Table 1. Passive parameters for the L2/3 neuron models

	Cell 111200A	Cell 141200B	Cell 141200C	Average
$E_{ m rest}$	-75 mV	-75 mV	-75 mV	-75 mV
$R_{ m m}({ m range})$ $\Omega^*{ m cm}^2$	11,900-15,000	16,400-19,300	14,300–16,950	
$R_{ m m}$ (model) $\Omega^* { m cm}^2$	14,000	18,500	16,500	16,333
C _m (range) μF/cm ²	0.83-1.05	0.73-0.86	0.75-0.89	
C _m (model) μF/cm ²	0.89	0.76	0.76	0.8

 $E_{\rm rest}$, the resting potential; $R_{\rm m}$ (range), the specific membrane resistivity, and $C_{\rm m}$ (range), the specific membrane capacitance, are the values that agree with the experimental input resistance and the measured membrane time constant, assuming that the specific axial resistivity, $R_{\rm i}$, may range between 100 and 300 Ω^* cm. For the model used, $R_{\rm i}$ was eventually fixed at 150 Ω cm, and this determined uniquely the values for $R_{\rm m}$ and $C_{\rm m}$ used for the model.