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Enzyme kinetic modelling as a tool to analyse the behaviour
of cytochrome P450 catalysed reactions: application to
amitriptyline N-demethylation
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1 To determine kinetic parameters (Vmax, Km) for cytochrome P450 (CYP)
mediated metabolic pathways, nonlinear least squares regression is commonly
used to fit a model equation (e.g., Michaelis Menten [MM]) to sets of data
points (reaction velocity vs substrate concentration). This method can also be
utilized to determine the parameters for more complex mechanisms involving
allosteric or multi-enzyme systems. Akaike’s Information Criterion (AIC), or
an estimation of improvement of fit as successive parameters are introduced
in the model (F-test), can be used to determine whether application of more
complex models is helpful. To evaluate these approaches, we have examined
the complex enzyme kinetics of amitriptyline (AMI) N-demethylation in vitro
by human liver microsomes.

2 For a 15-point nortriptyline (NT) formation rate vs substrate (AMI)
concentration curve, a two enzyme model, consisting of one enzyme with MM
kinetics (Vmax=1.2 nmol min−1 mg−1, Km=24 m) together with a sigmoidal
component (described by an equation equivalent to the Hill equation for
cooperative substrate binding; Vmax=2.1 nmol min−1 mg−1, K∞=70 m; Hill
exponent n=2.34), was favoured according to AIC and the F-test.

3 Data generated by incubating AMI under the same conditions but in the
presence of 10 m ketoconazole (KET), a CYP3A3/4 inhibitor, were consis-
tent with a single enzyme model with substrate inhibition (Vmax=0.74 nmol min−1 mg−1, Km=186 m, K1=0.0028 m−1).

4 Sulphaphenazole (SPA), a CYP2C9 inhibitor, decreased the rate of NT
formation in a concentration dependent manner, whereas a polyclonal rat
liver CYP2C11 antibody, inhibitory for S-mephenytoin 4∞-hydroxylation in
humans, had no important effect on this reaction.

5 Incubation of AMI with 50 m SPA resulted in a curve consistent with a two
enzyme model, one with MM kinetics (Vmax=0.72 nmol min−1 mg−1, Km=54 m) the other with ‘Hill-kinetics’ (Vmax=2.1 nmol min−1 mg−1, K∞=195 m;
n=2.38).

6 A fourth data-set was generated by incubating AMI with 10 m KET and
50 m SPA. The proposed model of best fit describes two activities, one
obeying MM-kinetics (Vmax=0.048 nmol min−1 mg−1, Km=7 m) and the
other obeying MM kinetics but with substrate inhibition (Vmax=0.8 nmol min−1 mg−1, Km=443 m, K1=0.0041 m−1 ).

7 The combination of kinetic modelling tools and biological data has permitted
the discrimination of at least three CYP enzymes involved in AMI
N-demethylation. Two are identified as CYP3A3/4 and CYP2C9, although
further work in several more livers is required to confirm the participation of
the latter.
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Introduction To elucidate the complex metabolic mechanisms of
AMI N-demethylation we applied a sequence of model
equations of increasing complexity and number ofThe biotransformation of many drugs is mediated by

cytochrome (CYP) isoforms. The primary site of these parameters to a 15-point nortriptyline (NT) formation
rate vs AMI concentration curve. In addition wemetabolic transformations is the smooth endoplasmic

reticulum of the liver, although several other tissues evaluated these models of NT formation in the presence
of chemical inhibitors and an inhibitory antibody.have been shown to express CYP isoforms [1–4]. Using

microsomal preparations of human liver tissue, the
enzyme kinetics of individual metabolic pathways can
be characterised [5–9]. Enzymatic activity is typically
expressed in the form of the kinetic parameters Vmax Methods
(maximal formation rate) and Km (Michaelis constant)
which are estimated by measuring product formation Chemicals
rates under initial rate conditions over a range of
substrate concentrations. Computers facilitate fitting AMI and NT were purchased from Sigma, St Louis,

MO. Sulphaphenazole (SPA) was from RBI, Natick,model rate-equations directly to these data points and
eliminate the necessity of transforming data via recipro- MA. Ketoconazole (KET) was kindly provided by the

Janssen Research Foundation, Beerse, Belgium. Thecal equations. Such transformations may introduce
problems associated with distortion of error terms and cofactors NADP, (±)-isocitric acid, MgCl2, and isocitrate

dehydrogenase were from Sigma, as was the potassiumexaggeration of small values [10]. Specifically, nonlinear
regression also allows fitting of experimental data to phosphate salt used in buffer solution. All organic

solvents were of reagent grade.model equations associated with more complex mechan-
isms involving allosteric and/or multi-enzyme systems.

