and further studies raised doubts about whether
NO was a free intermediate (3, 20, 56). Only in the past few
years has it become clear that NO is an obligate intermediate
in respiratory denitrification, at least for most denitrifiers. The
key evidence is as follows. (i) Nitric oxide reductases have
finally been isolated and characterized (8, 14, 28). (ii) Nitrite
reductases have been shown to produce NO as the major
product (9, 36, 57). (iii) Nir- mutants have been prepared and
shown to reduce NO to N20 (59, 60, 68). (iv) Nor- mutants
have been prepared and shown to accumulate NO, making the
Nor- phenotype lethal (6). (v) Measurement of steady state
levels under various conditions and trapping studies have
shown NO to possess the properties of a kinetically competent
intermediate (5, 24-26, 63). (vi) H2180 exchange studies have
demonstrated the existence of an electrophilic NO-derived
species that exchanges oxygen with H2180 during reduction of
NO as well as NO2- (62), explaining results previously attrib-
uted solely to the nitrite reductase. Key evidence is discussed
below.
NO is the major product of dissimilatory reduction of

nitrite. Purified nitrite reductases studied so far produce NO as
the major product, with N20 as a minor product (9, 36, 57).
Most of the N20 produced can, however, be abolished by
chelators such as EDTA, suggesting chemical conversion of
NO to N20 by trace amounts of Fe contamination (58, 66).
Triton X-100 was also shown to inhibit NO reduction in crude
extracts of several denitrifiers, and when assayed with nitrite,
80 to 95% of the nitrogen was recovered as NO (46). To
quantify the amount of NO diffusible out of the cell during
reduction of nitrite or nitrate, extracellular deoxyhemoglobin
trapping (24) and gas sparging (63) were used. Most of the
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FIG. 1. Denitrification pathway in gram-neg
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MECHANISM OF NO REDUCTION

The biological evidence described above clearly shows that,
at least in most organisms and under most conditions, NO is a
free intermediate in the denitrification pathway. This implies
that NO reductase is able to convert two molecules of NO to
one of N20, although the chemical mechanism remains un-
clear. Previous studies on the reduction of nitrite by the heme
cdl nitrite reductase have demonstrated the formation of an
electrophilic nitrosyl complex, E-NO+, by 180 exchange with
H2`80 and by trapping with nucleophiles (36). More recent
studies on the mechanism of NO reduction by crude extracts
and whole cells showed similar characteristics: (i) exchange of
oxygen with H218O, resulting in production of N2180 (62); (ii)
a decrease in 180 exchange with increased electron flux; (iii)
trapping of an NO-derived species with nucleophilic com-
pounds; and (iv) 180 exchange with H2180 into the NO pool to
give N180 (58). These findings suggest the formation of an
electrophilic enzyme-bound nitrosyl species, E-NO+, during
dissimilatory reduction of NO but do not demonstrate whether
such a species is an intermediate in N20 formation or whether
it is due to a side reaction that is suppressed by increasing the
supply of reductant (62).
The realization that NO, as a denitrification intermediate,

can undergo 1O exchange was unexpected and raises ques-
tions about previous studies on the mechanism of N=N bond
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known), then it is possible that the observed H2,8O exchange
results from a small population of the oxidized heme Fe2+-
NO' center in equilibrium with the Fe2+-NO" species but that
this reaction has nothing to do with the active site chemistry.
Further work to distinguish among these possibilities as well as
those previously suggested (62) is clearly necessary.

n+
Fe-OH2 + N20

FIG. 2. Possible mechanism for reductive coupling of two NOs to
form N,O at a nonheme Fe site in NO reductase.

formation from nitrite (21, 56). Those studies utilized crude
extracts or whole cells, and consequently it is impossible to
determine whether the observed l 0 exchange and nitrosyl
trapping occurred during the reduction of NO2- to NO or

during the reduction of NO to N20. Thus, interpretation of
these previous experiments in terms of exclusive formation of
N20 by the nitrite reductase is probably not valid.

Indirect evidence has been presented for the existence of the
nitroxyl anion, NO-, as an intermediate in NO reduction by
the NO reductase of Paracoccus denitrificans (54). Since it is
known that NO-, once formed, rapidly dimerizes to produce
N2O (52), this proposal suggests that the N=N bond of N20 is

formed by a spontaneous nonenzymatic chemical reaction
following a one-electron reduction of NO by NO reductase.
Although potentially attractive, this proposal has one major

problem. If the active site of NO reductase is a heme iron
center (either the heme c or heme b), then it is not clear how
a heme Fe2'NO - species can be produced on thermodynamic
grounds. Available data indicate that the potential for reduc-
tion of heme Fe2+-NO0 species to the Fe2+-NO - state is in
the range of -0.9 V and does not depend greatly on either the
nature of the heme or the identity of the ligand trans to the NO
(16a, 43a). Typical reductants in vitro or in vivo are succinate
(+0.03 V) and ascorbate (+0.06 V), which are thermodynam-
ically incapable of producing an intermediate at - 0.9 V,
especially when the potential for reduction of NO to N2O is
+ 1.18 V. In contrast, the potential for the heme Fe2+-NO+/
Fe2+-NO0 couple ranges from ca. +0.39 to -0.02 V, well
within the physiologically accessible range. Thus, it is not clear
how an NO reductase can generate NO - coordinated to a

heme, which is energetically uphill, during the thermodynam-
ically favorable reduction of NO to N20. There is, however,
evidence from EPR spectroscopy for formation of an iron
nitrosyl complex by the NO reductase (65).

