Efficient Synthesis of Trisimidazole and Glutaric Acid-Bearing Porphyrins: Active-Site Models of Bacterial Nitric Oxide Reductase (NOR)

James P. Collman,* Yi-Long Yan, Jianping Lei, and Peter H. Dinolfo

Department of Chemistry, Stanford University, California 94305-5080

E-mail: jpc@stanford.edu

Supporting Information

General method:

All reactions were performed in oven-dried flasks. Air and moisture-sensitive compounds were introduced *via* syringes through a rubber septum under N_2 atmosphere. All reagents were used as supplied commercially unless otherwise noted. THF were distilled from sodium metal-benzophenone before use. Dichloromethane was distilled over calcium hydride. Flash column chromatography was performed on E. Merck silica gel 60 (230–400 mesh ASTM). Nuclear magnetic resonance spectra were recorded in deuteriochloroform (CDCl₃) unless otherwise indicated, with tetramethylsilane (TMS) as internal standard at ambient temperature on a Varian XL-400 or XL-500 Spectrometer.

Preparation of Imidazolecarboxylic Acid Chlorides 2: Scheme S1:

Reaction conditions: (i) (CH₃O)₃CR, xylene, 130°C, 83–88%; (ii) R=H: (CH₃O)₂SO₂, NaHCO₃; R=Pr: (CH₃O)₃CCH₃, 84–90%; (iii) (a) 2.0 N NaOH, (b) HCl, 75–90%; (iv) (a) Ac₂O, 95–100 °C; (b) SOCl₂, reflux, then CH₃OH, 60–69%; (v) HCl, reflux, 80–93%; (vi) Oxalyl Chloride, CH₃CN, 72–85%.

5-imidazolecarboxylic acid chlorides 2 were prepared following Scheme S1. Synthesis of 5-imidazolecarboxylic acid methyl esters 7 followed a literature procedure with modification as shown in the reaction conditions of Scheme S1.¹

General procedure for transformation of 5-imidazolecarboxylic acid methyl esters 7 to acids 8: To 5-imidazolecarboxylic acid methyl esters 7b (1.60 g, 8.8 mmol) was added concentrated hydrochloride acid (40 mL). The mixture was stirred and refluxed for 3 h. After removal of hydrochloride acid under vacuum, the solid was washed with CH₃CN/Et₂O (v/v 1/1) to give product 5-imidazolecarboxylic acid 8b (1.67 g, 93%). ¹H NMR (500 MHz, DMSO-d6): the carboxylic acid proton was not assigned, δ 8.23 (s, 1H), 3.91 (s, 3H), 2.98 (t, *J* = 7.5 Hz, 2H), 1.71 (m, 2 H), 0.91 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (DMSO-d6): 159.56, 150.76, 124.90, 124.50, 33.25, 25.92, 19.74, 13.27; MS (ESI): m/e = 169.8 [M+H]⁺ for C₈H₁₂N₂O₂; HRMS (ESI) for C₈H₁₃N₂O₂ [M+H]⁺: calcd. 169.0977, found 169.0981.

Characterization of 5-imidazolecarboxylic acid 8a (prepared similarly to **8b**): ¹H NMR (500 MHz, DMSO-d6): the carboxylic acid proton was not assigned, δ 7.87 (s, 1H), 7.58 (s, 1H), 3.82 (s, 3H); ¹³C NMR (DMSO-d6): 161.94, 143.81, 137.20, 124.11, 34.30; MS (ESI): m/e = 126.4 [M]⁺ for C₅H₆N₂O₂; HRMS (ESI) for C₅H₇N₂O₂ [M+H]⁺: calcd. 127.0508, found 127.0502.

General procedure for transformation of 5-imidazolecarboxylic acids 8 to acid chlorides 2: 5-imidazolecarboxylic acid hydrochloride 8b (1.2 g, 5.9 mmol) was stirred in dry CH₃CN (10 mL). Oxalyl chloride (4.0 mL) was added followed by 2 drops of DMF. The reaction was stirred at room temperature for 4 h. After removal of most solvent CH₃CN, dry Et₂O (5 mL) was added. The mixture was stirred for further 10 min. Product 5-imidazolecarboxylic acid chloride hydrochloride 2b (0.95 g, 72%) was collected by filtration. The product was used for next reaction without further purification.

Preparation of Compound 9: Trityl bromide (185 mg, 0.57 mmol) was added to a solution of αααα-TAPP (350 mg, 0.52 mmol) in dry CH₂Cl₂ (100 mL) at 0°C followed by triethylamine (0.2 mL, 1.56 mmol). The mixture was stirred at 0 °C for 2 h then concentrated under vacuum. The residue was purified by chromatography on silica gel with eluent EtOAc/CH₂Cl₂=5/95 to give compound **9** (298 mg, 63%) as a solid. The compound is capable of atropisomerization at room temperature thus should be stored in a freezer. ¹H NMR (500 MHz, CDCl₃): δ 9.05 (s, 4H), 8.98-9.01 (m, 3H), 8.01 (dd, *J* = 1.5, 7.5 Hz, 2H), 7.92 (dd, *J* = 1.5, 7.5 Hz, 1H), 7.64–7.71 (m, 4H), 7.31 (t, *J* = 8 Hz, 1H), 7.22–7.29 (m, 6H), 7.13–7.20 (m, 7H), 6.96–7.04(m, 10H), 6.77 (d, *J* = 8.5 Hz, 1H), 5.28 (s, 1H), 3.61 (s, br, 6H), –2.59 (s, 2H); ¹³C NMR (CDCl₃): δ 146.88, 145.46, 145.13, 135.41, 134.94, 134.81, 129.79, 128.68, 128.26, 127.91, 127.77, 126.90, 126.47, 117.68, 117.62, 116.55, 116.26, 116.00, 115.93, 115.75, 115.35, 115.30, 71.59; MS (ESI): m/e = 917.3 [M+H]⁺for C₆₃H₄₉N₈. HRMS (ESI) for C₆₃H₄₉N₈ [M+H]⁺: calcd.917.4056, found 917.4061.

Preparation of Compound 10a:

1-methyl-5-imidazolecarboxylic acid hydrochloride **8a** (790 mg, 4.86 mmol) was stirred in dry acetonitrile (20 mL). Oxalyl chloride (3 mL) was added followed by 2 drops of DMF. The suspension was stirred at room temperature for 4 h. After removal of one half of the solvent under vacuum, dry diethyl ether (20 mL) was added. The

suspension was stirred for further 10 min. 1-methyl-5-imidazolecarboxylic acid chloride hydrochloride 2a (~ 790 mg) was collected by filtration. The product was used without further purification.

The above 1-methyl-5-imidazolecarboxylic acid chloride hydrochloride 2a (~ 790 mg) was stirred in dry acetonitrile (20 mL) at room temperature. N, N-Diethylaniline (1.1 mL) was added. A solution of compound 9 (430 mg, 0.47 mmol) in dry THF (20 mL) was added dropwise over a period of 1 h followed by further stirring for 30 min. Trace amount of mono- and bisimidazole-substituted porphyrins remained. The mixture was concentrated and washed with saturated NaHCO₃ water solution. After drying over Na₂SO₄ and concentrated. The residue was purified by chromatography on silica gel with eluent CH₃OH/CH₂Cl₂ (40% saturated with NH₃ gas) = 5/95 to give compound **10a** (520 mg, 90%) as a solid. ¹H NMR (500 MHz, CDCl₃): δ 8.87–8.98 (m, 8H), 8.46–8.49 (m, 3H), 8.31 (s, 1H), 8.10 (d, J = 7.5 Hz, 1H), 8.06–8.07 (d, J =7.5 Hz, 3H), 7.84–7.89 (m, 3H), 7.58–7.62 (m, 3H), 7.36 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.05–7.09 (m, 8H), 6.84–6.90 (m, 12H), 67.00 (d, J = 8.5 Hz, 1H), 5.87 (s, 2H), 5.60 (s, 1H), 5.21 (s, 1H), 3.57 (s, 3H), 3.27 (s, 6H), -2.58 (s, 2H); ¹³C NMR (CDCl₃): 8 159.06, 159.00, 144.97, 141.35, 141.21, 138.60, 138.13, 135.58, 135.47, 133.27, 132.90, 132.18, 131.93, 129.75, 128.52, 128.35, 127.78, 127.41, 126.60, 125.75, 125.67, 124.05, 123.55, 117.02, 116.69, 116.54, 115.35, 114.95, 71.55, 33.71, 33.36; MS (ESI): m/e for $C_{78}H_{61}N_{14}O_3$ [M+H]⁺ calcd. 1241.5, found 1241.5. HRMS (ESI) for $C_{78}H_{61}N_{14}O_3$ [M+H]⁺: calcd. 1241.5051, found 1241.5081.

