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S_ry Multidrug-resistant (MDR) cell lines often have a compound phenotype, combining reduced drug
accumulation with a decrease in topoisomerase H. We have analysed alterations in topoisomerase II in MDR
derivatives of the human hmg cancer cel line SW-1573. Selection with doxorubicin frequently resulted in
reduced topo Ila mRNA and protein leves, whereas clones seleted with vincristine showed normal levels of
topo No alteratons of topo Il0 kvel were detected. To determie the contribution of topo alterations
to drug ressance, topo H actvity was analysed by the determination of DNA breaks iduced by the topo
I1-inhibiting drug 4'-(9acridinylamnino (m-AMSA) in lving cel, as m-AMSA is
not affected by the drug efflux nhanism in the SW-1573 cells. The number of m-AMSA-iduced DNA
breaks correlated well (r = 0.96) with vto m-AMSA sensitity. Drug sensitivity, however, did not always
correlate with reduced topo II mRNA or protein levels. In one of the five doxorubwc-selected dcnes
m-AMSA resistance and a reduction in r-AMSA-indnxed DNA breaks were found in the absence of reduced
topo II protein levels Thereore, we assune that post-trnlatonal modificatons of topo H also contnbute to
drug resistance in SW-1573 cells- These results suggest that methods that detect quantitative as well as

qualitative alterations of topo II should be used to predict the responsiveness of tumours to cytotoxic agents.

The assay we used, which masures DNA breaks as an end point of topo H activity, could be a good
candidate.
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The occurrence of resistance to chemotherapeutic drugs con-
tributes to the incurability of tumours and is a major prob-
hm for successful cancer treatment. In view of the major
side-effects of chemotherapy, treatment with drugs to which
the tumour cells display an intinsic or acquired resistance
should be avoided. Assays to predict the esponsiveness to
chemotherapeutic drugs are therefore of great interest for
successfl chemotherapeutic treatment of tumours. Drugs,
such as doxorubicin, etoposide and 4'-(9-acridinylamino)
methane-sulphon-m-anisidide (m-AMSA), which inhibit the
enzyme topoisomerase H (topo II) are widely used as anti-
tumour agents. Currently, two main categories of reistance
mechanisms are known to interfere with this kind of drug.
The first category concerns a s ulting in a
reduced drug concentration at the target site and will give a
multidrug resistance (MDR) phenotype. Two drug efflux
pumps have been identifed that can cause a reduced drug
concentration at the target site, P-glycoprotein (Gros et al.,
1986; Ueda et al., 1986) and the mulfidrug resistance-
assocated proten (MRP) (Grant et al., 1994; Zaman et al.,
1994). The second category of resistance, on which we will
focus in this study, involves alterations affecting the drug
target, the enzyme topo H.
Topo H is an ubiquitous enzyme that can alter the topo-

logical state of DNA and untangle intertwined DNA helices
(reviwed in Chen and Liu, 1994; Wang, 1985). As such, it
plays an essential role in several cellular events such as
replication (DiNardo et al., 1984), chromatin condensation
(Uemura et al., 1987) and sister chromatid segregation
(DiNardo et al., 1984; Uemura et al., 1987). Topo H is also
one of the major components of the nuclear matrix and the
chromosomal scaffold (Earnshaw et al., 1985; Taagepera et
al., 1993). Topo H cleaves double-stranded DNA and binds
covalently to both strands of the molecule in the process. The
transint reaction intermediate is calleWd the 'cleavable com-
plex'. Upon binding of ATP, a second DNA helix can pass
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through the cleavable complex, followed by hydrolysis of
ATP and reseaing of the double-stranded DNA (Chen and
liu, 1994). Topo H-inhibiting drugs stabilise the cleavable
complex, reulting in both singl- and double-strand DNA
breaks (Nelson et al., 1984; Glisson et al., 1986), which can
lead to cell death.
Two topo H isoforms, topo HaE (170kDa) and topo II0

(180 kDa), exist in animal cells. Although both enzymes are
closely related (72% identical amino acid residues; Jenkins et
al., 1992), they differ in important biochemical and biophysi-
cal prop . It has been reported for some human cell lins
that the topo HaE form is predominantly located in the
nuceoplasm (Zini et al., 1994), whereas the topo Hp form is
mainly located in the nucleolus (Boege et al., 1993; Coutts et
al., 1993; 7ini et al., 1994). In Chinese hamster ovary cells
both isoforms are detected in the nucleoplasn and in the
nucleolus (Petrov et al., 1993). Topo HaE expression is low in
quiescent cells, increases in S-phase and is maximal in G2-M
phaw, whereas topo HP expression is constant throughout
the cell cyce (Woessner et al., 1991; Prosperi et al., 1992).
Topo Ha is more sensitive to topo H-inhibiting drugs than
topo HUp and is thus more susceptible to the formation of a
drug-stabilised cleavable complex (Drake et al., 1989).