In view of this difficulty with NO - as an intermediate, we

have considered alternative mechanisms. Reductive coupling
of two NO molecules to N20 at a heme center could appear to
be ruled out by the difficulty in coordinating two NO molecules
on the same side of the heme plane (3). Reductive coupling of
NO at nonheme metal centers has ample precedent in orga-
nometallic chemistry (32, 42), and it has been shown that NO
can be converted to N20 chemically by Fe2+ in assay systems
for nitrite and nitric oxide reductases (58, 66). The two NO
reductase preparations reported to date contain substantial
amounts of tightly bound nonheme iron. Thus, one potentially
attractive possibility is reductive coupling of NO at a nonheme
iron active site (Fig. 2). In this model, the cytochrome c and b
centers would act as electron transfer sites for donation of
electrons to the nonheme active site. If, as seems likely, the
heme centers can also bind NO (as do virtually all cytochromes

ENZYMOLOGY OF NITRITE REDUCTION

Cu-containing nitrite reductases. Denitrifiers with Cu-dNirs
constitute one-third of the numerically dominant isolates from
soil (1 1, 18). Most of the Cu-dNirs cross-react with polyclonal
antibodies raised against the Cu-dNirs, suggesting that most
Cu-dNirs share substantial similarity (11, 41).
The nitrite reductase from Achromobacter cycloclastes is the

one best studied (15, 23). The enzyme is a trimer with a

molecular mass of 36 kDa per monomer and two copper atoms
per monomer. The amino acid sequence (15) and 0.23-nm
X-ray stucture (23) reveal that the two copper atoms in the
monomer constitute one type 1 ("blue") copper site and one

putative type 2 ("non-blue") copper site. The type 1 copper is
bound by residues within the monomer, but the type 2 copper

is bound by residues from each of two monomers of the trimer.
It had been suggested that the active site of Cu-dNirs is the
type 1 copper, since only type 1 copper was detected in the
Cu-dNirs isolated from P. aureofaciens (67) and Alcaligenes
xylosoxidans (40) and the type 1 site was found to be reduced
upon the addition of NO (53). The following evidence, how-
ever, strongly suggests that the type 2 copper center constitutes
the active site of the enzyme. (i) Nitrite binds to the type 2
copper site, not to the type I Cu (23). (ii) Type 2 Cu can be
removed from the enzyme, resulting in essentially no activity.
The reconstituted enzyme shows a linear correlation between
the type 2 Cu content and activity (38). (iii) Ascorbate oxidase
has a type 2 Cu in its active site, and its location in the protein
is very similar to that in the Cu-dNir from Achromobacter
cycloclastes (23). (iv) The amino acid sequence of the Cu-dNir
from P. aureofaciens (one of two strains in which type 2 Cu was

not detected in purified protein) reveals the presence of a type
2 copper-binding site (22). Type 2 copper appears to be
relatively weakly held by its ligands and thus may be lost easily
from the enzyme during purification. The role of type 1 Cu
seems to be to accept electrons from the physiological electron
donor and pass them to the type 2 copper active site, similar to
the postulated relationship between the heme c and heme d,
sites in the cytochrome cdl-dNir.
Cytochrome cd1dNir. Cytochrome cd,-dNirs have been

found in most (ca. two-thirds) of the denitrifiers studied but in
fewer genera than contain the Cu-dNirs (11). These enzymes
consist of two identical subunits with molecular masses of 60
kDa, each containing one heme c prosthetic group covalently
linked to the polypeptide chain and one heme d, moiety
noncovalently associated with the protein (29, 57). Antibodies
raised against the cd,-dNir from Pseudomonas aeruginosa
cross-react strongly with many other cd,-dNirs (11). Heme c

binding ligands (34, 49, 57) are located near the N terminus of
the protein, but the heme d, binding domain remains to be
defined. Heme d, is unique to denitrifiers that contain the
heme-type nitrite reductases (10). An apoprotein lacking the
heme d, could be reconstituted with synthetic heme d1 (57).
All of these cd,-dNir gene sequences reveal the presence of a

signal peptide, in agreement with the location of these enzymes
in the periplasm (34, 49).