Characterization of 10b (prepared similarly to 10a): A solid; ¹H NMR (500 MHz, CDCl₃): δ 8.83-8.98 (m, 8H), 8.48 (d, J = 7.0 Hz, 1H), 8.35 (d, J = 8.0 Hz, 2H), 8.20–8.34 (m, 2H), 8.13 (d, J = 7.5 Hz, 1H), 7.99 (d, J = 7.5 Hz, 2H), 7.82–7.85 (m, 3H), 7.53–7.61 (m, 3H), 7.35 (d, J = 7.0 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.85–7.00 (m, 17H), 6.64 (d, J = 8.5 Hz, 1H), 6.13 (s, 2H), 5.27 (s, 1H), 5.15 (s, 1H), 3.67 (s, 3H), 3.34 (s, 6H), 2.41 (t, J = 7.0 Hz, 2H), 1.95–1.99 (m, 4H), 1.47–1.51 (m, 2H), 1.16–1.28 (m, 4H), 0.79 (t, J = 7.5 Hz, 3H), 0.61(t, J = 7.5 Hz, 6H), –2.61 (s, 2H); ¹³C NMR (CDCl₃): δ 159.77, 159.45, 152.52, 145.17, 138.82, 138.14, 135.88, 135.76, 135.23, 129.54, 128.56, 128.29, 127.82, 127.55, 126.57, 125.48, 124.06, 116.75, 116.59, 116.38, 115.23, 71.53, 53.50, 31.69, 28.43, 20.83, 20.26, 13.85, 13.70; MS (ESI): m/e for C₈₇H₇₉N₁₄O₃ [M+H]⁺ 1367.8; HRMS (ESI) for C₈₇H₇₉N₁₄O₃ [M+H]⁺: calcd. 1367.6460, found 1364.6467.

Preparation of Compound 11a: To a solution of compound **10a** (100 mg, 0.08 mmol) in dichloromethane (50 mL) was added trifluoroacetic acid (100 μL). The solution was stirred at room temperature for 30 min. After washed with saturated NaHCO₃ water solution and dried over Na₂SO₄, the dichloromethane solution was concentrated. The residue was purified by chromatography on silica gel with eluent CH₃OH/CH₂Cl₂ (40% saturated with NH₃ gas) = 5/95 to give compound **11a** (75 mg, 94%) as a solid. ¹H NMR (500 MHz, CDCl₃): δ 8.86–8.94 (m, 8H), 8.56 (d, *J* = 7.5 Hz, 2H), 8.44 (d, *J* = 7.5 Hz, 1H), 8.12–8.15 (m, 3H), 8.07 (s, 1H), 7.95 (s, 2H), 7.82–7.86 (m, 4H), 7.55–7.60 (m, 4H), 7.12 (t, *J* = 7.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.95 (s, 2H), 6.91 (s, 1H), 5.50 (s, 1H), 5.39 (s, 2H), 3.57 (s, 3H), 3.49 (s, 6H), 3.29 (s, br, 2H, NH₂), -2.56 (s, 2H); ¹³C NMR (CDCl₃): δ 158.99, 158.41, 147.44, 141.24, 138.37, 138.27, 135.45, 135.24, 134.43, 133.07, 132.18, 132.00, 131.09, 129.97, 129.84, 129.71, 125.97, 125.82, 125.63, 124.03, 123.78, 123.60, 122.20, 117.82, 117.15, 115.37, 114.81, 114.59, 33.74, 33.60; MS (ESI): m/e for C₅₉H₄₇N₁₄O₃ [M+H]⁺ 999.4; HRMS (ESI) for C₅₉H₄₇N₁₄O₃ [M+H]⁺: calcd. 999.3956, found 999.3908.

Characterization of 11b (prepared similarly to 11a): A solid; ¹H NMR (500 MHz, CDCl₃): δ 8.81–8.94 (m, 8H), 8.57 (d, J = 8.0 Hz, 2H), 8.39 (d, J = 8.0 Hz, 1H), 8.20 (s, 1H), 8.09–8.14 (m, 3H), 8.05 (s, 2H), 7.81–7.85 (m, 4H), 7.55–7.60 (m, 4H), 7.09–7.13 (m, 2H), 5.47 (s, 2H), 5.35 (s, 1H), 3.54 (s, 5H, CH₃+NH₂), 3.52 (s, 6H), 2.19–2.24 (m, 6H), 1.27–1.33 (m, 6H), 0.63–0.68 (m, 9H), –2.55 (s, 2H); ¹³C NMR (CDCl₃): δ 159.54, 159.02, 152.56, 152.46, 147.60, 138.63, 138.48, 135.54, 135.39, 134.45, 133.34, 132.13, 130.94, 130.42, 129.93, 129.75, 129.58, 126.14, 125.67, 125.38, 124.04, 123.96, 123.53, 122.10, 117.74, 117.10, 115.44, 114.98, 114.67, 31.77, 31.64, 28.44, 20.49, 20.46, 13.68; MS (ESI): m/e for C₆₈H₆₅N₁₄O₃ [M+H]⁺ 1125.5; HRMS (ESI) for C₆₈H₆₅N₁₄O₃ [M+H]⁺: calcd. 1125.5364, found 1125.5347.

Preparation of Compound 13: Pure phenylamine (200 µL, 2.2 mmol) was stirred in dry CH2Cl2 (30 mL). Glutaric anhydride (280 mg, 2.5 mmol) was added followed by NEt₃ (0.9 mL). The reaction mixture was stirred at room temperature for 4 h. The mixture was concentrated and purified by column chromatography on silica gel with eluent CH₃OH/CH₂Cl₂ = 5/95 to give compound **13** (400 mg, 88%) as a solid. ¹H NMR (500 MHz, DMSO-d6): the carboxylic acid proton was not assigned, δ 9.89 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.26 (t, *J* = 8.0 Hz, 2H), 7.00 (t, *J* = 8.0 Hz, 1H), 2.33 (t, *J* = 7.5 Hz, 2H), 2.27 (t, *J* = 7.5 Hz, 2H), 1.79 (m, 2H); ¹³C NMR (DMSO-d6): 170.81, 139.31, 128.71, 123.04, 119.10, 35.45, 20.56; MS (ESI): m/e = 207.9 for C₁₁H₁₄NO₃ [M+H]⁺; HRMS (ESI) for C₁₁H₁₃NO₃Na [M+Na]⁺: calcd. 230.0793, found 230.0782.

Preparation of Compound 14a: To a stirred solution of **11a** (200 mg, 0.2 mmol) in dry THF (30 mL), was added *N*, *N*-diethylaniline (0.16 mL, 1.0 mmol)) followed by methyl 5-chloro-5-oxovalerate (138 mL, 1.0 mmol). The mixture was stirred at room temperature for 1 h. After removal of THF solvent, the residue was re-dissolved in CH₂Cl₂ (60 mL). The solution was washed with saturated NaHCO₃ water solution. CH₂Cl₂ layer was dried over Na₂SO₄ and then concentrated. The residue was purified by chromatography on silica gel with eluent CH₃OH/CH₂Cl₂ (40% saturated with NH₃ gas) = 8/95 to give compound **14a** (195 mg, 86%) as a solid. ¹H NMR (500 MHz, CDCl₃): δ 8.85–8.91 (m, 8H), 8.54 (d, *J* = 8.0 Hz, 2H), 8.37 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 8.5 Hz, 1H), 8.25 (s, 1H), 8.09-8.12 (m, 3H), 7.99 (s, 1H), 7.91–7.94 (m, 3H),

7.83–7.86 (m, 3H), 7.78 (t, J = 7.5 Hz, 1H), 7.56–7.61 (m, 3H), 7.49 (t, J = 7.0 Hz, 1H), 7.02 (s, 2H), 6.94 (s, 1H), 5.61 (s, 1H), 5.16 (s, 2H), 3.66 (s, 6H), 3.58 (s, 3H), 2.79 (s, 3H), 1.49–1.55 (m, 4H), 1.20 (t, J = 7.5 Hz, 2H), -2.55 (s, 2H); ¹³C NMR (CDCl₃): δ 173.03, 171.80, 159.09, 158.51, 141.35, 141.22, 138.46, 138.20, 135.42, 135.20, 135.02, 133.45, 133.38, 132.18, 131.79, 131.61, 129.86, 129.71, 129.55, 125.78, 125.68, 124.79, 124.22, 124.12, 123.83, 122.47, 116.31, 115.22, 115.00, 50.83, 34.90, 33.76, 32.18, 23.89, 20.23; MS (ESI): m/e 1127.5 for C₆₅H₅₅N₁₄O₆ [M+H]⁺; HRMS (ESI) for C₆₅H₅₅N₁₄O₆ [M+H]⁺ calcd. 1127.4429, found 1127.4425.

