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The nucleotide sequence of an endo-0-i,4-glucanase gene of Clostridium acetobutylicum contained two
putative extended promoter consensus sequences, a Shine-Dalgarno sequence and a TTG initiation codon. The
nucleotide sequence of the gene coding for the C-terminal region of this enzyme was not required for activity.
Extensive homology in the nucleotide and amino acid sequences of the endoglucanase genes from C.
acetobutylicum and Bacillus spp. was demonstrated.

Clostridium acetobutylicum strains, which have been used
for the production of acetone and butanol (9), produce
endo-P-1,4-glucanases (1, 11) and xylanases (10, 12, 13).
Previously, we described the cloning of an endoglucanase
gene and a xylanase gene from C. acetobutylicum P262 and
their expression in Escherichia coli (23, 24); here, we report
the nucleotide sequence of the endoglucanase gene.
The DNA sequences of both strands of plasmids contain-

ing the cloned endoglucanase gene were determined by the
dideoxynucleotide chain-termination method of Sanger et al.
(19) with templates prepared from DNA subcloned in M13 or
pUC vectors (22). Computer analysis of DNA and protein
sequences was performed by using MicroGenie (Beckman).
The DNA sequence contained an open reading frame encod-
ing 448 amino acids with a calculated Mr of 49,354 (Fig. 1).
The nucleotide sequence of the C. acetobutylicum endo-

glucanase gene did not contain an in-frame ATG start codon.
The putative ribosome-binding site resembled that reported
for the 3-lactamase gene from Staphylococcus aureus (15)
and consisted of a TTG initiation codon and a strong
Shine-Dalgarno complementarity containing 5 G-C base
pairs situated 8 base pairs upstream of the initiation codon.
The G+C content of the nucleotides within the open

reading frame (32.8%) was higher than that within the
upstream regulatory region (19.9%). The average G+C ratio
for the genome of C. acetobutylicum is approximately 28%
(3). Codon usage was strongly biased towards codons in
which A and U predominated.
The cl-oned endoglucanase gene from C. acetobutylicum

was expressed from its own promoter in E. coli (23). The
region upstream of the open reading frame, between nucle-
otides -221 and -175, contained a putative promoter se-
quence which consisted of a TTGTATT -35 region and a
TACAAT -10 region separated by 16 nucleotides (Fig. 1).
This promoter consensus sequence resembled the extended
consensus sequence of the a4 RNA polymerase recognition
site of Bacillus subtilis and of other gram-positive bacteria
(6). A second putative extended promoter consensus se-
quence was situated immediately upstream of the ribosome-
binding site between nucleotides -66 and -19 (Fig. 1).
The nucleotide sequences of the genes encoding endoglu-

canases from a number of cellulolytic organisms, including
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Clostridium thermocellum (2, 7, 8), Cellulomonas fimi (21),
Trichoderma reesei (17), B. subtilis (14, 16, 18), and three
alkalophilic Bacillus spp. (4, 5), have been reported. The
deduced amino acid sequence of the C. acetobutylicum
endoglucanase gene showed only 11.9, 14.4, and 15.3%
homology with those of the celA, celB, and celD endogluca-
nase genes of Clostridium thermocellum, respectively (2, 7,
8); 13.7% homology with the cenA endoglucanase gene of
Cellulomonasfimi (21); and 14.5% homology with the endo-
glucanase I gene of T. reesei (17). There was also no
discernable homology (13.8%) with the amino acid sequence
of the endo-,B-(1,3)-(1,4)-glucanase gene from B. subtilis
C120 (16). However, comparison of the C. acetobutylicum
endoglucanase gene amino acid sequence with the sequences
of the genes coding for the two enzymes from the alkalophi-
lic B. suibtilis strain N-4 (5) and with those of the genes
coding for the enzymes from B. subtilis strains PAP115 (14)
and DLG (18) (which exhibit 93.4% homology) showed 43.9,
48.4, 43.4, and 44.6% homology, respectively. The gene
coding for a larger endo-,B-1,4-glucanase from another alka-
lophilic Bacillus sp. strain, 1139 (4), exhibited less overall
homology (23.8%). The nucleotide sequence of the C. ace-
tobutylicum etdoglucanase gene showed 49% homology
with the nucleotide sequences of the corresponding genes
from B. subtilis PAP115 and DLG and 57% homology with
the nucleotide sequence of the gene from the alkalophilic
strain N-4.