Reistance to topo H-inhibiting drugs can result from any
process that results in an alered binding of topo H to drugs
or DNA and thus a reduction in the number of cleavable
complexes. Recent in vivo stdies have provided direct
evidence that a reduction in the topo HE level results in
reistance to topo H-inhibiting drugs such as etoposide and
m-AMSA (Eder et al., 1993; Gudkov et al., 1993; Nitiss et
al., 1993). As different sensitivities of the topo HaE and 1
isoforms to topo H-inhibiting drugs have been reported
(Drake et al., 1989), the relative amount of each isozyme may
also be a determinant of resistance to anti-tumour drugs.

In cell lines selcted for resistance to topo H-inhibiting
drugs, the topo Ha enzyme levels may be reduced (De Jong
et al., 1990, Matsuo et al., 1990; Cole et al., 1991; Friche et
al., 1991; Webb et al., 1991; Eijdems et al., 1992), the enzyme
may be altered (Femandes et al., 1990; Bugg et al., 1991;
Binaschi et al., 1992; Lee et al., 1992; Schneider et al., 1994),



or both reduced levels and alteration (Feldhoff et al., 1994)
may play a role in drug resistance. Since topo IIP was

identified only recently, most studies have focused on topo
IIa. In one study, however, reduced amounts of the topo IIP
protein were associated with reduced topo II activity and
increased drug resistance (Harker et al., 1991). Post-
translational modifications of topo Ila also appear to affect
the catalytic activity and sensitivity to drugs in resistant cell
lines (Takano et al., 1991; Boege et al., 1993; Ganapathi et
al., 1993).
We have previously shown that in doxorubicin-selected

variants of the human SW-1573 non-small cell lung cancer

cell line drug resistance is due to two alterations: a decreased
drug accumulation and a reduced topo IIo mRNA level
(Eijdems et al., 1992). The drug accumulation defect and the
alteration in topo IIa mRNA are not genetically linked and
could be separated by somatic cell fusion (Eijdems et al.,
1992). The resulting MDR hybrid cells with a drug accumu-

lation defect had normal topo IHo mRNA levels and had lost
resistance to m-AMSA. The MDR hybrids were still partially
resistant to doxorubicin and etoposide, most probably
because of the drug accumulation defect. Subsequent analysis
of a large set of MDR SW-1573 cell lines, selected with either
doxorubicin or vincristine, revealed that the topo Ila mRNA
levels were only decreased in the doxorubicin-selected cell
lines (EWHM Eijdems et al., unpublished data). This demon-
strated that a reduction of topo Ila mRNA levels frequently
accompanied a MDR mechanism when these lung cancer cell
lines were selected for resistance against topo II-inhibiting
drugs.

Several clinical studies indicate a role for altered topo IIa
levels in drug sensitivity of tumours (Gazdar et al., 1991;
Kim et al., 1991; Van der Zee et al., 1994). The prediction of
sensitivity to topo II-inhibiting drugs did not always cor-

respond with topo II expression levels however (Parchment et
al., 1992; Volm and Mattern, 1992). In this study, we

analysed topo II levels (topo Ila and topo I1p) and topo II
activity in a subset of the SW-1573 cell lines selected for
low-level doxorubicin or vincristine resistance. Our results
show that the number of DNA breaks as a measure of topo
II activity closely correlates with drug resistance, in contrast
to measurement of topo II expression levels. Functional
assays of topo II activity may therefore be essential for a

reliable prediction of the drug sensitivity of tumours.

Materials and methods

Chemicals

Doxorubicin (doxorubicin hydrochloride) and ouabain were

purchased from Sigma (St Louis, MO, USA), 4'-(9-acridinyl-
amino)methanesulphon-m-anisidide(m-AMSA) from Parke-
Davis (Warner-Lambert, Amsterdam, The Netherlands) and
VP16-213 from Bristol Meyers (Bergisch Gladbach, Ger-
many).

Cell lines

The resistant cell lines described in this study were derived
from the human non-small cell lung cancer cell line SW-1573,
originally isolated and characterised by Dr A Leibovitz
(Scott and White Clinic, Temple, TX, USA). Cell line Slou is
a subclone of the drug-sensitive parental cell line S1 (a
SW-1573 subline which was morphologically homogeneous)
transfected with the a-I subunit of the murine sodium/
potassium exchanger (Eijdems et al., 1992). The non-Pgp
MDR cell line 1RSOb was isolated from cell line SI by a

multistep doxorubicin selection up to 50 nM (Broxterman et
al., 1989; Keizer et al., 1989; Baas et al., 1990). The other
resistant cell lines were isolated as a single-cell clone from cell
line Slou in a single-step selection at 25 nM, 30 nM and at
40 nM doxorubicin or at 20 nM and at 25 nM vincristine
(Eijdems et al., unpublished data). For nomenclature we took
the drug concentration (nM) used for selection followed by
an unique clone number preceded by a 'V' in case of vincris-
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tine selection. The cells were grown as monolayers in Ham's
F-10 medium (Gibco, Paisley, UK) supplemented with 10%
fetal calf serum, 2 mM glutamine, penicillin (50 units ml-')
and streptomycin (50 iLg ml '). Cells were maintained in
humidified air/5% carbon dioxide at 37°C. All cells were free
of Mycoplasma as tested by the use of the Gen-Probe rapid
Mycoplasma detection system (Gen-Probe, San Diego, CA,
USA).