In many cases the investigator is primarly interested
in deriving inhibition constants, and accurate modelling Source of human liver sample and preparation of

microsomesof formation rates is not of major concern. The most
commonly used approach is to employ a Michaelis
Menten (MM) equation with formation rate data, from The liver sample, obtained from the International

Institute for the Advancement of Medicine (Exton, PA,which inhibition constants are readily derived. This
approach does not require many data points since only USA), was from a transplant donor without known

liver disease. The tissue was partitioned and kept atthree parameters are iterated, namely Vmax, Km and K1(inhibition constant). −80° C until the time of microsome preparation, as
described previously [14, 15].We have recently established that the N-demethylation

of amitriptyline (AMI) is mediated by at least two The protein concentration in the microsome sample
was determined using the Bicinchoninic Acid Proteinenzymes in vitro [5], one of which is CYP3A3/4. Even

though only eight data points were used, it was evident Assay (BCA-Pierce). Bovine serum albumin was used
as standard.that NT-formation rates were better fitted by a model

describing allosteric behavior of the enzyme (Hill- Enzyme activities for index reactions reflecting
CYP1A1/2, CYP2D6, CYP2C9, CYP2C19, CYP2E1equation). This finding led us to investigate whether

enzyme kinetic modelling could be used to explore and CYP3A3/4 for this liver are reported elsewhere [6].
complex metabolic mechanisms as applied to amitripty-
line (AMI) N-demethylation in a representative human
liver sample. Clearly the selection of a model to explain Source of antibody
a particular set of data will not be based entirely on
numerical considerations. Of central importance is the The polyclonal rabbit-derived rat liver CYP3A1 anti-

body serum and the rabbit control serum were purchasedbiochemical plausibility of the model, as well as its
consistency with other biological evidence [10]. from Human Biologics, Inc., Phoenix, Arizona [6, 16].The polyclonal goat anti-rat liver CYP2C11 antibodyThe use of more complex model equations requires
additional iterated parameters which typically improve serum and the control goat serum were from Gentest

Corporation, Woburn, MA, USA [6].the goodness of fit [10]. Two methods are commonly
applied to assess the fit of more complex models: 1 ) the
F-test, which evaluates the statistical significance of
any improvement produced by the introduction of Incubation condititions
an additional parameter [10, 11]; and 2) Akaike’s
Information Criterion (AIC), a numeric index reflecting Enzyme kinetic and chemical inhibitor studies Incu-

bation mixtures contained 50 m potassium phos-the information value of adding further parameters
[12, 13]. phate buffer (pH adjusted to 7.5 at 25° C). AMI

© 1996 Blackwell Science Ltd British Journal of Clinical Pharmacology 41, 593–604



Enzyme kinetic modelling 595

(2.5–500 m), 0.5 m NADP, 3.75 m (±)-isocitric acid, required microsomal enzymes. The identity of NT was
verified by comparing its retention time with that of an1 unit ml−1 of isocitrate dehydrogenase and 5 m Mg2+

in the presence or absence of KET (10 m) and/or SPA authentic standard.
(50 m). Incubation mixtures with SPA (1–100 m)
contained a fixed concentration of AMI (100 m). Final
volumes were 250 ml, with a microsomal protein concen-

Data analysistration of 200 mg ml−1. Solutions of AMI, NT and the
inhibitors were prepared in methanol. The solvent was