Characterization of 14b (prepared similarly to 14a): A solid; ¹H NMR (500 MHz, CDCl₃): δ 8.85–8.91 (m, 8H), 8.57–8.59 (d, J = 8.0 Hz, 2H), 8.45 (s, 1H), 8.37 (s, 1H), 8.33 (d, J = 8.5 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 8.00–8.08 (m, 4H), 7.99 (d, 7.5 Hz, 2H), 7.77–7.85 (m, 4H), 7.50–7.59 (m, 4H), 5.50 (s, 1H), 5.01 (s, 2H), 3.66 (s, 6H), 3.57 (s, 3H), 2.37 (s, 3H), 2.29 (t, J = 8.0 Hz, 4H), 2.19 (t, J = 7.5 Hz, 2H), 1.57 (t, J = 6.5 Hz, 2H), 1.34–1.38 (m, 4H), 1.26 (t, J = 7.5 Hz, 2H), 1.15 (t, J = 7.5 Hz, 2H), 0.92 (t, J = 7.5 Hz, 2H), 0.73 (t, J = 7.5 Hz, 6H), 0.65 (t, J = 7.5 Hz, 3H), -2.50 (s, 2H); ¹³C NMR (CDCl₃): δ 172.49, 171.89, 159.67, 159.06, 152.68, 152.43, 138.69, 138.59, 138.33, 135.35, 134.77, 134.66, 133.88, 132.19, 130.84, 129.65, 129.45, 125.71, 125.54, 125.37, 124.73, 124.17, 123.62, 122.62, 116.39, 115.26, 115.09, 50.40, 34.79, 31.77, 28.51, 28.45, 20.58, 20.38, 20.05, 13.70, 13.63; MS (ESI): m/e 1253.6 for C₇₄H₇₃N₁₄O₆ [M+H]⁺; HRMS (ESI) for C₇₄H₇₃N₁₄O₆ [M+H]⁺ calcd. 1253.5838, found 1253.5844.

Preparation of Compound 1: Compound **14a** (85 mg, 0.075 mmol) was dissolved in a mixed solvent of CH₃OH/THF (20 mL, v/v=1/1). Potassium hydroxide (1.0 g) water solution (10 mL) was added. The mixture was stirred at room temperature for 2 h. After removal of organic solvent under vacuum, the mixture was extracted with

CH₂Cl₂ and washed with saturated NaHCO₃ solution. The organic extract was dried over Na₂SO₄ and concentrated. The residue was purified by chromatography on silica with eluent CH₃OH/CH₂Cl₂ (saturated with NH₃ gas)=20/80 to give compound **1a** (73 mg, 87%) as a solid. ¹H NMR (500 MHz, CDCl₃): the carboxylic acid proton is not assigned, δ 8.77–8.94 (m, 8H), 8.71 (d, *J* = 8.0 Hz, 1H), 8.38 (d, *J* = 5.5 Hz, 2H), 8.23 (d, *J* = 7.0 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.07 (s, 1H), 8.03 (d, *J* = 7.0 Hz, 1H), 7.95 (d, *J* = 5.5 Hz, 2H), 7.78-7.88 (m, 5H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.52–7.57 (m, 3H), 7.30 (s, 1H), 6.96 (s, 2H), 6.75 (s, 1H), 5.58 (s, 2H), 4.21 (s, 1H), 3.64 (s, 6H), 3.53 (s, 3H), 1.61 (t, *J* = 6.5 Hz, 2H), 1.12 (t, *J* = 6.5 Hz, 2H), 0.84–0.87 (m, 4H), -2.59 (s, 2H); ¹³C NMR (CDCl₃): δ 174.68, 172.15, 159.27, 157.35, 140.83, 140.27, 138.71, 138.59, 138.23, 136.14, 134.91, 134.34, 132.15, 131.40, 130.34, 130.12, 129.63, 129.50, 128.41, 126.25, 125.98, 125.43, 124.43, 123.96, 123.58, 120.27, 116.81, 113.22, 35.33, 33.73, 33.62, 32.32, 29.75, 20.29; MS (ESI): m/e 1113.4 for C₆₄H₅₃N₁₄O₆ [M+H]⁺; HRMS (ESI) for C₆₄H₅₃N₁₄O₆ [M+H]⁺ calcd. 1113.4273, found 1113.4279.

Characterization of 1b (prepared similarly to 1a): A solid; ¹H NMR (500 MHz, CDCl₃): the carboxylic acid proton is not assigned, $\delta 8.79-8.95$ (m, 9H), 8.44 (s, 2H), 8.40 (s, 2H), 8.14 (d, J = 7.0 Hz, 1H), 8.07 (d, J = 7.5 Hz, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.95 (s, 2H), 7.79–7.88 (m, 5H), 7.55–7.59 (m, 3H), 7.51 (t, J = 7.5 Hz, 2H), 5.60 (s, 2H), 4.51 (s, 1H), 3.69 (s, 6H), 3.54 (s, 3H), 2.31–2.38 (m, 4H), 2.16 (t, J = 7.5 Hz, 2H), 1.60 (t, J = 6.5 Hz, 2H), 1.43–1.45 (m, 4H), 1.12–1.17 (m, 2H), 0.78–0.81 (m, 8H), 0.56 (t, J = 7.5 Hz, 3H), 0.46 (t, J = 6.0 Hz, 2H), -2.56 (s, 2H); ¹³C NMR (CDCl₃): δ 174.67, 172.38, 159.88, 157.94, 152.41, 151.91, 138.81, 138.59, 138.41, 136.14, 135.00, 134.50, 131.33, 131.14, 129.95, 129.47, 127.52, 127.02, 125.91, 125.27, 124.70, 123.74, 123.38, 120.26, 116.99, 113.23, 35.65, 32.41, 31.86, 31.64, 28.58, 28.05, 20.74, 20.27, 20.11, 13.77, 13.52; MS (ESI): m/e 1239.6 for C₇₃H₇₁N₁₄O₆ [M+H]⁺; HRMS (ESI) for C₇₃H₇₁N₁₄O₆ [M+H]⁺ calcd. 1239.5681, found 1239.5709.

Preparation of Compound 15: Freshly prepared imidazole acid chloride hydrochloride **2a** (165 mg, 1.0 mmol) was stirred in dry CH₃CN (10 mL). Aniline (180 μL, 2.0 mmol) was added via a syringe followed by pyridine (240 μL. 3.0 mmol). The reaction was stirred for further 3 h under N₂ atmosphere at room temperature. After removal of solvent, the residue was dissolved in CH₂Cl₂ and washed with NaHCO₃ solution. The organic extract was concentrated and purified by chromatography on silica gel with eluent CH₃OH/CH₂Cl₂ =3/97 to give compound **15** (122 mg, 61%) as a solid. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (s, 1H), 7.60 (s, 1H), 7.54 (d, *J* = 7.0 Hz, 2H), 7.52 (s, 1H), 7.33 (t, *J* = 7.0 Hz, 2H), 7.12 (t, *J* = 7.0 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (CDCl₃): δ 158.60, 142.22, 137.54, 132.14, 129.16, 124.69, 120.44, 34.30; MS (ESI): m/e 201.9 for C₁₁H₁₂N₃O [M+H]⁺; HRMS (ESI) for C₁₁H₁₂N₃O [M+H]⁺ calcd. 202.0980, found 202.0987.

Preparation of Compound 16: To a stirred solution of aniline **12** (0.30 mL, 3.25 mmol) in dry THF (20 mL) was added methyl 5-chloro-5-oxovalerate (0.20 mL, 1.45 mmol) via a syringe followed by pyridine (0.46 mL, 5.8 mmol). The reaction was stirred for further 2 h under N₂ atmosphere at room temperature. After removal of solvent, the residue was dissolved in CH₂Cl₂ and washed with NaHCO₃ solution. The organic extract was concentrated and purified by chromatography on silica gel with eluent CH₃OH/CH₂Cl₂ =3/97 to give compound **16** (262 mg, 82%) as a solid. A solid; ¹H NMR (500 MHz, CDCl₃): δ 7.75 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 3.64 (s, 3H), 2.37–2.41 (m, 4H), 2.01 (p, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃): δ 174.11, 170.94, 138.17, 129.21, 124.49, 120.12, 51.97, 36.58, 33.22, 21.02; MS (ESI): m/e 221.9 for C₁₂H₁₆NO₃ [M+H]⁺; HRMS (ESI) for C₁₂H₁₆NO₃ [M+H]⁺ calcd. 222.1130, found 222.1124.

Reference:

 O'Connell, J. F.; Parquette, J.; Yelle, W. E.; Wang, W.; Rapoport, H. Synthesis, 1988, 767. Figure s1: ¹H NMR spectrum of compound 14a in CDCl₃

Figure s2: ¹H NMR chemical shifts for porphyrin compound **14a** and its non-porphyrin analogues **15**, **16** in CDCl₃

Interpretation of Figure s1 and s2: Compared to those of non-porphyrin analogues, the chemical shifts of substituents closer to the porphyrin ring center are strongly shifted upfield due to the ring current effect of the porphyrin ring. In compound **14a**, the diagnostic imidazole proton 4-Im H strongly shifts upfield 1.99–2.44 ppm when compared with its non-porphyrin analogue **15**, which is much more than that of imidazole 1-NCH₃ (0.27–0.35 ppm), suggesting that 4-Im H is close to the porphyrin center while 1-NMe is located at the porphyrin periphery. The upfield shift (0.81–0.89 ppm) of glutaric methyl ester group on compound **14a** compared to its analogue **16** implies that this glutaric moiety is suspended over the porphyrin plane.