Assay of drug resistance

The clonogenic survival assay was carried out as follows. In
24-well dishes 80 cells per well were plated (tissue culture
cluster 3424, Costar, Cambridge, MA, USA) and allowed to
attach to the wells. Cells were then grown for 8 days in the
continuous presence of drug, fixed and stained with 0.2%
crystal violet (Merck 820603) in 3.7% glutaraldehyde. The
percentage of cells that were able to produce a colony of 50
cells was used as a measure of cell survival. The resistance
was calculated as the ratio of IC,O (inhibitory concentration
at which 10% of the cells survive) of the resistant cell line to
the IC,O of the parental cell line.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) and Western blotting

Crude cell lysates were made by lysis of cells in 10 mM
potassium chloride, 1.5 mM magnesium chloride, 10 mM
Tris-HCI pH 7.4 and 0.5% SDS supplemented with 1 mM
phenylmethylsulphonyl fluoride (PMSF), leupeptide
(2 ILg ml1'), pepstatin (1 fig ml-') and aprotinin (2 jig ml-').
DNA was sheared by sonication. The protein concentrations
were measured using the Bio-Rad protein assay (Bio-Rad,
Richmond, CA, USA). A 30 #ig protein sample was boiled
for 3 min in sample buffer (65 mM Tris-HCI pH 6.8, 2.5%
SDS, 5% glycerol, 5% 2-mercaptoethanol) and separated on
a 7.5% polyacrylamide gel containing 0.1% SDS and trans-
ferred onto nitrocellulose paper (Schleicher & Schuell,
Dassel, Germany) by electroblotting. The blots were probed
with either the rabbit polyclonal anti-topo IIa antibody,
raised against a synthetic topo IIa peptide (Cambridge
Research Biochemicals, Cheshire, UK; No. OA-1 1-752), or
the monoclonal anti-topo Ilp antibody, 8F8, raised against
topo IIP protein purified from HeLa cells (Negri et al., 1992).
Bound antibody was visualised with horseradish peroxidase-
conjugated horse anti-rabbit IgG (CLB, Amsterdam, The
Netherlands; No. PK17E) in case of topo IIa and with
horseradish peroxidase-conjugated rabbit anti-mouse-IgG
(Dako, Copenhagen, Denmark) in case of topo IIP, both
followed by enhanced chemiluminescence detection (Amer-
sham, UK).

RNAse protection assay

The RNAse protection assay was performed as described
previously (Baas et al., 1990). Ten micrograms of total cyto-
plasmic RNA from each cell line was used or 10 jig of E. coli
tRNA (Boehringer Mannheim, Germany) as a negative con-
trol. The protected probes were visualised by electrophoresis
through a denaturing 6% acrylamide gel containing 8 M urea,
followed by autoradiography. The topo IIa probe was a
174 nt topo Ila cDNA fragment (nucleotide positions
1343-1517; Tsai-Plugfelder et al., 1988). In all experiments a
probe for y-actin (Enoch et al., 1986) was included as internal
control.

Southern hybridisations
To prepare Southern blots, genomic DNA was isolated as
previously described (Miller et al., 1988) or cells were embed-
ded in low melting point agarose plugs (Gibco BRL,
Gaithersburg, MD, USA), lysed and deproteinised as de-
scribed previously (Schwartz and Cantor, 1984). After diges-
tion the generated fragments were separated on a 1% agarose
gel in a regular electric field or in a contour-clamped
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gel in a regular electric field or in a contour-clamped
homogeneous electric field (CHEF) box and transferred to a
nitrocellulose membrane as descnrbed by Sambrook et al.
(1989). The DNA was hybridised with the following 3'P-
labelled probes: the complete human topo IIa cDNA hTOP2
(Tsai-Pflugfelder et al.. 1988). and genomic clones derived
from a yeast artificial chromosome (YAC) clone isolated
from the CEPH YAC library (Chu et al., 1986). using two
oligonucleotide primer sets corresponding to 5' and 3' topo
Ilm cDNA sequences. and cloned into Bluescript M1 3 (Pro-
mega. Madison. WI. USA).

