
SUPPLEMENTARY NOTE 

Effects of scanner noise on MEMRI results 

MRI scanner noise, which presents a unique problem for fMRI studies of the 

auditory brain
S1

, should not contribute significantly to the MEMRI signals in mice for 

several reasons. First, mice are more sensitive to higher than lower frequency sound from 

the onset of hearing
S2,S3

, and the noise characteristics of our MRI protocol has no 

significant frequency components above 5-kHz while the sound stimuli used for these 

studies covered the major audible range of mice, up to 60-kHz (Supplementary Fig. 1). 

Furthermore, the MEMRI signal reflects the accumulative effect of sound stimulation 

over the 24-h exposure period, which should dominate any effects due to MRI noise over 

the 2-h imaging period. Finally, the mice in these studies were anesthetized during 

imaging which is expected to significantly decrease brain metabolism and activity during 

the acquisition of MRI data
S4

. The excellent agreement of our results with those produced 

by other non-MRI mapping methods confirms that MEMRI provides an accurate measure 

of sound-evoked activity, independent of scanner noise. 

Effects of hearing loss during development 

Previous studies have shown that unilateral sound deprivation or cochlear ablation 

during early stages of development can induce cellular alterations in the auditory 

brainstem. Unilateral sound deprivation during early stages of ferret development was 

reported to induce an increase in the number of ipsilateral projections from the functional 

CN to IC
S5

, similar to the effects seen after cochlear ablation in neonatal gerbils and 

ferrets
S6,S7

. In the case of cochlear ablation during early postnatal development, the 

resulting sensorineural hearing loss is associated with more profound neuroplasticity 
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changes than CHL, including an increased sensitivity and discharge level in response to 

stimulation of IC neurons ipsilateral to the functional ear
S8

. At this point, there are few 

data on the neuroplasticity effects of CHL during early postnatal brain development.  

Future studies, combining MEMRI and histological analyses, should provide important 

insights into the cellular alterations and subsequent changes in auditory activity in a 

variety of mouse models of hearing loss. 

Transport of systemically administered Mn into neurons 

Relevant to our studies are the mechanisms of transport of the IP injected Mn into 

the brain. It is known that Mn can bind transferrin (Tf-Mn) and then be transported across 

the BBB via receptor-mediated endocytosisS9. Nevertheless, the same level of injected Mn 

is taken up in normal and hypotransferrinemic miceS10, demonstrating that other transport 

systems also mediate Mn uptake. Furthermore, free Mn is transported into the brain more 

rapidly than Tf-MnS11, again suggesting that Tf-mediated transport is not the primary 

system for Mn uptake. At the level of MRI detection, previous studies have shown that 

injected Mn rapidly accumulates in the ventricular cerebral spinal fluid, and is taken up in 

the brain parenchyma more slowly over a period of hours unless the BBB is disruptedS12-

S15, suggesting that Mn uptake is via absorption through the ependymal surfaces. 

Additionally, there may be an axonal tract-tracing component to the Mn uptake, which can 

cross multiple synapses as demonstrated in the olfactory systemS16. 

A number of studies indicate that a primary mechanism for transporting divalent 

Mn2+ into neurons is through calcium channelsS17,S18, which provided the original 

motivation to develop MEMRI approachesS12. Indeed, Mn2+ entry through calcium channels 

is used to quench the fluorescence of fura-2 in a standard, widely applied assay to measure 

cellular Ca2+ influxS19. Taken together, these data indicate that systemically administered Mn 
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diffuses into the brain in free ionic form, entering cells either directly through calcium 

channels, or indirectly through tract tracing, providing an excellent opportunity for apping 

brain activity with MRI. 
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