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SUPPLEMENTARY FIGURES 
 
Figure S1 
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Sequence events as a function of experience. Bar plots, for each rat, show the number of 
all detected events for each recording session. The black part of each bar indicates the 
significant fraction.  Only sessions yielding at least one event were considered.  Blue x’s 
indicate the ratio of significant to total events, scaled by the length of the y-axis. Note the 
constant ratio across sessions and the decreasing number of events with experience 
(sessions). 
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Figure S2 
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Illustration of place-field sequence “template” and examples of forward and reverse 
replay sequences. Top panel shows a series of neuronal place-fields, (the same ones 
depicted in main text Fig. 1a) which, when ordered according to the peak in-field firing 
rates, comprise the place-field sequence “template”.  Each neuron’s place-field is shown 
in a different color.  Bottom panel shows some sample forward and reverse correlated 
events from these neurons (same coloring) during immobility. 
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Figure S3 
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Illustration of the shuffling procedure. A sample event is shown on top, depicting the first 
spikes from 5 different neurons.  18 example shuffled surrogate events are shown below, 
for which cell identities were shuffled across spikes.   
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Figure S4 
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Pre-play (forward) events increase prior to run. This figure explores the timing of forward 
and reverse correlated events relative to the onset (below) and end (above) of lap running.  
The time spent in the reward area following the end of lap running is quite variable.  
Consequently, there is no clear asymptote to the rate of events following a lap, though a 
gradual rise in events occurs within seconds.  On the other hand, forward correlated 
events steadily rise prior to the onset of a lap, along with a drop in the rate of occurrence 
of reverse correlated events during the last two seconds. 
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Figure S5 
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Temporal order between neuron pairs. Left panels show cross-correlograms calculated 
for neuron pairs across forward correlated events (blue) and across track running epochs 
(black; ‘theta compression”).  Colored x’s on the abscissa indicate the time-offsets of the 
peaks.  Right panels show similar cross-correlograms calculated for reverse correlated 
events (red) and during running on the track (black). These time offsets between peaks 
during running and immobility were used to construct Fig. 2c. 
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Figure S6 

-1 -0.5 0 0.5 1
0

10

20

30

40

50

Correlation

C
ou

nt
44 % Significant Rat 1

shuffled
data
significant

-1 -0.5 0 0.5 1
0

5

10

15

20

25

30

Correlation

C
ou

nt

41 % Significant Rat 2
shuffled
data
significant

-1 -0.5 0 0.5 1
0

100

200

300

400

Correlation

C
ou

nt

59 % Significant Rat 3
shuffled
data
significant

 
Within-subject analysis. Histograms show rank-order correlations of the immobility 
sequences, and an equal number of shuffled surrogate events, to the place-field run 
sequence template, calculated for each rat separately.  Significantly forward and reverse 
correlated events (black) were detected for each animal.  
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Figure S7 
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Pre-play and replay sequences occur in both CA1 and CA3 regions. Histograms show 
rank-order correlations of the immobility sequences, and an equal number of shuffled 
surrogate events, to the place-field run sequence template, calculated for CA1 and CA3 
subfields by considering only events for which ≥ 4 neurons from the subfield fired.  
Significantly forward and reverse correlated events (highlighted) were detected for each 
hippocampal subfield.  
 