Compound 8a, Low resolution mass analysis

Compound 8a, High resolution mass analysis

Page 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

126 formula(e) evaluated with 1 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yan-5-23 Cone V = 10 Coll V = 10.0 YANYILONG_051207_16390_YAN-5-23_HRMS_36 (1.824) Cn (Cen.4, 80.00, Ar); Sm (SG, 2x3.00); Sb (2,20.00); Cm (3:39) 07-Dec-2005 17:06:36 TOF MS ES+ 127.0502 5.20e3 100-129.0534 % 126.9379 127.1135128.0656 126.0951 131.0532 9.0 130.0 125.0672 132.0910 132.8261 123.0470 124.0974 0 128.0 0 $\overline{}$ 132.0 125.0 124.0 126.0 127.0 123.0 129.0 -1.5 Minimum: 200.0 5.0 120.0 Maximum: Calc. Mass mDa PPM DBE Score Formula Mass C5 H7 N2 O2 ◀───[M+H]⁺ 127.0502 127.0508 -0.6 -4.3 3.5 1

Compound 8b, Low resolution mass analysis

Compound 8b, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

249 formula(e) evaluated with 1 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yar	1-4-37			(Cone V = 30 Coll V = 10.0				07-Dec-2005 16:55:32
YANYILONG_0 100-3	51207_16390_YAN-4	4-37_HRMS 10	06 (5.359) Cn	Cen,4, 80.0) 169.0	00, Ar); Sm (S 981	G, 2x3.00); Sb (2,20.	.00); Cm (106:	115)	OF MS ES+ 1.05e4
% 	0.9126 162.0317	165.082	1 167.104	6	170.1013	171.1000	175.0386	177.0562 179.0758	180.1205
160.0	162.0	164.0	166.0	168.0	170.0	172.0 172	4.0 176	.0 178.0 '	80.0
Minimum: Maximum:		200.0	5.0	-1.5 120.0					
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula			
169.0981	169.0977	0.4	2.3	3.5	1	C8 H13 I	N2 O2 🗲		

Compound 9, Low resolution mass analysis

Compound 9, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

2498 formula(e) evaluated with 25 results within limits (up to 140 closest results for each mass)

Yilong Yan	, Yan-3-63			Co	ne V = 30						05-Dec-2005
YANYILON	NG_051205_16381_YAN-3	-63_HRMS 14	1 (5.970) Cn (Con,4, 80.00, 917.40	Ar); Sm (SG, 2) 61	(3.00); S	Sb (2,20	.00); Cm (13	6:142)		TOF MS ES+ 9.03e3
%= 0=	895.5232 899.5632 895.0 900.0	906.8251 905.0	913.0994 910.0	917.1201	919.4152 920.0	4.7599 925.0	931 	.3968 933.38 	935.0	939.5424 940.0	943.5577
Minimum Maximum	:	200.0	5.0	-1.5 120.0							
Mass	Calc. Mass	mDa	PPM	DBE	Score	Form	ula				
917.406	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.5 \\ 0.5 \\ -0.6 \\ 0.8 \\ 0.9 \\ -1.1 \\ 1.3 \\ -1.4 \\ 1.8 \\ -1.9 \\ -1.9 \\ 2.1 \\ 2.1 \\ 2.2 \\ -2.7 \\ 3.2 \\ 3.2 \\ -3.3 \\ 3.4 \\ -3.8 \\ 3.9 \\ -4.0 \\ 4.5 \\ 4.5 \end{array}$	$\begin{array}{c} 0.5\\ 0.5\\ -0.6\\ 0.8\\ 0.8\\ -0.9\\ -1.2\\ 1.4\\ -1.5\\ 2.0\\ -2.1\\ -2.1\\ 2.3\\ 2.3\\ -2.4\\ -3.0\\ 3.4\\ 3.5\\ -3.6\\ 3.8\\ -4.1\\ 4.3\\ -4.4\\ 4.9\\ 4.9\\ 4.9 \end{array}$	35.0 40.5 38.5 33.5 39.0 40.0 22.0 23.0 27.5 35.5 43.5 38.0 34.0 39.5 27.0 30.5 36.0 43.0 34.5 30.5 47.0 26.5 31.0 36.5	7 8 6 10 9 5 24 25 23 11 4 1 14 12 2 22 16 15 3 17 21 13 20 19 18	C62 C61 C62 C41 C63 C48 C46 C49 C63 C64 C59 C58 C51 C59 C58 C551 C59 C58 C57 C51 C51 C53 C57 C51	H56 H50 H57 H57 H52 H56 H54 H55 H49 H55 H49 H55 H58 H56 H58 H51 H53 H51 H58 H51 H58 H51 H58 H51 H58 H51 H56 H51 H51 H51 H51 H55 H55 H55 H55 H55 H55	N O5 N N8 Na N4 O4 O8 N7 O3 N7 O3 N9 O10 N9 O10 N9 O10 N10 O7 N4 O4 N8 N O5 N3 O7 N10 O2 N2 O2 N7 O8 O8 N3 O7 N10 O2 N7 O3 N5 O N6 O6 N10 O7 N N4 O9 N3 O7 N14 O4 O4 O4 D3 D3 D7 D3 D7 D3 D7 D3 D7 D3 D7 D4 D3 D7 N10 O2 D3 O7 N10 D2 D4	Ia Na Na Na Na Na Na Na Na	[<u>M</u> +H] ⁺	
				19							

Compound 10a, Low resolution mass analysis

Compound 10a, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

4929 formula(e) evaluated with 48 results within limits (up to 140 closest results for each mass)

Yilong Yan, Ya	n-4-26			C	one V = 30			05-Dec-2005
YANYILONG (051205 16381 YA	AN-4-26 HRMS	25 (1.064) C	n (Cen 4-80-00	oll V = 10.0 Ar): Sm (SG 1	2x3 00): Sh (2 2	0.00.); Cm (22:28)	17:29:47 TOE MS ES+
100	001200_10001_1/	44 <u>20</u> 111400	20 (1.004) 0	1241.5	081	2,20,000), 010 (2,2	0.00); 0.11 (22.20)	2.01e4
100					1243.5212	2		
~= 1:	226.2930, 1229.74	57, 1231.3394	1234.3866	3 1241.0222		.1246.5812	1253.5765 1258.5409	1263.4977
0-1-1-1-1-1	1225.0	1230.0	1235.0	1240.0	1245.0	1250.0	1255.0 1260.0	1265.0
Minimum:		200 0	F 0	-1.5				
Max1mum:		200.0	5.0	120.0				
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula		
1241.5081	1241.5081	0.0	0.0	50.5	28	C84 H7(0 N2 O7 Na	
	1241.5081	0.0	0.0	56.0	30	C83 H64	4 N9 O2 Na	
	1241.5078	0.3	0.2	49.0	25	C83 H73	1 N 010	
	1241.5078	0.3	0.2	54.5	27	C82 H65	5 N8 O5	
	1241.5078	0.3	0.3	60.0	29	C81 H59	9 N15	
	1241.5086	-0.5	-0.4	43.5	11	C69 H60	5 N14 O8 Na	
	1241.5086	-0.5	-0.4	66.5	48	C98 H65	5	
	1241.5091	-1.0	-0.8	59.5	32	C83 H61	1 N12 O	
	1241.5091	-1.0	-0.8	54.0	31	C84 H61	7 N5 O6	
	1241.5094	-1.3	-1.1	55.5	33	C85 H60	6 NG O3 Na	
	1241.5067	1.4	1.1	51.0	24	C82 H68	8 N5 06 Na	
	1241.5067	1.4	1.1	56.5	26	C81 H62	2 NI2 O Na	
	1241.5065	1.6	1.3	49.5	21	C81 H65	9 N4 09	
	1241.5065	1.6	1.3	42.0	23	C80 H63	3 NII 04	
	1241.5099	-1.8	-1.5	43.0 63 E	47	COC 1160	S NII O9 NA	
	1241.5062	-2 /	-1 9	59.5	35	C96 H60	8 NG 02	
	1241.5105	-2.4	-1.9	53.5	34	C86 H63	9 N2 07	
	1241.5108	-2.7	-2.1	55.0	36	C87 H68	8 N3 O4 Na	
	1241.5054	2.7	2.2	46.0	18	C81 H72	2 N 010 Na	
	1241.5054	2.7	2.2	51.5	20	C80 H60	5 N8 O5 Na	
	1241.5054	2.7	2.2	57.0	22	C79 H60	0 N15 Na	
	1241.5110	-2.9	-2.3	46.5	3	C71 H69	5 N14 O8	
	1241.5051	3.0	2.4	50.0	17	C79 H61	7 N7 O8 EN (1171+	
	1241.5051	3.0	2.4	55.5	19	C78 H61	1 N14 O3 [M+H]	
	1241.5113	-3.2	-2.5	48.0	4	C72 H64	4 N15 O5 Na	
	1241.5113	-3.2	-2.5	42.5	1	C73 H7(0 N8 O10 Na	
	1241.5046	3.5	2.8	62.5	46	C93 H65	5 N2 O2	
	1241.5118	-3.7	-3.0	58.5	37	C87 H69	5 NG O3	
	1241.5121	-4.0	-3.2	60.0	39	C88 H64	4 N7 Na	
	1241.5121	-4.0	-3.2	54.5	38	C89 H7(0 05 Na	
	1241.5041	4.0	3.3	46.5	15	C79 H7(0 N4 O9 Na	
	1241.5040	4.1	3.3	52.0	16	C78 H64	4 N11 O4 Na	
	1241.5123	-4.2	-3.4	46.0	2	C73 H61	7 N11 O9	
	1241.5038	4.3	3.5	50.5	14	C77 H65	5 N10 07	
	1241.5126	-4.5	-3.6	47.5	45	C/4 H60	5 NIZ OG NA	
	1241.5033	4.8	3.9	63.0	45	C91 H63	3 N5 U	
	1241.5132	-5.1	-4.1	58.0	40	CO9 H6	7 N3 04 5 N4 0 N5	
	1241.5134	-5.5	-4.5	47.0	42	C30 H60	5 N4 0 Na 9 N7 09 N5	
	1241.5027	5.4	4.5	47.0 52 E	13	076 06	$2 N14 \cap 2 N^{-1}$	
	1241.5027	-5.6	-4.5	52.5	1.5	C74 U62	2 N15 O5 Na	
	1241.5137	-5.6	-4.5	45 5	5	C74 H03	9 N8 010	
	1241.5024	5 7	4.6	51 0	10	C75 U63	3 N13 06	
	1241.5024	-5.8	-4 7	47 0	9	C76 463	8 N9 07 Na	
	1241.5022	5.9	4.8	59.5	44	C91 H60	5 N2 O2 Na	
	1241.5019	6.2	5.0	58.0	41	C90 H63	7 N 05	
	1241.5019	6.2	5.0	63.5	43	C89 H6	1 N8	
							-	