All reaction velocities were based on a 20 min incu-evaporated to dryness prior to addition of cofactors.
bation, which falls within the linear time period of theSubstrate, inhibitors, incubation buffer, and cofactors
reaction and allows the assumption of initial ratewere preincubated at 37° C for 5 min, and reactions
conditions. Rates were expressed in nmol−1min−1mgwere initiated by the addition of microsomes.
protein. The mean of duplicate data points consistingIncubations were performed for 20 min at 37° C, and
of NT reaction velocities (v) at varying concentrationsstopped by the addition of 50 ml of 1 N hydrochloric
of the substrate AMI (S) with or without the inhibitoracid and cooling on ice. Desipramine was then added
KET were fitted without weighting by derivative-freeas an internal standard, and the mixture was spun at
iterative nonlinear least-squares regression [17] to the16000 g for 5 min in a Micro-MB centrifuge.
following equations:Supernatants were injected into the h.p.l.c. All incu-
—a one enzyme model MM equation (two parameters):bations were performed in duplicate.

v=VmaxΩS/ (Km+S) (1)
Immunoinhibition studies Using the same incubation
buffer as described above, microsomes and either —a one enzyme model Hill equation (three parameters):
antibody serum or control serum were preincubated at
37° C for 20 min with 100 m AMI. Reactions were then v=VmaxΩSn /(K∞n+Sn) (2)
initiated by the addition of the cofactors to a final

—a one enzyme MM model with substrate inhibitionvolume of 250 ml. Incubations were performed for 20 min
(three parameters):at 37° C, and the incubation mixtures processed as

described above. Owing to limited antibody availability,
v=VmaxΩS/ (Km+S+1/K1ΩS2) (3)only single incubations were performed.

—a two enzyme model, both MM (four parameters):

Analysis of nortriptyline by h.p.l.c. v=Vmax(1)ΩS/ (Km(1)+S)+Vmax(2)ΩS/(Km(2)+S) (4)

Concentrations of NT were determined using h.p.l.c. —a two enzyme model consisting of a MM and a Hill
with ultraviolet detection (Waters Associates, Milford, equation (five parameters):
MA). A 30 cm×3.9 mm steel C18 mBondapack column

v=Vmax(1)ΩS/(Km+S)+Vmax(2)ΩSn /(K∞n+Sn) (5)and a Lambda-Max Model 480 LC ultraviolet spectro-
photometer, set at a wavelength of 220 nm, were used.

—a two enzyme model consisting of a MM and a MMThe mobile phase consisted of 35% acetonitrile and
equation with substrate inhibition (five parameters):65% 50 m potassium phosphate buffer (pH 6) and run

at a flow rate of 1.4 ml min−1. Standard curves were v=Vmax(1)ΩS/(Km(1)+S) (6)prepared by adding incubation buffer and internal +Vmax(2)ΩS/ (Km(2)+S+K1ΩS2)standard (desipramine) to known amounts of NT,
yielding a final volume of 250 ml. The inhibitors KET —a two enzyme model consisting of two Hill equations
and SPA did not interfere with the assays. The between- (six parameters):
day coefficient of variation for identical samples (left
for 36 h at room temperature) was less than 3%. v=Vmax(1)ΩSn(1)/ (K∞(1)n(1)+Sn(1))
Chromatograms were analyzed by measuring peak +Vmax(2)ΩSn(2) /(K∞(2)n(2)+Sn(2)) (7)height utilizing the internal standard method. The limit
of detection was 0.05 nmol NT for each incubation —a two enzyme model consisting of a Hill equation
sample. Average coefficient of variation for duplicate and a MM equation with substrate inhibition (six
standard curve data points was 3.42% (range 0–8%), parameters):
and for control curve data points 4.46% (range
0.3–15%). The coefficient of variation of six identical v=Vmax(1)ΩS/ (Km+S+K1ΩS2)+Vmax(2)ΩSn/ (K∞n+Sn)
samples at 0.1 nmol NT was 5.24%, at 1 nmol was (8)
3.82%, and at 10 nmol was 1.6%.

Km(1) is the substrate concentration at which the reaction
velocity is 50% of Vmax(1). K1 [18] is a constant
indicating the degree of substrate inhibition and is equalIdentification of metabolites
to 1/KIS [19]. n(i) is equivalent to the Hill-coefficient
for cooperative substrate binding. K∞ [20] is theIncubations without microsomes were used to verify

that formation of the observed metabolic products substrate concentration at which the reaction velocity
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equals 50% of Vmax and is therefore equivalent to Km tions 5, 7, and 8 produced residuals that are more
evenly scattered.derived by the MM equation. The combination of two

enzymes with substrate inhibition did not yield a The formation of NT in the presence of 10 m
ketoconazole was consistent with a model of substrateconvergent solution for any dataset. For all models