-Fe N.
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GENETICS OF NITRITE REDUCTION

Characterization of genes involved. An operon containing
the cd,-dNir structural gene (nirS) has been studied in P.
stutzeri (34, 50), P. aeruginosa (49), and P. fluorescens (59). The
first gene in this operon is the nitrite reductase structural gene,
nirS. Immediately downstream are nirM, encoding cytochrome
C551 (2, 43), and nirC (ORF5), encoding an unknown heme
protein in P. aeruginosa (2) and P. fluorescens (69). In P.
stutzeri, nirT, encoding an unknown tetraheme protein, and
nirB, encoding cytochrome c552, are inserted between nirS and
nirM (34). Apart from those in the nir operon, a gene(s)
responsible for heme d, synthesis (nirD) has been identified
(68). Cosmid mapping and Southern hybridization revealed a
close linkage of the genes involved in nitrite, nitric oxide, and
nitrous oxide reduction (7).
Much less is known about the genes involved in nitrite

reduction in organisms that contain Cu-dNirs. The structural
gene for Cu-dNir (nirU) has been isolated from Pseudomonas
sp. strain G-179 (61) and P. aureofaciens (22). The deduced
amino acid sequences of both proteins appear homologous to
that found for the protein from Achromobacter cycloclastes.
When the nirU gene from Pseudomonas sp. strain G-179 was
used as a probe, it hybridized to the DNA of most of the
Cu-dNir-containing denitrifiers tested but not to the DNA of
organisms containing a cdl-dNir (except for P. stutzeri JM300).
Thus, the structural gene sequence must be similar in many of
the organisms that contain Cu-dNirs.

Regulation of gene expression. Denitrification occurs under
oxygen-limiting conditions (<10 IpM 02), except in rare but
interesting organisms such as Thiosphaera pantotropha (4)
(now reclassified as Paracoccus denitrificans [39]). The FNR
protein is essential for the expression of genes involved in
fumarate and nitrate reduction under anaerobic conditions in
Escherichia coli and other enteric bacteria (51). The conserved
symmetrical sequence, TTGATN4ATCAA (FNR box), is lo-
cated upstream of the FNR-dependent genes and operons. It
has been shown that anr (for anaerobic regulation of arginine
deiminase and nitrate reduction) encodes a protein that exhib-
its structural and functional similarity to the FNR protein from
E. coli (45, 64). ANR- strains lack the ability to utilize arginine
and nitrate under anaerobic conditions. ANR acts on the
consensus FNR box to regulate gene expression for the
arginine deiminase pathway under anaerobic conditions in P.
aeruginosa (17, 19). Putative FNR boxes have been found in
the promoter regions of many genes involved in denitrification
(12, 31, 35, 50, 55, 61). We have recently obtained an ANR-
deletion mutant of P. aeruginosa (PAO6261) from D. Hass and
found that this mutant failed to grow on nitrate, nitrite, and
nitrous oxide under anaerobic conditions, whereas the wild-
type strain grew normally on these substrates. Furthermore,
crude extracts from the mutant induced under anaerobic
conditions had little nitrite reductase and nitric oxide reduc-
tase activities, whereas extracts from the wild type had a much
higher level of both activities. All of this evidence suggests that
an ANR plays a global role in regulation of denitrification
under anaerobic conditions in P. aeruginosa.

Environmental and physiological studies have shown that
substrates for the denitrification pathway, such as nitrate,
nitrite, and N20, are required for the full expression of
enzymatic activities. This finding has been supported recently
by studies at the gene level. It was found that cells grown on
arginine anaerobically in the absence of nitrate had a lower
level of expression of the nir operon than cells grown under
anaerobic denitrifying conditions with nitrate as the electron
acceptor (1). This experiment suggests that the N oxide

substrates activate the transcription of the genes involved in
nitrite reduction.

CONCLUSIONS

The major recent advance has been to establish that nitric
oxide is an intermediate in the denitrification pathway. NO
reduction appears to involve a nitrosyl intermediate (E-NO+),
possibly making this step mechanistically similar to NO2-
reduction. The Cu-dNir is now better understood. Both type 1
Cu and type 2 Cu are required for activity. The steps of nitrite
and nitric oxide reduction appear to be linked genetically and
functionally, since mutations in one step affect the enzymatic
activity of the other. Furthermore, a low level of intermediate,
NO, is generated during denitrification, consistent with the
channeling mechanism of these two steps. Regulation of
denitrification by oxygen may be under the control of an
FNR-like protein.

Several issues about nitrite and nitric oxide reduction need
to be resolved. (i) The mechanism of NO reduction is poorly
understood, which is important since this is the step in which
the N=N bond is formed. (ii) Since NO fluxes from ecosystems
are of global atmospheric significance, it is particularly impor-
tant to gain an understanding of how nitrite reductases and
nitric oxide reductases are organized and function as a unit,
because this is likely to be critical to the amount of NO lost
from the cell, and hence from ecosystems. (iii) Very little
information is available on the regulation of denitrification, yet
this is the key factor that determines when and where denitri-
fication occurs. The model of FNR and substrate regulation in
enteric bacteria seems to be an appropriate starting point.
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ADDENDUM

During review of this article, a minireview by Zumft ap-
peared on the role of nitric oxide in bacteria (65). The reader
is referred to this paper for a more lengthy treatment of some
of the subjects mentioned above.
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