Compound 10b, Low resolution mass analysis

Compound 10b, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

4885 formula(e) evaluated with 50 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yar	1-4-39			Co	one V = 30		05-Dec-2005
YANYILONG_0	51205_16381_YAN-4-	39_HRMS 6	(0.261) Cn (C	en,4, 80.00, A	(r); Sm (SG, 2x3.	.00); Sb (2,20.00); Cm (6:9)	TOF MS ES+
100-				130	67.6467 1 1 1369.6	578	2.01e4
% 1347.341	3 4959 4959	4050 400			I 1000.0	1371 6681 4077 0004 4004 7050	1000 5000
04	1352.4052	1356.423	<u>6 1364.37</u> 260.0	1205.0			1366.5603 HITTITT m/z
100	1355.0	I.	560.0	1365.0	1570.0	1575.0 1500.0 150	5.0
Minimum: Maximum:		200.0	5.0	-1.5 120.0			
Mass	Calc. Mass	mDa	РРМ	DBE	Score	Formula	
1367.6467	1367.6462 1367.6462 1367.6473 1367.6473 1367.6473 1367.6476 1367.6476 1367.6449 1367.6449 1367.6486 1367.6486 1367.6486 1367.6486 1367.6489 1367.6489 1367.6489 1367.6431 1367.6436 1367.6503 1367.6503 1367.6503 1367.6503 1367.6503 1367.6503 1367.6513 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6521 1367.6404 1367.6522 1367.6404 1367.6522 1367.6404 1367.6522 1367.6404 1367.6522 1367.6404 1367.6522 1367.6401 136	0.5 0.5 0.6 -0.6 0.7 -0.9 1.8 -1.9 -1.9 -2.2 2.6 -2.7 3.1 -3.3 -3.4 -3.6 3.9 -4.5 -4.6 -4.6 -4.5 -5.1 5.3 -5.4 5.6 -6.2 -6.2 -6.3 -6.2 -6.3 -6.5 -6.2 -6.3 -6.5 -7.5	0.3 0.3 -0.4 -0.4 0.5 -0.6 1.3 -1.4 -1.4 -1.4 1.5 -1.6 1.9 -2.0 2.3 -2.4 -2.5 -2.7 2.9 -2.6 2.7 2.9 -3.0 3.3 -3.4 -3.6 3.7 -3.8 -3.6 3.7 -3.8 -4.0 4.3 -4.0 4.5 -4.6 -4.6 4.6 -4.7 -4.8 -4.8 -4.8 -4.7 -4.8 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.8 -4.7 -4.8 -4.7 -4.8 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.6 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.8 -4.7 -4.8 -4.7 -4.8 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.7 -4.8 -4.8 -4.7 -4.8	46.5 57.0 55.5 49.0 55.5 56.0 55.5 56.0 55.5 56.5 56.5 55.5 56.5 55.5 55	20 21 22 24 23 18 19 26 25 16 17 29 28 27 15 31 30 50 7 13 14 33 22 24 25 16 17 29 28 27 15 31 30 50 7 13 14 33 21 24 25 16 17 29 28 27 15 31 30 50 7 13 14 33 21 24 25 16 17 29 28 27 15 31 30 50 7 13 14 33 21 24 24 25 16 17 29 28 27 15 31 30 50 7 13 14 33 21 24 24 25 16 17 29 28 27 15 31 30 50 7 13 14 33 21 24 25 16 17 29 28 27 15 31 30 50 7 13 14 35 10 38 46 1 44 35 56 41 45 35 10 38 46 1 44 35 56 28 27 28 28 28 28 28 28 28 28 28 28	C90 H90 N 010 Na C89 H84 N8 05 Na C88 H78 N15 Na C89 H81 N11 04 C90 H87 N4 09 C88 H85 N7 08 $(M+H)^+$ C90 H80 N12 0 Na C91 H86 N5 06 Na C91 H86 N5 06 Na C91 H86 N5 06 Na C87 H82 N11 04 Na C90 H77 N15 C91 H83 N8 05 C92 H89 N 010 C86 H83 N10 07 C92 H82 N9 02 Na C93 H88 N2 07 Na C100 H81 N5 0 C78 H84 N14 08 Na C86 H86 N7 08 Na C86 H81 N13 06 C94 H81 N13 06 C94 H81 N13 06 C94 H84 N0 07 Na C100 H84 N2 02 Na C99 H85 N 05 C98 H79 N8 C80 H86 N11 09 Na C84 H84 N10 07 Na C99 H85 N 05 C98 H79 N8 C80 H84 N10 07 Na C94 H81 N9 02 C95 H87 N2 07 C83 H85 N9 010 C84 H84 N10 07 Na C94 H81 N9 02 C95 H87 N2 07 C83 H85 N9 010 C96 H86 N3 04 Na C94 H81 N9 02 C95 H87 N2 07 C83 H85 N9 010 C96 H80 N3 04 Na C98 H82 N5 0 Na C80 H83 N14 08 C97 H83 N4 04 C81 H83 N12 09 C97 H83 N6 03 C81 H83 N12 09 C97 H83 N6 05 Na C82 H88 N8 010 Na C82 H83 N14 08 C97 H83 N4 04 C81 H83 N12 09 C97 H83 N4 04 C81 H83 N12 09 C97 H80 N8 Na C82 H88 N8 010 Na C82 H83 N12 09 C97 H81 N1 05 Na C84 H81 N12 09 C97 H82 N7 Na C98 H88 05 Na C97 H86 N 05 Na C96 H81 N7 03 C90 H81 N1 09 C91 H81 N1 09 C91 H81 N1 09 C	
					5		
				27			

Compound 11a, Low resolution mass analysis

Compound 11a, High resolution mass analysis

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 3897 formula(e) evaluated with 37 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yan-4-27

Cone V = 30 Coll V = 10.0 YANYILONG_051205_16381_YAN-4-27_HRMS 21 (0.895) Cn (Cen,4, 80.00, Ar); Sm (SG, 2x3.00); Sb (2,20.00); Cm (20:30) 999.3908