(except equation 4, which did not provide improvement inhibition according to the velocity-plot and the Eadie-
Hofstee plot (Figures 3a, b). Statistical analysis ofin the sum of squared residuals for any dataset), an

F-test was performed and the AIC applied. Starting the fitted parameters obtained from equations 1 to 5
(equations 6, 7, and 8 did not converge) also supportedwith the equation with the fewest parameters (equa-

tion 1), the equation with the next higher number of the use of this model (Table 2). However, the residuals
generated by equation 3 were only approximatelyparameters was applied, as long as goodness of fit

continued to improve as indicated by AIC and the F-test. random (Figure 4).
The polyclonal rat liver CYP2C11 antibody, whichImmunoinhibition data were expressed as the percent-

age of the formation rate in the presence of antibodies specifically inhibits S-mephenytoin 4∞-hydroxylation and
to a lesser extent phenytoin 4-hydroxylation in humanor control serum of that of the formation rate without

antibodies. microsomes [6], produced no significant inhibition
of AMI N-demethylation. However, SPA, a specific
CYP2C9 inhibitor, decreased NT formation in a concen-
tration dependent manner (Figure 5).

The Eadie-Hofstee plot of NT formation in presenceResults
of 50 m SPA (Figure 6b) displayed a biphasic pattern
with a low affinity component exhibiting a convexThe Eadie-Hofstee plot of NT formation rate without

inhibitor displayed a slight outward (convex) curvature curvature and a linear high affinity component. The
F-test as well as AIC suggested a two enzyme model(Figure 1b). Nevertheless the plot of reaction velocity vs

substrate concentration did not show a sigmoid shape consisting of a MM and Hill equation (equation 5;
Table 3). Fitting equations 3 and 6 to the obtained datafor the very low substrate concentrations (2.5 to 25 m;

Figure 1a, insert) . Fitting these data points with equa- points did not yield a convergent solution. Although
the plot of normalized residuals vs predicted valuestions 1–6, the two enzyme model consisting of a MM

and Hill equation (five parameter model ) fitted better (Figure 7), did not result in an ideal horizontal scattering
of the data points, equation 5 appeared to be superiorthan the three parameter models, whereas the two six-

parameter models provided no further improvement in compared to equations 1–4 and similar to equations 7
and 8.goodness of fit (F-test; Table 1). Fitting equation 6 to

the obtained data points did not yield a convergent Adding fixed concentrations of 10 m KET and 50 m
SPA to varying AMI concentrations revealed an Eadie-solution. Equation 5 was also favored by AIC (smallest

value; Table 1). In the plot of normalized residuals (ratio Hofstee plot which also displayed a slight biphasic
pattern (Figure 8b). There was a low-affinity componentof residual over predicted value) vs predicted values

(Figure 2), equations 1–4 do not appear to form a consistent with a model of substrate inhibition along
with an equivocal high-affinity site. According to therandomized horizontal band of points, whereas equa-
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Figure 1 Plot of NT-formation rate vs AMI concentration (a) and Eadie-Hofstee plot (b) for uninhibited NT-formation rates.
The solid line in both graphs represents the curve of best fit as iterated with equation 5. The broken line joins the points with
respect to increasing substrate concentration. Insert: magnification of the graph at low AMI concentrations.
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Table 1 Kinetic parameters and statistical evaluation of NT formation without inhibitor

Model Vmaxa Kma; K∞a na; K1a Vmaxb Kmb; K∞b nb; K1b AICc Comp.d Fe F{0.05}f

Eq. 1 4.0 80 −14.5 Eq. 2 18.0 4.75
Eq. 3 26.3 4.75

CVg 4.2 12
Eq. 2 3.4 58 1.35 −26.2 Eq. 5 6.6 4.1
CVg 3.3 7.9 7
Eq. 3 5.9 146 0.0012 −29.9 Eq. 5 4.1 4.1
CVg 10.8 17 31
Eq. 4 0.8 80 3.1 80 −10.5
CVg >106 >106 >106 >106
Eq. 5 1.2 24 2.1 70 2.3 −34.8 Eq. 7 0.3 5.12