Figure S8 
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Place field proximity cannot account for the forward or reverse sequences. Histograms 
show rank-order correlations of the immobility sequences, and an equal number of 
shuffled surrogate events, to the place-field run sequence template, calculated for 
considering only events for which  ≥ 4 neurons fired ≥ 10 cm outside of the boundaries of 
their place-fields (defined by 95 percent of the peak firing, see text).  Significantly 
forward and reverse correlated events (black) were nevertheless detected. 
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Figure S9 
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Bidirectional place cells cannot account for the forward or reverse sequences. Top panel: 
histograms show rank-order correlations of the immobility sequences, and an equal 
number of shuffled surrogate events, to the place-field run sequence template, calculated 
when considering only events for which ?  4 unidirectional place-cells fired.  A place-cell 
was considered unidirectional if its peak firing rate was ?  4 times (and ?  5 Hz) in one 
trajectory.   Bottom panel: we correlated all significant events to templates created by the 
same neurons, but in the opposite trajectory regardless of peak firing rate (i.e. with no 
lower threshold—therefore even a few spikes could define the template).  These 
histograms show that bidirectional cells do not explain the forward pre-play and reverse 
replay we observed. 
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Figure S10 
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Significant pre- and replay event are detected independent of the sampling methods. 
Histograms show rank-order correlations of the immobility sequences, and an equal 
number of shuffled surrogate events, to the place-field run sequence template, calculated 
using the median and mean spikes (instead of the 1st spike) from each cell.  Results were 
not altered in either case.  Bottom panel presents an alternative shuffling algorithm, 
whereby the ordering of cells in the sequence template is permuted and shuffled 
correlations are calculated from the shuffled templates on the track, rather than from 
shuffled events during immobility. This method yielded a similar result. 
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Figure S11 
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Excitability of place cells alone cannot explain the forward vs. reverse order of 
sequences. The number of pre-play and replay events for each neuron was fitted against 
the number of spikes it fired during running in the previous (replay) or following (pre-
play) lap, to test if transient excitation of neurons on the track could determine their 
participation in immobility events. 
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Figure S12 

 spike threshold

1

 1
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 3

3

Excitation

Inhibition

track  
A hypothetical place-field model may account for sequences observed during both pre-
play and replay.  Inputs for three neurons are indicated in color.  A global spiking 
threshold is shown with a dashed line.  On the track, this threshold is theta-modulated, 
resulting in phase-precession (Harris et al., 2002; Mehta et al., 2002).  On the platforms, 
during immobility, a transient decrease in the global threshold causes cells to fire outside 
of their classical place-fields.  Furthermore, the sequence of firing is forward or reverse 
correlated to the place-field sequence, according to the platform end of the track where 
the rat is.  The top panel illustrates the transient rise in global excitation (and inhibition), 
deduced from population spiking activity, during immobility ripples (Csicsvari et al., 
1999a).   
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Forward and reverse hippocampal place cell sequences during 
ripples  

Kamran Diba and György Buzsáki  
  
Center for Molecular and Behavioral Neurobiology, Rutgers University, 197 University 
Ave, Newark, NJ 07102, E-mails: diba@.rutgers.edu, buzsaki@axon.rutgers.edu, 
Telephone: (973)353-1080 ext. 3361, Fax:(973)353-1820.  
   
SUPPLEMENTARY RESULTS  
  
Results were combined from all 3 animals in the main text  (Fig. 1).  However, significant 
results were also obtained for each animal considered separately (Fig. S6).  
  
CA1 and CA3 regions. Units from both CA1 and CA3 participated in the pre-play and 
replay events.  We did not observe any differential trends in their firing and pooled all cells 
for analysis.  Limiting the significance analysis to only CA3 or only CA1 units gave similar 
results to the pooled results presented in this report (Fig. S7)  
  
Place-field “tails”. Csicsvari et al. (in press) have argued that reverse replay, as observed 
by Foster and Wilson (2006), could arise as a consequence of the “tail” of place-fields.  The 
tuning curve of a place-field falls with increasing distance from the peak-firing location (i.e. 
the place-field “center”).  Csicsvari et al. (in press) defined the 95 percent boundary of a 
place-field by the location of a 95 percent drop in its mean firing rate; then, they showed 
that as long as the animal is within this boundary for a given place-field, the cell will fire in 
inverse relation to the distance from the place-field center during sharp wave-ripple 
complexes, thereby representing a potential mechanism for reverse replay. We tested this 
hypothesis on our dataset by including only those cells for which the rat was ≥ 10 cm 
outside of their 95 percent peak boundaries, at the instantaneous position.  Yet, we found 
that the remaining cells were sufficient to display significant forward pre-play and reverse 
replay (Fig. S8), indicating that the persistent, place-controlled firing of neurons alone 
cannot explain the results in this manuscript.   
  