05-Dec-2005 17:35:21 TOF MS ES+ 1.08e4

100-				999.3	908	4			1.08e4
%-		992,7347	995.3214		_1001.	3971			
ol I I	985.2142 988.2123	1		997.3683	┯╄┯ᡬ᠇ᡪ᠇		06.7918	1011.39691012.3	915/1019.358/
	985.0 99	0.0	995.0	. 10	0.000	1005.0	·	1010.0	1015.0
Minimum:				-1.5					
Maximum:		200.0	5.0	120.0					
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formu	la		
999.3908	999.3910	-0.2	-0.2	46.5	28	C69	H51	N4 04	
	999.3905	0.3	0.3	36.0	18	C54	H50	N13 O6 Na	
	999.3913	-0.5	-0.5	48.0	30	C70	H50	N5 O Na	
	999.3902	0.6	0.6	34.5	22	C53	H51	N12 09	
	999.3915	-0.7	-0.7	34.0	17	C55	H53	N9 010	
	999.3900	0.8	0.8	43.0	24	C69	H54	N O5 Na	
	999.3900	0.8	0.8	48.5	27	C68 .	H48	N8 Na	
	999.3918	-1.0	-1.0	35.5	12	C56	H52 .	N10 07 Na	
	999.3897	1.1	1.1	41.5	21	C68 .	H55	08	
	999.3897	1.1	1.1	47.0	23	067	H49 .	N7 03	
	999.3924	-1.6	-1.6	51.5	32	070	H4/.	N8 N OF	
	999.3924	-1.6	-1.0	46.0	21	C/1 .	H55 . UEA .	N 05	
	999.3891	1./	1.7	31.0	25	053	H54 .	NG OID NA	
	999.3926	-1.0	-1.9	47.5	34	C72 .	H5Z . 1140	NZ OZ NA	
	999.3009	2.9	2.9	35.0	20	CDI	H49 . 1140 .	N12 06	
	999.3929	22	2.1	13.5	20	C67	U52	NI OU Na	
	999.5000	-2.2	-2 4	40.5	6	C57	U4.8	N14 03 Na	
	999 3932	-2.4	-2.4	35.0	7	C58	1140	N7 08 Na	
	999.3884	2.4	2.4	42.0	16	C66	H53	N3 07	
	999.3883	2.5	2.5	47.5	19	C65	H47	N10 02	
	999.3937	-2.9	-2.9	51.0	35	C72	H49	N5 0	
	999.3878	3.0	3.0	31.5	29	C51	H52	N12 09 Na	
	999.3942	-3.4	-3.4	38.5	5	C58	H51	N10 07	
	999.3873	3.5	3.5	38.5	13	C66	H56	08 Na	
	999.3873	3.5	3.5	44.0	15	C65	H50	N7 O3 Na	
	999.3945	-3.7	-3.7	40.0	3	C59	H50	N11 O4 Na	
	999.3945	-3.7	-3.7	34.5	2	C60	H56	N4 O9 Na	
	999.3870	3.8	3.8	42.5	11	C64	H51	N6 O6	
	999.3870	3.8	3.8	48.0	14	C63 .	H45	N13 O	
	999.3951	-4.3	-4.3	50.5	36	C74 .	H51	N2 O2	
	999.3865	4.3	4.3	55.0	37	C78 .	H49	N	
	999.3864	4.4	4.4	32.0	33	C4 9	H50	N15 08 Na [M+	H1+
	999.3956	-4.8	-4.8	43.5	4	C59	H47	N14 03	LT]
	999.3956	-4.8	-4.8	38.0	1	C60 :	H53	N7 08	
	999.3859	4.9	4.9	39.0	8	C64	H54	N3 O7 Na	
	999.3859	4.9	4.9	44.5	10	C63 (H48	N10 O2 Na	

Page 1

Compound 11b, Low resolution mass analysis

Compound 11b, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopi 4454 formula	c Mass, Odd and a(e) evaluated wit	Even Electr h 43 results	on lons within limit	s (up to 14	0 closest resu	ults for	each	mass)			
Vilong Van Vor	4.40			0.0	no V = 20						05 Dag 2005
fliong fan, fan	1-4-40			Co	IIV = 10.0						16:53:50
YANYILONG_0	51205_16381_YAN-4	-40_HRMS 33	8 (1.403) Cn (0	Cen,4, 80.00, . 1125 5	Ar); Sm (SG, 2x3	3.00); Sk	0 (2,20.	00); Cm (29	:38)		TOF MS ES+ 2.66e4
100 %= 1104.79	20			124 8120	1127.5455	1120.90	65 1	124 7280		1117 /67	
01,4.70	³⁹ 1107.7368 1113.	3005	1119.8630	1124.0120		4		134.7309	1140.6078	1147.407	1149.3058
ŭ1105.0	1110.0	1115.0	1120.0	1125.0) 1130.(0	113	5.0	1140.0	1145.0	11111 11/2
Minimum: Maximum:		200.0	5.0	-1.5 120.0							
Mass	Calc. Mass	mDa	РРМ	DBE	Score	Form	ula				
1125.5347	1125.5346	0.1	0.1	51.0	40	C81	H67	N5 O			
	1125.5351	-0.4	-0.3	38.5	4	C67	H69	N10 07			
	1125.5353	-0.6	-0.6	40.0	10	C68	H68	N11 04	Na		
	1125.5354	-0.7	-0.6	34.5	2	C69	H74	N4 O9	Na		
	1125.5340	0.7	0.6	35.0	1	C67	H72	N7 08	Na		
	1125.5340	0.7	0.6	40.5	8	C66	H66	N14 03	Na		
	1125.5337	1.0	0.9	39.0	3	C65	H67	N13 06			
	1125 5335	1 2	1 1	47 5	30	C81	U70	N2 02	Na		
	1125.5555	1 2	1 1	47.5 E0 E	41	C01	1160	N2 02	INCL		
	1125.5559	1 5	-1.1	46.0	41 27	000	1171	NZ OZ			
	1125.5332	1.5	1.3	46.0	37	080	H/I	N OS			
	1125.5332	1.5	1.3	51.5	38	C79	H65	N8		-[M_1] ⁺	
	1125.5364	-1.7	-1.5	43.5	14	C68	H65	N14 O3	•		
	1125.5364	-1.7	-1.5	38.0	9	C69	H71	N7 08			
	1125.5367	-2.0	-1.8	45.0	19	C69	H64	N15 Na			
	1125.5367	-2.0	-1.8	39.5	15	C70	H70	N8 O5	Na		
	1125.5367	-2.0	-1.8	34.0	5	C71	H76	N 010	Na		
	1125.5327	2.0	1.8	35.5	6	C65	H70	N10 07	Na		
	1125.5324	2.3	2.1	34.0	7	C64	H71	N9 010			
	1125.5322	2.5	2.3	48.0	36	C79	H68	N5 O	Na		
	1125.5319	2.8	2.5	46.5	35	C78	H69	N4 04			
	1125.5375	-2.8	-2 5	51 5	42	C86	U70	Na O4			
	1125.5575	-2.0	-2.5	42.0	10	070	1167	N11 04			
	1125.5570	-3.1	-2.7	45.0	10	071	1172	N11 04			
	1125.5570	-3.1	-2.7	37.5	12	071	H/5	N4 09	11-		
	1125.5380	-3.3	-3.0	44.5	23	071	100	NIZ O	Na N-		
	1125.5380	-3.3	-3.0	39.0	20	C72	H/2	N5 06	Na		
	1125.5313	3.4	3.0	36.0	11	C63	H68	N13 06	Na		
	1125.5310	3.7	3.2	34.5	13	C62	H69	N12 09			
	1125.5308	3.9	3.4	43.0	33	C78	H72	N 05	Na		
	1125.5308	3.9	3.5	48.5	34	C77	H66	N8 Na			
	1125.5305	4.2	3.7	41.5	31	C77	H73	08			
	1125.5305	4.2	3.7	47.0	32	C76	H67	N7 O3			
	1125.5391	-4.4	-3.9	48.0	26	C71	H63	N15			
	1125.5391	-4.4	-3.9	42.5	24	C72	H69	N8 05			
	1125 5391	-4 4	-3.9	37 0	17	C73	H75	N 010			
	1125.5304	-4.7	-4.1	44.0	27	073	U69	NG 02	Na		
	1125.5594	-4.7	-4.1	44.0 20 F	27	074	1174	N9 02	Na		
	1125.5594	-4./	-4.2	30.5	10	0/4	H/4	N2 07	Na N-		
	1125.5300	4./	4.2	31.0	10	0.62	H/Z	M9 010	Na		
	1125.5297	5.0	4.4	35.0	21	C60	H67	N15 08			
	1125.5399	-5.2	-4.6	31.5	25	C59	H70	N14 08	Na		
	1125.5295	5.2	4.6	43.5	30	C76	H70	N4 04	Na		
	1125.5399	-5.2	-4.6	54.5	43	C88	H69				
	1125.5292	5.5	4.9	42.0	28	C75	H71	N3 07			
	1125.5292	5.5	4.9	47.5	29	C74	H65	N10 02			
		2.2		25		- / 1		02			
				55							

Compound 13: Low resolution mass analysis

Compound 13: High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

465 formula(e) evaluated with 6 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yan YANYILONG_0 100 - ⊒	-4-44 51205_16381_YAN-4-4	44_HRMS 39	(1.656) Cn (C	Cor Col en,4, 80.00, A 23)	ne V = 30 IV = 10.0 Ar); Sm (SG, 2x3. 0.0782	00); Sb (2,20.00); Cm ((36:37+39))	05-Dec-2005 16:24:02 TOF MS ES+ 7.44e3
% 0 <u>1 216.161</u> 215.0	8 <u>219.1781221.1(</u> 217.5 220.0	222.5	1268 227.0882 225.0	2 229.8758 227.5 2	3 231.0836232.0 30.0 232.5	235.0 237.5	1426 ^{239.1260} 241.1090 2 240.0 242.5	44.2607 m/z 245.0
Minimum: Maximum:		200.0	5.0	-1.5 120.0				
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula		
230.0782	230.0780 230.0777 230.0777 230.0777 230.0790 230.0790 230.0793	0.2 0.5 0.5 -0.8 -0.8 -1.1	1.0 2.2 2.2 -3.6 -3.6 -4.8	6.0 4.5 10.0 9.5 4.0 5.5	4 6 5 3 2 1	C9 H11 N4 O2 C8 H12 N3 O5 C7 H6 N10 C9 H8 N7 O C10 H14 O6 C11 H13 N O3	Na Na _ [M+Na] ⁺	

Compound 14a: Low resolution mass analysis

Compound 14a: High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 1805 formula(e) evaluated with 20 results within limits (up to 140 closest results for each mass)