Analysis of the aligned amino acid sequences of the
endoglucanase genes from C. acetobutylicum and the Bacil-
lus strains showed a region of homology which extended for
approximately 350 residues from the N-terminal end (Fig. 2).
In comparison with the four Bacillus endoglucanase genes,
this region of the gene coding for the C. acetobutylicum
enzyme showed approximately 61 to 65% nucleotide homol-
ogy and 60% amino acid sequence homology. If amino acid
replacement by conserved amino acids is taken into ac-count,
the overall homology of this region is increased to 80%.
Although the amino acid homology of the entire endogluca-
nase gene from the alkalophilic Bacillus sp. strain, 1139, was
only 23%, the amino acid homology of the N-terminal region
was 40%.
The nonhomologous C-termninal regions of the endogluca-

nase genes from the different species varied in length from
approximately 75 to 150 amino acids, and the junction
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-350 -300 -250

TGTTAGTATTCTCTTT^AAAAAAATTAATG AGAAATGTTTCTTACTATTTG GATAATATTTATTATCTTTACTTTGG CCGTTTTTTTTATACAAATACTTTAAACCACAAAACAAA-%:r-CTC

-200 -150

TTCCCCTAATTCCCCATTTTTATATATATTTGTATTAAATTAACTTTAATGTTACANATGTTCTTAGTk%u-ATATTTTCCTTAATATTACATTAGTTCTATAAACTTTATTGTTCTTAATATT
-35 -10

-100 -50

TAAATAAAAATCCATG.jAAGGG.AG AAAXAACTATCTTTTAAAAGTTTATAGTAAATAAAAAATAI MTTACIAAAAATACTAAGTATAGAATATTrTATAA7GGGG~G %TTAAC

-35 -10

1 TTG TTT TCA AAA ATC AAA AAA ATT AAT TTT TTT AAA AAA ACA TTT TCT TTT TTA ATT GCT GTT GTA ATG ATG TTG TTT ACA GTA TTA GGA
1f0 F S K I K K I N F F K K T F S F L I A V V N N L F T V L G

91 ACA AAT ACT TAT AAA GCT GAA GCT GCA ACA ACA TCT TTT GGT GGA CAG CTC AAG GTA GTT GGA AGC CAA TTA TGC GAC TCA AAT GGT AAA
31 T N T Y K A E A A T T S F G G 0 L K V V G S Q L C D S N G K

181 CCT ATT CAG CTT AAG GGA ATG AGT TCA CAT GGT CTT CAA TGG TAT GTC AAT TTT GTA AAT TAT GAT AGT ATG AAA TTT TTA AGA GAT AAG
61 P I 0 L K G M S S H G L Q 9 Y V N F V N Y D S N K F L R D K

271 TGG GGC GTT AAT GTT ATT CGT GCT GCT ATG TAT ACT AAT GAA GGT GGA TAT ATC TCT AAT CCA TCA TCC CAA AAA GAG AAA ATA AAA AAA
91 W G V N V I R A A N Y T N E G G Y I S N P S S Q K G K I K K

361 ATA GTT CAA GAT GCT ATA GAT TTA AAT ATG TAT GTA ATA ATT GAC TGG CAT ATA TTA AGT GAT MAT AAT CCT AAT ACC TAT AAG GAA CAA
121 I V 0 D A I D L N M Y V I I D W H I L S D N N P N T Y K E Q

451 GCA AAA TCA TTT TTC CAA GAG ATG GCT GAA GAA TAT GGA AAA TAT TCA AAT GTA ATA TAT GAA ATA TGT AAT GAA CCA AAT GGT GGC ACT
151 A K S F F Q E N A E E Y G K Y S N V I Y E I C N E P N G G T