Inclusion of bidirectional cells. Only a fraction (21  percent) of the cells included for 
analysis was bi-directional, i.e. fired ≥ 5 Hz on both left and right trajectories.  Since events 
were detected separately for each trajectory template, it was possible for a bidirectional cell 
to contribute to both pre-play forward events and replay reverse events.  If an event was 
detected twice (446 such events), it was assigned to the trajectory with the greater number 
of participating cells, or else, the template with the stronger correlation.  The strong 
correlation of the forward or reverse events with the animals’ location, as illustrated in Fig. 
1c, could only be weakened by the ambiguity introduced with bidirectional cells; hence their 
inclusion underlines the strength of our results.  Nevertheless, we tested whether significant 
events could be detected if we removed these cells, keeping only cells whose peak firing 
was at least 4 times higher in one direction than the other.  Still, significant results were 
observed (top panel, Fig. S9).  We also looked at the correlation of the “significant” events, 
from Fig. 1b, to the peak firing place-field sequence template based on the opposite 
trajectory (left vs. right), with no lower limit on the firing rate.  Such a template can 
therefore be defined even if the cells fire only one or two spikes on the opposite trajectory.  
The results (bottom panel, Fig. S9) indicate that the bidirectionality of a fraction of cells 
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cannot explain the correlations we observed.  
  
Alternative methods. We experimented with using the median or the mean spike, instead 
of the first spike, in calculating the rank-order correlations between the event sequences and 
the place-field sequences.  Results did not differ appreciably (top two panels, Fig. S10), 
demonstrating that pre-play and replay are robust events.  We also tested an alternative 
shuffling algorithm, whereby instead of shuffling each event 500 times to obtain 500 
surrogate events, we shuffled the place-field sequence 500 times to obtain alternate template 
sequences.  Thus, events were deemed significant if the correlation (either positive or 
negative) with the place-field sequence was greater than for 95 percent of the shuffled 
template sequences.  These results were also consistent with our main conclusion (bottom 
panel, Fig. S10).  
  
The impact of training on sequence replay. Foster and Wilson (2006) reported that 
reverse replay was more robust in a novel as opposed to a familiar environment. To 
examine the impact of training, we plotted the number of detected sequences as a function 
of session number (Fig. S1). We observed that in early sessions, the rat spent more time in 
immobility (and emitted more ripples) in the reward areas compared with later, over-trained 
sessions. Consequently, many more sequences were detected than in later sessions. 
However, the ratio of significant events to recorded events appeared to be roughly constant, 
regardless of the session number (Fig. S1).  
  
Potential mechanisms  
  
Firing rate during run vs. probability of spiking during pre-play and replay. One 
hypothesis for the reverse replay is that some hypothetical neuromodulator in expectation of 
reward (e.g., dopamine, Foster and Wilson, 2006) or the intense firing during the run 
transiently changes the intrinsic properties of neurons leading to their increased excitability. 
Within this framework, the main difference between pre-play and replay is that the latter is 
preceded by intense spiking activity of the neurons. This may, in principle, bring about a 
transient enhancement of excitability.  In Figure S11, we plot a histogram of the best linear 
fits between the number of times a cell participated in a significant forward or reverse event, 
and the number of spikes it fired in the upcoming or previous run, respectively.  The lack of 
correlation between firing rate during run and probability of discharge during either replay 
or pre-play sequences in the same trials fail to support the idea that this mechanism alone 
can account for the reverse replay.  It is also renders unlikely the hypothesis that pre-play 
and replay events are directly affected by the intrinsic excitability of the neurons.  
  
An alternative to changes in the intrinsic properties of active place cells (Foster and Wilson, 
2006), short-term modification of synaptic circuitry may be at play (Buzsaki, 1989). 
Following intense spiking activity of pyramidal cells, the pyramidal-perisomatic interneuron 
synapse undergoes transient depotentiation (Ali and Thomson, 1998; Markram et al., 2004; 
Pouille and Scanziani, 2004; Silberberg and Markram, 2007). This use-dependent decrease 
of recurrent inhibition (or “disinhibition”) may selectively enhance the excitability of 
recently active place cells; place neurons that were active during later parts of the run can 
produce stronger disinhibition compared to place neurons active in the earlier parts.  Such a 
mechanism can account for reverse replay during sharp waves, when inhibition is 2 to 3 
times less efficient than during theta oscillations (Csicsvari et al., 1998; Csicsvari et al., 
1999a), thus favoring the discharge of a larger proportion of neurons. Pre-play and replay 
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of (sharp wave-related) sequences may help bring about bidirectional alteration in a 
randomly connected CA3 recurrent collateral system. Such a high-dimensional 
interconnected matrix can support large numbers of activity trajectories that are determined 
by hypothesized attractor dynamics (McNaughton et al., 1996; Tsodyks, 2005; Wills et al., 
2005). Depending on the ‘seed’ at the time of sharp waves, the activity trajectory may 
therefore move either forward or backward: reverse replay occurs when triggered by use-
dependent disinhibition of recently active neurons, forward pre-play occurs when the 
animal is anticipating a behaviorally established trajectory.  This hypothesis could also 
account for the observation that forward (pre-play) sequences show a stronger similarity to 
run related sequences, compared to reverse (replay) events (Fig. 2b,c).  
  