Detection ofm-AMSA-induced DNA breaks

The detection of m-AMSA-induced DNA breaks is based on
an immunochemical method developed for the detection of
(radiation-induced) single-stranded regions in cellular DNA
(Van der Schans et al., 1989; Van Loon et al., 1992). Cells in
the log phase were incubated in Ham's F-10 medium contain-
ing increasing concentrations of m-AMSA for 1 h at 37TC.
Cells were then washed twice in ice-cold phosphate buffered
saline (PBS), scraped in ice-cold Ham's F-10 medium at a
concentration of 0.5 x 106 cells ml-' and maintained on ice
until assayed. DNA was denatured by the addition of 200 1il
of alkaline solution A (1.3 M sodium chloride, adjusted with
sodium hydroxide to pH 12.3) to 30 Al of cell suspension
(1.5 x 104 cells). After 6 min the solution was neutralised with
35 ;lI of 250 mM sodium dihydrogen phosphate, followed by
fragmentation of the DNA by sonication (Ultrasonics W-370,
USA, output level 2.5) for 1 s at 20°C to prevent annealing.
After this treatment the DNA consisted of double- and
single-stranded fragments. The fraction of single-stranded
DNA was determined with a sandwich enzyme-linked im-
munosorbent assay (ELISA) that will be described in detail
elsewhere (AJ Timmerman and GP Van der Schans, manu-
script in preparation). In this sandwich ELISA, a
modification of the earlier described ELISA (Van der Schans
et al., 1989; Van Loon et al.. 1992), the single-stranded DNA
fragments were quantitatively attached to a polystyrene
microtitre plate (Costar 9018) coated with monoclonal
antibody specific for single-stranded DNA (Van der Schans,
1993). Subsequently, an excess of monoclonal antibody
directed against single-stranded DNA conjugated to the
enzyme alkaline phosphatase was added. The amount of
antibody bound was determined by the measurement of
fluorescence of 4-methylumbellipheryl phosphate converted
into the fluorescent 4-methylumbelliferon by alkaline phos-
phatase. The relative amount of single-stranded DNA was
determined by comparison with a sample of the same
material that was made completely single stranded. The
amount of the single-stranded DNA on the plate is a direct
measure of single-strandedness. and hence the number of
single-stranded DNA breaks.

Preparation of nuclear enzyme extracts

Nuclei were isolated as described previously (Pommier et al.,
1986). Briefly, log-phase cells (2.5 x 10 cells ml-') were
pelleted by centrifugation at 150 g for 10 min and washed
twice with ice-cold PBS. The cell pellets were resuspended in
1 ml of nucleus buffer (150 mM sodium chloride, 1 mm potas-
sium dihydrogen phosphate. 5 mM magnesium chloride,
1 mM EGTA, 2 mM dithiotreitol and 1 mM PMSF, pH 6.4)
at 4°C and then mixed with an additional 9 ml of nucleus
buffer containing 0.3% Triton X-100. The cell suspension
was mixed gently by rotation for 10 min at 4°C followed by
centrifugation at 150 g for 10 min at 4°C. The nuclear pellet
was washed once with Triton-free nucleus buffer, centrifuged
and nuclei were extracted in 200 jil of nucleus buffer contain-
ing 0.35 M sodium chloride (final concentration) for 30 min
at 4°C. The protein concentrations were determined using the
Bio-Rad protein assay. The enzyme solution was diluted with
an equal volume of 87% glycerol and stored at - 70°C.

Decatenation assay

The decatenation assay was carried out as previousl) de-
scribed (Marini et al., 1980). The standard reaction mixture
for the decatenation assay was 50 mm Tris-HCI (pH 7.5).
85 mM potassium chloride, 10 mm magnesium chloride,
0.5 mM dithiothreitol. 0.5 mM EDTA. bovine serum albumin
(0.03 mg ml-') and 1 mm ATP. Decatenation of form I
kinetoplast DNA (kDNA) from C. fasciculata was carried
out by incubation of 5 il of nuclear extract with 0.3 gIg of
kDNA in a final reaction volume of 25 IlI of standard reac-
tion mixture for 30 mmn at 37C. Reactions were terminated
by the addition of 5 gI of 3% SDS. 0.3% bromophenol blue
and 30% glycerol. Samples were assayed by electrophoresis
in 1% agarose in 89 mM Tris-borate, 2 mM EDTA (pH 8.3)
at 3.7 V cm ' for 4 h. Gels were stained in ethidium bromide
(1 iLg ml-'). destained and photographed under UV light.

Results

Sensitivity to topoisomerase II-inhibiting drugs
In previous studies we generated MDR SW-1573 sublines by
selection with either doxorubicin or vincristine. Nearly all cell
lines had a reduced drug accumulation without overexpres-
sion of P-glycoprotein. Alterations in MRP seemed to be
involved in their MDR phenotype and a considerable overex-
pression of MRP was detectable in one of them, cell line
30.3M (EWHM Eijdems et al., unpublished results). To study
the contribution of topo II alterations to drug resistance, the
sensitivity to the topo TI-inhibiting drugs doxorubicin and
m-AMSA was determined in seven of these cell lines (Table
I). All sublines were resistant to doxorubicin. but only the
doxorubicin-selected cell lines, with the exception of 30.3M.
were resistant to m-AMSA. The vincristine-selected sublines.
20V2 and 25V4, even displayed a slightly increased sensitivity
to m-AMSA compared with the parental cell line Slou. These
results suggest that m-AMSA is not affected by the drug
efflux mechanism present in these SW- 1573 cell lines and
might therefore be a suitable drug to study the effect of drug
selection on topo II activity.