561 AAT TGG GCT AAC GAT ATA AAA CCT TAT GCC MAT TAC ATA ATT CCT GCT ATA AGA GCA ATT GAT CCT AAT AAT ATA ATA ATA GTA GGT ACA
181 N N A N D I K P Y A N Y I I P A I R A I D P N N I I I V G T

631 AGT ACT TGG AGC CAA GAT GTC GAC ATT GCT GCT GAT AAT CCA TTA CGT TAT TCA AAC ATA ATG TAC ACT TGC CAC TTT TAT GCT GGA ACA
211 S T W S Q D V D I A A D N P L R Y S N I M Y T C H F Y A G T

721 CAT ACT CAG TCG CTT AGA GAT AAA ATA AAT TAT GCA ATG TCA AAA GGC ATA GCT ATA TTT GTT ACA GAA TGG GGA ACA TCT GAT GCC TCA
241 H T 5 S L R D K I N Y A N S K G I A I F V T 5 W G T S D A S

811 GGT AAT GGC GGA CCA TAT TTA GAT GAA TCA CAA AAA TGG GTT GAC TTT ATG GCA AGT AAA AAT ATA AGT TGG ACT AAC TGG GCA TTG TGT
271 G N G G P Y L D E S 0 K W V D F N A S K N I S W T N W A L C

900 GAC AAA AGT GAA GCT TCT GCT GCT TTA AAA TCT GGT TCA AGC ACA ACT GGA GGA TGG ACA GAT TCT GAT CTT ACT ACT TCA GGC TTA TTT
301 D K S E A S A A L K S G S S T T G G W T D S D L T T S G L F

991 GTA AAG AAA AGC ATA GGA GGA AGT AAT ACT ACT TCT CAA ACA TCA GCT CCA ACT TTT AGT TTA CAG TCA GGA ACA TAC GAT TCA GCT CAA
331 V K K S I G G S N T T S 0 T S A P T F S L 0 S G T Y D S A 5

1, 081 ACT GTA ACC TTA ACT TCT TCT GAT AAT GAT TCT GTT ATA CAT TAC ACT ACA GAT GGA ACA ACT CCT ACA AGT TCT TCA CCT GTA TAT ACT
361 T V T L T S S D N D S V I H Y T T D G T T P T S S S P V Y T

1,171 AGT CCT ATA ACT ATA TCA AAG ACT ACA ACA GTT AAM GCT TTT ACT ACA AAA ACT GGC ATG ACT GAT TCT AAC ATA ACA TCA GCT GTT TAC
391 S P I T I S K T T T V K A F T T K T G M T D S N I T S A V Y

1,261 ACT ATT TCT AAT ACT GAT CCT GTT AM CAA GTT TCA GCT CCA ACT TTT AGT TAC AAT CAG GAA CAT ACA ATT CAG CTC AM CTG TAA CAT
421 T I S N T D P V K Q V S A P T F S Y D Q E H T I O L K L

STOP

1,351 TAA CTT CTT CGG ATA ATO ACT CTG TTA TAC ATT ACA CTA CAG ATG GGA CAA CTC CTA CAA GTT TTT CAC CTG TAT ATA CTO TTC CTA TAT

FIG. 1. Complete nucleotide sequence of the endo-P-1,4-glucanase gene and flanking regions from C. acetobutylicum. The derived amino
acid sequence is given in the one-letter code from positioq 1 tp 1,347 (448 residues). The putative promoter consensus sequence (from position
-221 to -175) is underlined; the -35 and -10 regions are underlined twice. A second putative promoter sequence immediately upstream of
the ribosome-binding site is underlined with a broken line. The Shine-Dalgarno (SD) sequence AGGGGG is boxed. The positively charged
amino acids at the start of the putative signal sequence are indicated by plus signs, and the hydrophobic region is underlined twice. The extent
of the truncated open reading frame (position 1,275) clonel in the recombinant plasmid pHZ100 is indicated with an arrow.

between the homologous and nonhomologous regions was
characterized by an area rich in hydroxyl amino acids and
proline (Fig. 2). Approximately 40% of the amino acids in the
nonhomologous C-terminal region of the C. acetobutylicum
endoglucanase gene were threonine or serine.
The C-terminal region was not essential for the function of

the B. subtilis PAP115 endoglucanase gene, from which it
was possible to delete approximately one-third of the C-
terminal amino acids (position 343, Fig. 2) without loss of
enzyme activity (14). The C-terminal region of the C. aceto-
butylicum gene is also not required for activity since an
endoglucanase derivative lacking 24 C-terminal amino acids
(position 426, Fig. 2) was functional.

