Table 2. Model predictions for L4–L2/3 connections synaptic parameters

	Cell 111200A	Cell 141200B	Cell 141200C	Average
AMPA				
$g_{\rm syn}$ (nS)	0.22	0.1	0.48	0.26
τ_1 (ms)	0.28	0.22	0.18	0.22
τ_2 (ms)	1.38	1.37	0.32	1
t _{peak} (ms)	0.56	0.48	0.24	0.43
NMDA				
$g_{\rm syn}$ (nS)	0.24	0.2	0.23	0.22
τ_1 (ms)	0.56	0.15	0.16	0.29
τ_2 (ms)	44.3	42	43.5	43
t _{peak} (ms)	2.54	0.85	0.9	1.43

 g_{syn} is the maximal conductance for individual synaptic contact; τ_1 and τ_2 are the time constants that govern the double-exponent function describing the receptor's kinetics, and t_{peak} is the time to peak of the synaptic conductance change. Equations used are given in *SI Text*.

Note that in two cells the time constant, τ_1 , for the rising phase of the AMPAR response is slightly longer than that of the NMDAR response. This seems to be in contrast to the notion that the AMPAR reacts faster than the NMDAR. However, as shown in Eq. 4, the time-to-peak (t_{peak}) of the conductance change is determined by both τ_1 and τ_2 . Indeed, the time to peak for the NMDA conductance in our model is by 1-2 ms longer than that for the AMPA conductance in the three modeled cells