Topoisomerase IIac mRNA and protein level

As reduced topo llcx levels could be responsible for the
observed m-AMSA resistance, we determined immunoreac-
tive topo Icx levels in cellular extracts of log-phase SW-1573
cells in four independent experiments (see Figure la for a

Table I Drug resistance to topoisomerase 1l-inhibiting drugs and
the m-AMSA-induced DNA break fraction relative to the parental

cells in doxorubicin- and vincristine-selected SW-1573 sublines

Resistance factorah Relative DNA
Doxorubicin m-A.MSA break fractionc

Doxorubicin-selected
25.10 2.3 ± 0.7 33 ±0.6 0.60 0.08
30.3M 3.7± 1.2 1.0±0.1 1.04±0.12
30.12 3.1 ±0.9 2.2±0.3 0.70±0.09
40.3 4.8 ± 1.5 2.5 ± 0.3 0.69 ± 0.07
1 R50b 7.0 ± 1.2 2.9 0.6 0.59 0.08

Vincristine-selected
20V2 3.1±0.8 0.8±0.2 1.19±0.13
25V4 2.9 ± 0.7 0.7 0.1 1.11 0.14

aThe resistance factor is expressed as the ratio of the IC,0 of the
resistant subline to the ICIo of the parental cell line Slou
(IC,O = inhibitory concentration at which 10% of the cells sunive).
The IC,O of cell line Slou is for doxorubicin 0.015 LM and for
m-AMSA 0.050 Lm. bThe data are presented as the mean resistance
factor± s.d. of at least three independent experiments each
performed in duplicate. cThe values for the m-AMSA-induced DNA
break fraction are presented as the weighted ratios of the points of
the curve for the drug-resistant cell line over that of the parental cell
line Slou. All points are the mean of eight independent
measurements obtained in two individual experiments.



T _omerase 1I activity in human SW-1573 cek
EWHM Eijdems et d

representative experiment). Densitometric analysis of the
autoradiographs showed that the amount of topo IIa protein
was substantially decreased in the three doxorubicin-selected
cell lines (IRSOb, 30.12. and 40.3) that were resistant to
m-AMSA (with at least 95% confidence). No significant
reduction was found in cell lines 25.10, 30.3M (doxorubicin
selected) and 20V2 (vincristime selected). Unexpectedly, a
significant reduction was also found for cell line 25V4 (vin-
cristine selected), and we attribute this to the increased size
of this cell line (1 .4-fold Slou). resulting in an increased
protein nucleus ratio. Indeed, on immunoblots containing
protein from an equal number of cells no difference in topo
IIa levels was detectable between 25V4 and Slou. Even
though cell line 25.10 was m-AMSA resistant, the topo Ilm
protein level was not decreased compared with cell lines
Slou, 30.3M, 20V2 and 25V4, which do not display m-
AMSA resistance.
Topo IIa mRNA levels in log-phase cells were measured

by RNAse protection assays (Figure lb). Two levels of topo
Ilm mRNA were detectable (Figure lb), one that is similar to
the parental level and one that is significantly reduced com-
pared with the parental level. This reduced topo IIac gene
expression was stable in the absence of drug selection for at
least 9 months (data not shown). A substantially reduced
topo Ilm protein level (Figure la) was only found in the cell
lines that displayed a significantly reduced topo IIa mRNA
level (IRSOb. 30.12, and 40.3: Figure lb).
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DNA mnethvlation of the topo IIa gene

DNA methylation has been suggested to reduce topo IHa
gene expression (Tan et al., 1989). We therefore compared
CpG methylation in drug-sensitive cell line SI and drug-
resistant cell line 1 R5Ob by Southern blot analysis of genomic
DNA digested with the CpG methylation-sensitive enzymes
HaeII, HpaII, PvuI, SmaI and XhoI. No differences were
detected between the DNA fragments of the two cell lines
that hybridised to the complete topo Ila cDNA (Tsai-
Pflugfelder et al., 1988) or to genomic sequences up to 4 kb
upstream of the transcription start site of the topo Ila gene
(data not shown). This included the minimal promoter region
as identified by Hochhauser et al. (1992). These results
indicate that altered CpG methylation of the investigated
DNA region is not responsible for the reduced topo IIa
mRNA level in cell line 1R50b.