Mackay et al. (14) identified a short region between amino
acids 82 and 141 which showed some similarity to the amino
acid sequences of the endo-P-1,4-glucanase celB gene of
Clostridium thermocellum and suggested that this region
contains some of the residues of the active site of the enzyme
gene. Comparison with the aligned amino acid sequences of
the endoglucanase genes from C. acetobutylicum and the
Bacillus spp. confirmed the presence of two short regions
situated between positions 85 to 97 and 115 to 143 which
showed some homology with the amino acid sequence of the
endoglucanase celB gene of Clostridium thermocellum.
A putative signal sequence consisting of a short stretch of

five positively charged amino iscids followed by a core of five
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FIG. 2. Amino acid sequence alignments of the endo-P-1,4-glucanase genes from C. acet'obuityliciurn P262 (Ca 1), B. siubtilis PAP115 (Bs
1) (14), B. slubtilis DLG (Bs 2) (18). alkalophilic B. siubtilis N-4(pNK1) (Ba 1) and B. suibtilis N-4(pNK2) (Ba 2) (5). The amino acids are
identified by the single-letter code, and regions of identical homology are boxed. Amino acid residues which show homology with those of
the endo43-1,4-glucanase gene from the alkalophilic Bacillus sp. strain 1139 are indicated with asterisks. The hydrophilic region of the signal
sequence of the endoglucanase gene from the Bac-illuis sp. is indicated by a broken line, and the region from C. acetobiutylicum is indicated
by an unbroken line. The signal sequence cleavage site identified in the endoglucanase genes from B. sibtilis PAP115 and DLG is indicated
by an arrow at position 34. The arrow at position 343 indicates the point to which BAL 31 digestion removed the C-terminal region of the
endoglucanase gene from B. subtilis PAP115 such that the strain retained the ability to direct the synthesis of active extracellular
endoglucanase. The arrow at position 426 indicates the extent of the truncated active endoglucanase gene from C. acetobiutyliculn cloned in
the recombinant plasmid pHZ100.

hydrophobic amino acids, resembling signal sequences of
gram-positive bacteria (14), was identified at the N-terminal
region of the C. acetobutylicuin endoglucanase gene (Fig. 2).

Previously, no close homology had been demonstrated
between endoglucanase genes from different bacterial gen-
era. Since there appeared to be little or no conservation of
nucleotide or amino acid sequences between endoglucanase
genes from different species and much greater conservation
between endoglucanase genes from the same or closely
related strains, it was postulated that the genes coding for
the cellulolytic enzymes of the various microorganisms
evolved independently (8). The occurrence of a conserved
nucleotide and amino acid sequence in the endoglucanase

genes from C. acetobutylicum, B. subtilis, and the alkalo-
philic bacilli indicated that, at least with the genes coding for
these enzymes, this is not the case. The limited homology
between the C. acetobutylicum endoglucanase gene and the
genes coding for the three endoglucanases from Clostridiium
thermocelluim, as well as the strong homology of the C.
acetobutylicum endoglucanase gene with genes coding for
enzymes from the Bacillus group, is interesting and tends to
confirm the results of recent phytogenetic studies (20). These
studies indicate a separation of the low-G+C-content gram-
positive bacteria into a number of branches which delineate
the thermophilic clostridia from the mesophilic clostridia and
the bacilli (20). The endoglucanase genes showing strong
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homology all originate from noncellulolytic species which
produce only one or a few endoglucanases, whereas the
endoglucanase genes which show little homology originate
from cellulolytic species which produce a complex battery of
cellulolytic enzymes.
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