A variation of this hypothesis is that the interplay between environmental and internal 
events determines the exact trajectory of activity (i.e., a cell assembly sequence). The 
assumption here is that the hypothetical subthreshold place fields of neurons are 
considerably larger than those characterized by their observed (supra-threshold) place-
fields.  That is to say, cells with firing fields on the track receive subthreshold input in the 
reward areas, away from their place-fields.  A model of this scenario is shown in Fig. S12.  
When the global spike threshold of the entire population of cells is decreased transiently, as 
occurs during sharp wave ripples (Csicsvari et al., 1999a), the activity spreads according to 
the excitability of the neurons. Prior to the run, this activity observes the same sequence as 
that expressed by the place field firing during theta-associated running, whereas after the 
run, the sharp wave-related decrease of the spike threshold brings about an activity 
sequence in the reverse order.  A similar model was proposed to account for the 
asymmetric expansion of place-fields (Mehta et al., 2000; Mehta, 2001; Mehta et al., 2002) 
and to explain the dual rate and time code of phase-precessing CA1 neurons (Harris et al., 
2002; Mehta et al., 2002). 
 
SUPPLEMENTARY METHODS  
  
We trained three male Sprague-Dawley rats (335 - 400 g) to run back and forth on a linear 
track (79 cm, 125 cm, and 170 cm length, 6.2 cm width) for water reward at both ends (end 
platforms 21 x 21 cm2).  After learning the task, the rats were implanted with 32 and/or 64-
site silicon probes in the left dorsal hippocampus under isoflurane anesthesia.  The silicon 
probes, consisting of 4 or 8 individual shanks (spaced 200 μm apart) of 8 staggered 
recording sites (20 μm spacing) (Csicsvari et al., 2003), were lowered to CA1 and CA3 
pyramidal cell layers.  Following recovery from surgery (~ 1 week) we tested the animals 
again on the track.  All protocols were approved by the Institutional Animal Care and Use 
Committee of Rutgers University.  We continuously recorded all channels at 32552 Hz 
over the following 7-10 days with a 128-channel DigitaLynx recording system (Neuralynx, 
Bozeman, MT).  We obtained the local field potential (LFP) from each channel by low-pass 
filtering up to 1252 Hz.  The position was tracked with an LED and later linearized along 
the axis of the track. After recording, we high-pass filtered the data (0.8-16 kHz), and 
thresholded for spike detection, assisted by freely available ND manager software 
(http://ndmanager.sourceforge.net; Hazan et al., 2006).  For each putative spike, we 
sampled 54 data points at each of the 8 recording sites on the shank, centered on the 
maximum spike amplitude.  Based on the resulting set of 54 dimensional vectors, we 
calculated three principal components for each recording site.  We clustered these 24 
principal components using previously described methods 
(http://klustakwik.sourceforge.net; Harris et al., 2000) with the freely available Klusters 
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program (http://klusters.sourceforge.net; Hazan et al., 2006).  We separated pyramidal cells 
and interneurons on the basis of their auto-correlograms, waveforms and mean firing rates 
(Csicsvari et al., 1999a), using freely available Neuroscope software 
(http://neuroscope.sourceforge.net; Hazan et al., 2006).  Well-isolated pyramidal cells with 
stable single place-fields of peak ≥ 5 Hz on the track (on either or both of the left to right, 
and the right to left trajectories) were utilized in subsequent analysis (1256 out of 6491 
clusters, averaging 18.2 ± 6.8 per session, 69 sessions in all: 9 sessions in Rat 1, 40 
sessions in rat 2, and 20 sessions in rat 3; see Fig. S1).  The majority of these cells (989 out 
of 1256) were unidirectional (fired only on left to right, or right to left journeys).   
  