Topoisomerase I3 protein level

Whereas the reduction in topo Ilm level can account for the
m-AMSA resistance in the resistant cell lines 1R5Ob, 30.12
and 40.3, this is not the case in cell line 25.10. Measurement
of immunoreactive topo IIP protein in crude cellular extracts
of log-phase cells revealed no significant differences in topo
Ip protein levels between the drug-sensitive Slou cells and
the drug-resistant derivatives (Figure 2a). Since topo 1ip
expression can vary throughout the cell cycle in non-
synchronised cell cultures (Drake et al., 1989), we also
analysed topo Ip protein levels in crude cellular extracts
from cells in the plateau phase. No differences in topo 1ip
protein content were found between the parental Slou cells
and the resistant derivatives in this phase of the cell cycle
either (Figure 2b), suggesting that variations in topo Ip do
not contribute to the observed m-AMSA resistance in the
doxorubicin-selected cell lines. As these cell lines were
selected with low concentrations of drug, this is in agreement
with the observation that topo IIP is less sensitive to topo
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Figure 1 Topo IIcE protein and mRNA in doxorubicin-selected
(25.10, 30.3M, 30.12, 40.3. IR50b) and vincristine-selected (20V2,
25V4) SW-1573 cell lines (a). Topo Ila protein detection by
immunoblotting. Total cell lysates from log-phase cells were size
fractionated (30 gLg of protein per lane) in a 7.5% polyacrylamide
gel containing 0.5% SDS, transferred to a nitrocellulose memb-
rane and incubated with topo Ila-specific polyclonal antiserum.
The size (kDa) and position of molecular weight markers are
indicated. (b) A summary of RNAse protection assays to deter-
mine topo 1Ia mRNA levels. The mRNA level for the drug-
sensitive parental cell line Slou was set to 100% by definition.
The data are obtained from at least three independent RNA
isolates assayed in independent experiments. The data are pre-
sented as the mean mRNA level (%) ± s.d. (error bar). The topo
lIa mRNA level in the cell lines designated by an asterisk (*)
differs significantly from that of the parental cell line with at least
95% confidence.
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Fgue 2 Topo 1I1l protein detection by immunoblotting in the
doxorubicin-selected (25.10, 30.3M, 30.12, 40.3, IR50b) and the
vincristine-selected (20V2, 25V4) SW-1573 cell lines. Total cell
lysates (30jug of protein per lane) were size fractionated in a
7.5% polyacrylanide gel containing 0.5% SDS, transferred to a
nitrocellulose membrane and incubated with topo II-specific
monoclonal antibody (8F8). The protein samples were either
derived from log phase cells (a) or from cells in the plateau phase
(b). The size (kDa) and position of molcular weight markers are
indicated.
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1I-inhibiting drugs than topo II (Drake et al., 1989). Rehy-
bridisation of the immunoblot in Figure 2b with the topo II
antibody revealed that the protein detected by the topo Il0
antibody, 8F8, has a lower molecular weight than the topo
IIx protein and probably represents the 150 kDa protein
identified as a degradation product of the highly unstable
180 kDa topo 11p protein (Negri et al., 1992). This obviously
limits the conclusions that can be drawn from our topo Ilp
data.

m-AMSA-induced DNA breaks in Whole cell preparations

m-AMSA stimulated topo TI-mediated DNA cleavage results
in both single- (ss) and double (ds) stranded breaks (Nelson
et al., 1984). To analyse whether the m-AMSA resistance in
the SW-1573 cell lines is due to a decreased level of m-
AMSA-induced DNA breaks, we measured the number of
m-AMSA-induced ss- and ds-DNA breaks in whole cells
using an immunochemical assay. In this assay, designed by
Van der Schans and co-workers (Van der Schans et al., 1989;
Van Loon et al., 1992; Van der Schans, 1993; AJ Timmer-
man and GP Van der Schans, manuscript in preparation),
the SW-1573 cells were incubated with increasing concentra-
tions of m-AMSA. m-AMSA was removed and the cells were
lysed in an alkaline solution. During this procedure the DNA
in the neighbourhood of ss- and ds-m-AMSA-induced DNA
breaks will unwind. After neutralisation and shearing of the
DNA, ss-DNA stretches are released depending upon the
number of ss-DNA breaks. The ss-DNA stretches, represent-
ing DNA breaks, can be measured in a sandwich ELISA
using a monoclonal antibody directed against ss-DNA (Van
der Schans, 1993). Representative curves displaying the per-
centage of ss-DNA as a result of increasing m-AMSA con-
centration are shown in Figure 3 for doxorubicin-selected cell
lines 25.10 and 30.3M, and for vincristine-selected cell line
20V2. For comparison, the curve for the parental cell line
Slou is indicated in each graph. In this assay m-AMSA-
resistant cell line 25.10, which had wild-type topo lIcx and
topo 10 levels, also showed a clear reduction in the number
of m-AMSA-induced DNA breaks. To express the number of
m-AMSA-induced DNA breaks quantitatively, the mean
weighted ratio across the curve for each of the resistant cell
lines over the curve for the parental cell line S lou was
determined (Table I). These ratios, representing the relative
DNA break fractions, show a clear correlation with m-AMSA
resistance (correlation coefficient = 0.96).

