SI Text

Appendix 1. Modeling L4-to-L2/3 synaptic connection

The synaptic current was simulated as

$$I_{syn} = g_{syn}(t, V) * (V - E_{syn}) , \qquad [1]$$

where $g_{syn}(t, V)$ is the synaptic conductance change, and E_{syn} is the reversal potential for the synaptic current.

The conductance change for both the AMPA and NMDA components is modeled as

$$g_{syn}(t,V) = B * g_{max} * N * (\exp(-t/\tau_2) - \exp(-t/\tau_1)),$$
 [2]

where g_{max} is the peak conductance, and N is a normalization factor given by

$$N = \frac{1}{\exp(-t_{peak}/\tau_2) - \exp(-t_{peak}/\tau_1)}$$
 [3]

So that when $t = t_{peak}$, $g_{syn} = g_{max}$

 t_{peak} (the time to peak of the synaptic conductance) is

$$t_{peak} = \frac{\tau_1 * \tau_2}{\tau_2 - \tau_1} * \log \frac{\tau_2}{\tau_1} , \qquad [4]$$

for the AMPA component, B = 1, whereas for the NMDA component

$$B = \frac{1}{(1 + \exp 0.00062 / mV * (-V)) * ([Mg^{+2}]/3.57(mM))}, \quad [5]$$

where $[Mg^{2+}]$ is extracellular concentration of Mg²⁺ ions and was taken to be 1 mM (1, 2).

Appendix 2. Nonlinear properties of L2/3 modeled neurons

The Hodgkin and Huxley (3) formalism was used for describing the voltage-gated channels.

For the Ca^{2+} -dependent potassium channel, the change in intracellular calcium concentration $[Ca^{2+}]_i$ was modeled as

$$\frac{d\left[Ca^{2+}\right]}{dt} = \frac{I_{Ca}}{\tau_a} - \frac{\left[Ca^{2+}\right]}{\tau_b}, \qquad [1]$$

where τ_a is the time constant for calcium buffering [$\tau_a = 21$ in units of 1/(mM/ms/mA)], I_{Ca} is L-type calcium current, and τ_b is the time constant ($\tau_b = 107$ ms) of Ca²⁺ diffusion.

1. Destexhe A, Mainen ZF, Sejnowski TJ (1994) J Comput Neurosci 1:195-230.

2. Zador A, Koch C, Brown TH (1990) Proc Natl Acad Sci USA 87:6718-22.

3. Hodgkin AL, Huxley AF (1952) J Physiol 117:500-44.