Yilong Yan, Ya 16129 YANY_051102 100 % 1122.	n-4-34 _16247_ 7551	YAN-4-34_F 1124.80	HRMS 118 (4.)	025) Cn (Cen <u>1 1126,4069</u>	(6, 80.00, Ar); 1127.4425 1	cone V = 30 oll V = 10.0 Sm (SG, 2x3.0 128.4470 112	0); Sb (2,20 9.4534 11;).00); C 30,4475	Cm (108:118)	02-Nov-2005 11:17:05 TOF MS ES+ 5.41e3 1133,3918 1134,7532 _{8/7}
	1	1124.0		1126.0	1128	3.0	1130.0)	1132.0	1134.0
Minimum: Maximum:			200.0	5.0	-1.5 120.0					
Mass	Calc.	Mass	mDa	PPM	DBE	Score	Form	ula		
1127.4425	1127. 12	4424 4429 4416 4437 4411 4442 4402 4451 4397 4456 4456 4456 4456 4456 4464 4384 4384 4384 4384 4370	$\begin{array}{c} 0.1\\ 0.1\\ -0.4\\ 0.9\\ -1.2\\ 1.4\\ -1.7\\ 2.3\\ -2.6\\ 2.8\\ 2.8\\ -3.1\\ -3.1\\ -3.9\\ 4.1\\ 4.1\\ -4.4\\ -4.4\\ 5.5\\ 5.5\end{array}$	0.1 0.4 0.8 -1.1 1.3 -1.5 2.0 -2.3 2.5 2.5 -2.7 -3.5 3.7 -3.9 -3.9 -3.9 4.8 4.8	52.5 58.0 45.5 40.5 57.5 53.0 41.0 57.0 41.0 57.0 44.5 56.5 54.5 54.0 49.5 44.0 49.5 54.5	16 17 2 18 15 4 19 12 14 7 6 20 10 13 8 5 9 11	C80 C79 C65 C64 C81 C78 C67 C62 C83 C77 C76 C68 C69 C85 C74 C75 C74 C70 C71 C72	H59 H55 H59 H557 H577 H577 H577 H57 H51 H55 H59 H59 H59 H59 H55 H617 H51	N2 05 N9 N14 06 N10 010 N6 0 N5 04 N11 07 N13 09 N3 02 N 08 N8 03 N15 03 N8 08 03 N4 07 N11 02 N12 04 N5 09 N7 06 N14 0	-[M+H] ⁺

Compound 14b, Low resolution mass analysis

Compound 14b, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Manajastania Mass. Odd and Evan Electron Jana

4972 formula	a(e) evaluated v	a Even Elec vith 47 result	tron tons is within lim	its (up to '	140 closest i	results for	each	mass)	
Yilong Yan, Yar	า-4-41				Cone V = 30				05-Dec-2005
YANYILONG 0	51205 16381 YAN	-4-41 HRMS	11 (0.473) Cn	(Cen.4. 80.0	0. Ar): Sm (SG	. 2x3.00): Sb	(2.20.	00): Cm (9:12)	TOF MS ES+
100-				1253.58	44	,,	(_,		1.41e4
~		1040 4004 404	0.5000 13	52 2400	1255.5983	3	4.04	22.0014	
12	39.55291240.5896	1246.4834 124	19.5808 12	53.2109		1258.5553	120	52.2914 1267.5167 1270.5172	1275.5854
011111	1240.0	1245.0	1250.0	1	255.0	1260.0		1265.0 1270.0	1275.0
Minimum:				-1.5					
Maximum:		200.0	5.0	120.0					
Mass	Calc. Mass	mDa	PPM	DBE	Score	Form	ıla		
1253.5844	1253.5846	-0.2	-0.1	57.5	42	C90	H73	N6 0	
	1253.5840	0.4	0.3	41.5	9	C76	H78	N8 08 Na	
	1253.5840	0.4	0.3	47.0	10	C75	H72	N15 O3 Na	
	1253.5849	-0.5	-0.4	53.5	43	C92	H78	03 Na FN (+111 ⁺	
	1253.5838	0.6	0.5	45.5	8	C74	H73	N14 06 $\left[\frac{1}{1} \prod \Pi \right]$	
	1253.5851	-0.7	-0.6	45.0	11	C76	H75	N11 07	
	1253.5835	0.9	0.7	54.0	41	C90	H76	N3 O2 Na	
	1253.5854	-1.0	-0.8	46.5	13	C77	H74	N12 O4 Na	
	1253.5854	-1.0	-0.8	41.0	12	C78	H80	N5 O9 Na	
	1253.5832	1.2	0.9	52.5	39	C89	H77	N2 05	
	1253.5832	1.2	0.9	58.0	40	C88	H71	N9	
	1253.5859	-1.5	-1.2	57.0	44	C92	H75	N3 O2	
	1253.5827	1.7	1.4	42.0	7	C74	H76	N11 07 Na	
	1253.5824	2.0	1.6	40.5	6	C73	H77	N10 010	
	1253.5864	-2.0	-1.6	50.0	15	C77	H71	N15 03	
	1253.5864	-2.0	-1.6	44.5	14	C78	H77	N8 08	
	1253.5822	2.2	1.8	54.5	38	C88	H74	N6 O Na	
	1253.5867	-2.3	-1.8	46.0	17	C79	Н76	N9 O5 Na	
	1253.5867	-2.3	-1.8	40.5	16	C80	H82	N2 010 Na	
	1253.5819	2.5	2.0	53.0	37	C87	H75	N5 04	
	1253.5873	-2.9	-2.3	56.5	45	C94	H77	03	
	1253.5813	3.1	2.4	42.5	5	C72	H74	N14 06 Na	
	1253.5875	-3.1	-2.5	58.0	46	C95	H76	N Na	
	1253.5811	3.3	2.7	41.0	4	C71	H75	N13 09	
	1253.5878	-3.4	-2.7	49.5	19	C79	H73	N12 04	
	1253.5878	-3.4	-2.7	44.0	18	C80	н/9	N5 09	
	1253.5808	3.6	2.8	49.5	35	C87	H78	N2 O5 Na	
	1253.5808	3.6	2.8	55.0	36	C86	H72	N9 Na	
	1253.5880	-3.6	-2.9	51.0	21	C80	H/Z	NI3 O Na	
	1253.5881	-3./	-2.9	45.5	20	081	H/8	NG OG NA	
	1253.5806	3.8	3.1	48.0	33	C86	H/9	N 08	
	1253.5000	5.0	3.1	55.5 27 E	24	071	1170	N8 05	
	1253.5000	4.4	3.5	37.5	22	C/1	H/0	NIO OIO NA	
	1253.5891	-4.7	-3.8	49.0	20	C82	UQ1	N2 010	
	1253.5891	-4., / Q	3 9	50.0	32	C85	U76	N5 04 Na	
	1253 5894	-5 0	-4 0	50.5	25	C82	U74	N10 02 Na	
	1253 5894	-5.0	-4 0	45.0	2.5	C83	H80	N3 07 Na	
	1253.5094	5.2	4 1	49.5	30	C84	H00 U77	NA 07	
	1253 5792	5.2	4 1	54 0	31	C83	U71	N11 02	
	1253 5899	-5 5	-1.1	38.0	1	C68	U76	N15 08 Na	
	1253 5000	-5.6	-4.4	61 0	47	C03	175	N SS NA	
	1253.5787	5.7	4.6	38.0	2	C69	Ц76	N13 09 Na	
	1253.5905	-6 1	-4.8	54 0	29	C82	H71	N13 0	
	1253.5905	-6 1	-4.8	48.5	27	C83	H77	N6 06	
	1253.5782	6.2	5.0	45.0	26	C84	H80	N OB Na	
	1253.5782	6.2	5.0	50.5	28	C83	H74	N8 03 Na	
		0.2	2.0		17				
				2	F /				

Compound 1a, Low resolution mass analysis

Compound 1a, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

1811 formula(e) evaluated with 21 results within limits (up to 140 closest results for each mass)