Comparison ofm-AMSA- and VP16-213-induced DNA
breaks in the non-Pgp MDR cell line IR50b

The results in Table I indicate that m-AMSA is not affected
by the drug efflux mechanism underlying MDR in the SW-
1573 cells, in agreement with results obtained in a previous
study (Eijdems et al., 1992). In contrast, the intracellular
concentration of the topo II inhibitors doxorubicin and
VP16-213 is decreased by the drug efflux mechanism in SW-
1573 cells (Kuiper et al., 1990; Eijdems et al., 1992; Versant-
voort et al., 1992). To analyse the effect of VP16-213 on the
amount of DNA breaks, parental Slou cells and drug-resistant
I R50b cells were incubated with increasing concentrations of
VP16-213 (ranging from 0.2iM to 25gLM). VP16-213 incuba-
tion resulted in a much lower DNA break fraction
(0.18 ± 0.02) than m-AMSA incubation (0.59 + 0.08). The
DNA break fractions correlate with the respective resistance
factors to VP16-213 (10.0+ 1.5; the ICjo or parental Slou
cells is 0.021LmM) or m-AMSA (2.9 ± 0.6; the IC,O of parental
Slou cells is 0.05Lm). These results suggest that the DNA
break assay might predict resistance to topo 11-inhibiting
drugs regardless of the underlying resistance mechanism(s).

Topoisomerase II activities in nuclear extracts

The observed reduction in m-AMSA-induced DNA breaks in
one cell line, 25.10, cannot be explained by reduced topo lIIa
and P protein levels. To test whether this reduction reflects a
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Fugwe 3 The percentage of DNA breaks in (a) 25.10, (b) 30.3M
and (c) 20V2 cell lines in relation to increasing m-AMSA concen-
trations. The curve for the drug-resistant cell lines (0), is always
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parental cell line (0). Each point of the curves is the mean
percentage ± s.d. derived from eight independent measurements
from two individual experiments. The values were corrected for
the background percentage of DNA breaks when no m-AMSA
was added.
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reduced activity per molecule of topo II, topo II decatenation
activity was measured in crude nuclear extracts derived from
Slou and 25.10 cells. At equal protein amounts the topo II
activities were about 2-fold reduced in crude nuclear extracts
from 25.10 cells compared with topo II activities in extracts
from Slou cells as determined by comparing band intensities
of the minicircles in serial dilutions in four independent
experiments (data not shown). The reduction is of the same
order as the reduction in m-AMSA-induced DNA breaks in
this cell line (Figure 3 and Table I). A larger amount of
nuclear extract proteins was used for cell line 25.10 than for
Slou to obtain more or less similar decatenation activity
(compare lanes 1 in Figure 4). The reduced decatenation
activity in cell line 25.10 could be due to the presence of topo
II protein with either reduced catalytic activity or with
altered drug binding capacity. To test drug-binding capacity
we monitored the inhibition of decatenation activity by m-
AMSA in nuclear extracts of Slou and of 25.10 cells,
equalised for topo II activity. No differences in inhibition of
decatenation activity by m-AMSA were observed between the
two cell lines (Figure 4). In a similar assay ATP dependence
was analysed by the addition of different amounts of ATP to
the reaction mixture (0, 0.125, 0.25, 0.5, 1, 2JAM). No
difference in ATP dependence was observed between Slou
and 25.10 nuclear extracts equalised for their topo II activity
(data not shown). These results suggest that the decrease in
activity of topo II in the 25.10 cells is not due to an altered
interaction with m-AMSA or ATP.

Discussion

Reliable predictive tests of tumour biopsies should allow
clinicians to avoid treatment of tumours with drugs to which
they are resistant and should allow the use of tailor-made
chemotherapeutic regimens. Several attempts have been made
to predict the responsiveness of human tumours to topo
II-inhibiting drugs on the basis of measurements of topo II
expression. Some studies showed a good correlation between
topo II (mainly topo IIa) expression and drug sensitivity
(Gazdar et al., 1991; Kim et al., 1991; Van der Zee et al.,
1994). However, other studies have failed to confirm these
results (Parchment et al., 1992; Volm and Mattern, 1992).
There are several possible explanations for this discrepancy.
First, the presence of multiple mechanisms that affect the
response of a cell to inhibitors of topo II will obscure the

Slou 25.10
1 2 3 4 5 6 1 2 3 4 5 6 k

--kDNA

-Minicircles

Figure 4 Inhibition of equalised decatenation activity by m-
AMSA in nuclear extracts. Equal amounts of decatenation
activity in 0.1 jlg of extract from the drug-sensitive Slou cells and
in 0.225 fig of extract from the drug-resistant cell line 25.10 were
inhibited by increasing concentrations of m-AMSA (1-6 corres-

pond to 0, 0.3, 1, 3, 9, 27 JiM m-AMSA).
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correlation of a single factor with prognosis. Resistance has
been found to arise from topo II mutations, decreased
enzyme level and altered enzyme phosphorylation, whereas
active extrusion of topo II-inhibiting drugs can reduce the
drug concentration at the target site. Second, the assays used
to analyse topo II expression vary. Most studies were based
on the measurement of the topo II mRNA or enzyme levels,
whereas only a few measured topo II activity (Van der Zee et
al., 1994). However, RNA levels or even protein levels
measured by histochemistry might not reflect functional pro-
tein. Therefore, assays in which the function of a protein is
measured, preferably in its normal environment, e.g. the
context of living cells, are of importance.
The method we used in this paper allows the measurement