A trajectory was marked when the animal left one reward area platform, traversed the track, 
and entered the other reward area platform.  The locations of the peak firing of neurons in 
each trajectory (left vs. right) were generally stable from trial to trial (about 20 trials of each 
trajectory per session).  Peak in-field firing locations, calculated over the entire session, 
defined a place-field sequence template (average 9.1 members) for each trajectory (Fig. S2, 
top panel).  Data were subsequently analyzed with MATLAB (Mathworks, Natick, MA) 
for each of the two templates separately.  Pre-play and replay sequences were collected only 
when the animal was in one of the two track-end reward areas.  After quickly drinking the 
water reward (in < 1 second), the amount of time animals spent in these areas, pacing, 
sniffing, whisking, grooming, or remaining stationary, was variable across trials and 
sessions, and appeared to be related to their (difficult to ascertain) motivation level.  
Animals spent approximately 82 percent of the time in the reward areas.  When the animal’s 
speed was ≤ 10 cm s –1  (~’immobility’; about 77 percent of the time spent in reward areas), 
pre-play/replay events were detected by searching for silent periods ≥ 60 ms.  If ≥ 5 or ≥ 
30 percent of place-cells (whichever was greater) from a template fired within the next 300 
ms, an event was recorded.  We constructed a sequence for each event, based on the first 
spike-time of each cell within the 300 ms window (mean and median spike-times gave 
similar results; Fig. S10).  We determined the rank-order correlation between these event 
sequences and the corresponding place-field sequence templates.  For each event, we 
constructed 500 shuffled surrogate events by randomizing the cell identity of the spikes; 
this effectively results in a randomized sequence (Fig. S3).  Events were considered 
significant if they were more positively (forward) or negatively (reverse) correlated to the 
place-field sequence than 95 percent of the shuffled events.  In principle, pre-play (prior to 
lap run) and replay (following lap run) of either trajectory sequence, in either a forward or a 
reverse correlated manner, could occur in the reward areas on both sides of the track.  
However, data presented in the main text demonstrated a bias for forward correlated events 
during pre-play and reverse correlated events during replay.  The p-values were then 
calculated for the number of observed significant events based on a binomial distribution of 
probability = 0.05.  Ninety-five percent confidence intervals on the ratio of forward to 
reverse events were calculated using the cumulative binomial distribution function for a 
range of probability ratios and taking only those that were within null range.  In all, 2450 
events were recorded in 3 animals, yielding up to 274 events in a single session (Fig. S1).  
The number of recorded events per session was highly variable (averaging 19 events per 
session, or 0.1 events per second of immobility), and largely contingent on the amount of 
time the animal spent immobile in the reward areas, the amount of training, and the number 
of place-fields recorded in that session. Figure S4 illustrates the time distribution of 
significant events in the reward area, relative to the end or beginning of a lap run.  
  
Ripples detection was previously described (Csicsvari et al., 1999b). First, by band-pass 
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filtering the local field potential from a recording site in the CA1 pyramidal layer the root-
mean-square power was calculated in the 100-300 Hz ripple-band; ripples were detected 
when a threshold of 2 standard deviations (SDs) above the mean was exceeded.  Onset of 
ripples was marked at the point when the ripple power was at 1.5 SDs above the mean.  
Cross-correlations were calculated, for main text Fig. 2a, between the onset (first spike) of 
significant forward and reverse correlated events, and the onset of the ripple events.  We 
detected about 0.2 ripples per second in the reward areas (roughly twice the rate of 
pre/replay events).  
  
Cross-correlograms (CCGs) were constructed for pairs of neurons during pre-play, replay, 
and track running (Fig. S5).  All spikes fired during significantly forward and reverse 
correlated events, and all spikes fired during track running were used.  CCGs were binned 
(1 ms) and smoothed (over 8 bins).  Only pairs with CCGs containing a single peak ≥ 2 
counts were used in the analysis (main text Figs 2b,c).    
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