Yilong Yan, ' 16129	Yan-4-35				Cone V = 30 Coll V = 10.0					02-Nov-2005 11:25:01
YANY_0511	02_16247_YAN-4-3	5_HRMS_46 (1.)	575) Cn (Cen,	6, 80.00, Ar); S	6m (SG, 2x3.00)	; Sb (2,20.	00.); Ci	m (46:54)		TOF MS ES+
100-				1113,4279	1114.4316					4.14e4
% 1104	.4045 1105.3994	1107.4110 1	111.4120 111	2,4166	1115.4388 11	16.4241	1118.4	102 1121,403	31 1122.4076	1126.4070 m/z
1104.	0 1106.0	1108.0 11	10.0 111	2.0 1114	.0 1116.0	1118.	0	1120.0 112	22.0 1124.0	1126.0
Minimum:				-1.5						
Maximum:		200.0	5.0	120.0						
Mass	Calc. Mass	mDa	PPM	DBE	Score	Form	ula			
1113.427	9 1113.4281	-0.2	-0.2	57.5	18	C80	H5 3	N6 0	$[M+H]^+$	
	1113.4273	0.6	0.6	45.5	3	C64	H5 3	N14 06	<u> </u>	
	1113.4286	-0.7	-0.6	45.0	4	C66	H55	N11 07		
	1113.4267	1.2	1.0	52.5	16	C79	H57	N2 05		
	1113.4267	1.2	1.0	58.0	17	C78	H51	N9		
	1113.4294	-1.5	-1.4	57.0	19	C82	H55	N3 O2		
	1113.4259	2.0	1.8	40.5	1	C63	H57	N10 010		
	1113.4299	-2.0	-1.8	50.0	8	C67	H51	N15 O3		
	1113.4299	-2.0	-1.8	44.5	5	C68	H57	N8 08		
	1113.4254	2.5	2.2	53.0	15	C77	H55	N5 04		
	1113.4308	-2.9	-2.6	56.5	20	C84	H57	03		
	1113.4246	3.3	3.0	41.0	2	C61	H55	N13 O9		
	1113.4313	-3.4	-3.0	49.5	9	C69	H5 3	N12 04		
	1113.4313	-3.4	-3.0	44.0	7	C70	H59	N5 09		
	1113.4241	3.8	3.4	48.0	12	C76	H59	N 08		
	1113.4241	3.8	3.4	53.5	14	C75	H5 3	N8 O3		
	1113.4326	-4.7	-4.2	49.0	10	C71	H55	N9 O5		
	1113.4326	-4.7	-4.2	43.5	6	C72	H61	N2 010		
	1113.4227	5.2	4.6	48.5	11	C74	H57	N4 07		
	1113.4227	5.2	4.7	54.0	13	C73	H51	N11 02		
	1113.4335	-5.6	-5.0	61.0	21	C87	H55	N		

Compound 1b, Low resolution mass analysis

Compound 1b, High resolution mass analysis

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 4924 formula(e) evaluated with 48 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yar	1-4-43			Col	ne V = 30					05-Dec-2005		
YANYILONG_0	51205_16381_YAN-4-	43_HRMS 12	12 (0.516) Cn (Cen,4, 80.00, Ar); Sm (SG, 2x3.00); Sb (2,20.00); Cm (5:13)									
100-3				1239.	12/1583	81				1.10e4		
% <u>=</u>	420 1224.3391 122	7.6118		1239.0538	1241.000	1244.	5762	4054 244 21253.7982	1055 5007	1000 0000		
0 = 1222.3		12	32.7946		<u>╶╷┦╷┦╷┟╷╷</u>	нÄн		1251.3116	1255.5607	<u>1260.8088</u>		
	1225.0	1230.0	1235.0	12	240.0	1245.0		1250.0	1255.0	1260.0		
Minimum:				-1.5								
Maximum:		200.0	5.0	120.0								
Mass	Calc. Mass	mDa	РРМ	DBE	Score	Form	ula					
1239.5709	1239.5708	0.1	0.1	44.5	15	C77	H75	N8 08				
	1239.5708	0.1	0.1	50.0	17	C76	H69	N15 O3				
	1239.5711	-0.2	-0.1	46.0	18	C78	H74	N9 O5 Na				
	1239.5711	-0.2	-0.1	40.5	16	C79	H80	N2 010 Na				
	1239.5703	0.6	0.5	57.0	45	C91	H73	N3 O2				
	1239.5716	-0.7	-0.6	56.5	46	C93	H75	03				
	1239.5719	-1.0	-0.8	58.0	47	C94	H74	N Na				
	1239.5697	1.2	0.9	41.0	13	C77	H78	N5 O9 Na				
	1239.5697	1.2	1.0	46.5	14	C76	H72	N12 O4 Na				
	1239.5721	-1.2	-1.0	49.5	20	C78	H71	N12 O4				
	1239.5721	-1.2	-1.0	44.0	19	C79	H77	N5 09				
	1239.5694	1.5	1.2	45.0	12	C75	H73	N11 07				
	1239.5724	-1.5	-1.2	51.0	23	C79	H70	N13 O Na				
	1239.5724	-1.5	-1.2	45.5	21	C80	H76	N6 06 Na				
	1239.5692	1.7	1.4	53.5	44	C91	H76	03 Na				
	1239.5689	2.0	1.6	57.5	43	C89	H71	N6 O				
	1239.5684	2.5	2.0	41.5	9	C75	H76	N8 08 Na				
	1239 5684	2.5	2.0	47.0	10	C74	H70	N15 03 Na				
	1239 5735	-2 6	-2 1	49.0	24	C80	H73	N9 05 NG				
	1239 5735	-2.6	-2.1	43 5	22	C81	U79	N2 010	сь <i>с</i> , ттт+			
	1239 5681	2.0	2.1	45.5	8	C73	U71	N14 06 4	M+H			
	1239.5001	-2.0	-2.3	50 5	26	C81	U72	N10 02 Na				
	1239.5737	-2.0	-2.3	45.0	25	C01	U79	N3 07 Na				
	1239.5757	3 0	2.5	54.0	42	C82	U7/	NB O2 Na				
	1239.5679	3.0	2.4	54.0 E2 E	42	000	U75	NO OF				
	1239.5676	3.3	2.7	52.5	40	007	H/5	NZ US				
	1239.5676	3.3	2./	20.0	41	007	109	N1E 00 N-				
	1239.5742	-3.3	-2.7	38.0	11	067	H/4	NIS US NA				
	1239.5/43	-3.4	-2./	61.0	48	C96	H/3	N N11 OZ N-				
	1239.5670	3.9	3.1	42.0	/	C73	H/4	NII O/ Na				
	1239.5748	-3.9	-3.1	54.0	29	081	H69	NI3 U				
	1239.5/48	-3.9	-3.2	48.5	27	082	H/5	N6 06				
	1239.5668	4.1	3.3	40.5	3	C72	H/5	NIU 010				
	1239.5/51	-4.2	-3.4	50.0	30	083	H/4	N/ 03 Na				
	1239.5/51	-4.2	-3.4	44.5	28	C84	H80	08 Na				
	1239.5665	4.4	3.5	54.5	39	C87	H72	NG O NA				
	1239.5663	4.6	3.7	53.0	38	C86	H73	N5 04				
	1239.5756	-4.7	-3.8	37.5	6	C69	H76	N12 O9 Na				
	1239.5657	5.2	4.2	42.5	5	C71	H72	N14 06 Na				
	1239.5761	-5.2	-4.2	53.5	32	C83	H71	N10 O2				
	1239.5762	-5.3	-4.2	48.0	31	C84	H77	N3 07				
	1239.5654	5.5	4.4	41.0	2	C70	H73	N13 O9				
	1239.5764	-5.5	-4.5	49.5	34	C85	H76	N4 O4 Na				
	1239.5652	5.7	4.6	49.5	36	C86	H76	N2 O5 Na				
	1239.5652	5.7	4.6	55.0	37	C85	H70	N9 Na				
	1239.5767	-5.8	-4.6	41.0	4	C69	H73	N15 08				
	1239.5649	6.0	4.8	48.0	33	C85	H77	N 08				
	1239.5649	6.0	4.8	53.5	35	C84	H71	N8 O3				
	1239 5769	-6.0	-4 9	37 0	1	071	U78	N9 010 Na				

Compound 15, Low resolution mass analysis

Page 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

359 formula(e) evaluated with 2 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yan YANYILONG_0	-4-45 51205_YAN-4-45_HRM	1S 56 (2.375)	Cn (Cen,4, 8	Col Col 0.00, Ar); Sm 202.0	ne V = 30 I V = 30.0 (SG, 2x3.00); Sb 987	05-Dec-20 16:16: b (2,20.00); Cm (45:61) TOF MS ES 1.12	05 46 }+ e4
186.09 0	35 193.097 .5 190.0 192.	5 194.9852 5 195.0	199. <u>1</u> 197.5	235	203.0999 205 2.5 205.0	5.0710 211.1018 212.9958 216.9272 218.9240 207.5 210.0 212.5 215.0 217.5 220.0	/z
Minimum: Maximum:		200.0	5.0	-1.5 120.0			
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula	
202.0987	202.0980 202.0994	0.7 -0.7	3.3 -3.4	7.5 7.0	2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Compound 16, High resolution mass analysis

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 120.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

439 formula(e) evaluated with 3 results within limits (up to 140 closest results for each mass)

Yilong Yan, Yan YANYILONG_0 100 - 1	1-4-42 51205_16381_YAN-4-	42_HRMS 10	(0.430) Cn (C	Col Col Cen,4, 80.00, A	ne V = 30 IV = 10.0 Ar); Sm (SG, 2x3. 222.1124	.00); Sb (2,20.(00); Cm (6:11)	05-Dec-2005 16:34:21 TOF MS ES+ 4.41e3
%	⁰ 219.05762 219.00	19.8247 22 220.00	20.7583 221. 	0972 221.9 00	222.90	028,223.1155 223.00	224. <u>1129</u> 224.00	225.1096 225.6772_225.9203 225.00
Minimum: Maximum:		200.0	5.0	-1.5 120.0				
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula		
222.1124	222.1130 222.1117 222.1133	-0.6 0.7 -0.9	-2.8 3.3 -4.0	5.5 6.0 7.0	1 3 2	C12 H16 C10 H14 C13 H15	N 03 4 N4 02 N2 Na	[M+H]

Page 1