of DNA damage after exposure of living cells to topo II-
inhibiting drugs as an end point of topo II activity, and
circumvents some of the difficulties described above. We
tested this assay on a series of in vitro-selected drug-resistant
sublines of the human SW-1573 non-small cell lung cancer
cell line. This panel of cell lines might represent the in vivo
situation, since a low drug concentration was used for selec-
tion. The relative number of m-AMSA-induced DNA breaks
measured in these lines showed a strong correlation with
their m-AMSA sensitivity (r = 0.96). We conclude that the
amount of m-AMSA-induced DNA damage is representative
of the topo II activity in the different SW-1573 cell lines.
Our results emphasise the need for an assay to measure

drug-induced DNA breaks as a parameter for topo II activity
instead of topo II expression levels. Three of the five
doxorubicin-selected cell lines showed a reduced topo IIx
protein level, corresponding to reduced topo IIa mRNA
levels. In these three cell lines a reduced number of m-
AMSA-induced DNA breaks was found, reflecting reduced
topo II activity. In the doxorubicin-selected cell line 25.10,
however, a reduced topo II activity was detected in the
absence of reduced topo IIa and topo IIP RNA and protein
levels. This altered topo II activity was missed with the
quantitative assays.

In the cell panel analysed here topo IIa mRNA levels did
not correlate with DNA break fractions (r = 0.63) or m-
AMSA resistance (r = 0.53). Omission of the data for cell
line 25.10, however, resulted in a good correlation of topo
IIa mRNA levels with both parameters (r = 0.94 and r = 0.98
respectively). In agreement with this, omission of the data for
25.10 did not affect the strong correlation between DNA
breaks and m-AMSA resistance (r = 0.98). We conclude
from these calculations that the reduced topo II activity in
the m-AMSA-resistant cell lines 30.12, 40.3 and iRSOb is
only determined by the reduction in topo Iot mRNA.
The DNA break assay used here combines the DNA

unwinding assays, on which alkaline elution is based, with
the immunochemical detection of single-stranded DNA. This
assay has several advantages over other topo II assays. First,
it is very sensitive: a total of about 2 x I04 cells suffices.
Second, the method is rapid and simple. There is no need for
the extraction of nuclear enzymes, avoiding enzyme losses.
Third, the method does not require cell growth in vitro.
Fourth, the effect of the drug is measured in its physiological
environment in whole cells. Thus, the contribution of
mechanisms affecting drug uptake, extrusion and drug con-
centration is taken into account as well. A disadvantage of
the assay is that the cell sample must survive a 1 h incubation
at 37°C' without substantial cell disintegration. This may be
difficult to achieve with samples from solid tumours.
The advantage that other resistance mechanisms are taken

into account as well is illustrated by our results with cell line
IRSOb when VP16-213 instead of m-AMSA was used to
induce DNA breaks. In somatic cell fusions a reduction in
drug accumulation was transferred to drug-sensitive cells,
whereas resistance to m-AMSA and an altered topo Ilc
mRNA level were not (Eijdems et al., 1992). Thus, m-AMSA
cytotoxicity might solely reflect the activity status of topo II,
in agreement with the results presented in this study (Table
I). Cytotoxicity to other topo II drugs such as VP16-213, in
contrast, was also linked to reduced drug accumulation and
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might be determined by at least two components, topo II
alterations and a reduced drug accumulation. Here we show
that the number of DNA breaks induced by VP16-213 is
much lower than that induced by m-AMSA. These results
suggest that the influence of the drug efflux mechanism on
topo II-inhibiting drugs might also be measured with the
immunochemical assay.
The cell lines analysed in this study are part of a large

panel of MDR cell lines selected either with doxorubicin or
with vincristine. Most but not all of the 34 doxorubicin-
selected cell lines had topo Iax mRNA levels that were
reduced to a variable extent, and in none of them were
reduced topo Ila mRNA levels found without a MDR
mechanism (EWHM Eijdems et al., unpublished results). In
most of the clones without significantly reduced topo IlcI
levels, the topo II enzyme activity might be qualitatively
altered, as shown here for cell line 25.10. These results sug-
gest a synergistic relation between altered topo II activity and
the MDR mechanism in SW-1573 cell lines selected with
topo 1I-inhibiting drugs. As topo II alterations are also com-
bined with MDR in other cell lines (Ferguson et al., 1988; De

Jong et al., 1990; Cole et al.. 1991: Friche et al.. 1991;
Schneider et al.. 1994), this might be a general phenomenon.

In conclusion, the immunochemical assay used here
measures DNA damage as an end point of topo II activity
and allows predictive testing of tumour cell lines for sensi-
tivity to drugs that interact with topo II. We showed that, at
very low drug concentrations, quantitative and qualitative
topo II alterations can accompany a MDR mechanism. In
view of this complexity, immunochemical assays as described
here might be more useful for clinical applications than
quantitative topo II assays based on measurements of RNA
or protein levels.
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