Eq. 8 0.03 5.12
CVg 143 182 76 8.9 43
Eq. 7 0.5 7.3 1.7 2.7 68 2.11 −33.4
CVg 80 98 82 18 12 18
Eq. 8 1.1 23.3 0.0001 2.2 71̄ 2.25 −32.9
CVg 164 206 566 83 13 47

Equation 6 did not yield a convergent solution. Equation 4 was not included in the comparison with the F-test because it
provided values for the sum of squared residuals which were identical as for equation 1. Vmax in nmol min−1 mg−1 protein; Km,
K∞ in m; K1 in m−1; n arbitrary units; a: first enzyme; b: second enzyme; c: Akaike’s information criterion; d: comparison to the
equation indicated; e: F-value for the indicated comparison; f: critical F-value for a=0.05; g: coefficients of variation, in percent
(estimated by the nonlinear regression software).
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Figure 2 Residual plots for the iterations of model-equations 1–5, 7 and 8 of uninhibited NT-formation rates.

AIC, equation 8 was to be preferred. This is a model that equation 6 fit better than the three parameter
models. No further improvement was achieved with thereflecting two enzymes, one with substrate inhibition

and one with ‘Hill-kinetics’ (Table 4). The F-test showed six-parameter models. The residual plots of equations 6,
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Figure 3 Plot of NT-formation rate vs AMI concentration (a) and Eadie-Hofstee plot (b) for NT-formation in presence of
10 m KET. The solid line in both graphs represents the curve of best fit as iterated with equation 3. The broken line joins the
points with respect to increasing substrate concentration.
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Figure 4 Residual plots for the iterations of model-equations 1–5 of NT-formation rates in presence of 10 m KET.

and 8 appeared to be randomly distributed (Figure 9). Discussion
Equation 7 did not yield a convergent solution.

Coefficients of variation (CV), determined as the Many metabolic pathways are mediated by more than
one CYP enzyme, and reciprocal plots (e.g., Eadie-standard error divided by the parameter estimate

(percent) as provided by the iterative computer program Hofstee or Lineweaver-Burk plot) often provide evidence
that single enzyme MM kinetics are not applicable for[17], were 30% for equations 1–3, between 400 and

>106 for equation 4. With regard to the favoured a particular pathway [21]. In addition, fitting data with
a model equation not reflecting the ‘true‘ distribution ofequations, CV were smaller than 200% for AMI without

inhibitor, smaller than 30% for AMI with KET, smaller the data points yields interdependent residual errors
which deviate from a normal distribution with a non-than 90% for AMI with SPA, and very high for AMI

with KET and SPA for equation 8 with a CV up to zero mean [22].
The NT formation rate profile displayed a convex2500% but smaller than 100% for equation 6.
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pattern in the scattering of the data points in the Eadie
Hofstee plot. Therefore NT formation was not consistent
with a single (equation 1) or double MM equation
(equation 4). Instead a model was required that
integrates a sigmoidal shape in the constructed curve.
Such a model is the Hill equation for cooperative
substrate binding (equation 2). It reflects a setting in
which binding sites can cooperate with each other [23]
and where the coefficient n represents the degree of
cooperativity. CYP3A3/4 is known to exhibit cooperativ-
ity [5, 14, 24, 25], and there is evidence for binding of
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Table 2 Kinetic parameters and statistical evaluation of NT formation in presence of 10 m KET

Model Vmaxa Kma; K∞a na; K1a Vmaxb Kmb; K∞b nb; K1b AICc Comp.d Fe F{0.05}f

Eq. 1 0.35 61 −66.7 Eq. 2 3.6 4.75
Eq. 3 61.7 4.75

CVg 6 19
Eq. 2 0.32 47 1.32 −68.7 Eq. 5 1.8 4.1
CVg 6.8 18 16
Eq. 3 0.74 186 0.0028 −91.1 Eq. 5 −3.2h 4.1
CVg 16 22 30
Eq. 4 0.09 61 0.27 61 −62.7
CVg >106 >106 >106 >106
Eq. 5 0.14 19 0.16 73 2.89 −69.4
CVg 139 218 109 21 87

Equations 6–8 did not yield a convergent solution. Equation 4 was not included in the comparison with the F-test because it
provided values for the sum of squared residuals which were identical as for equation 1. Vmax in nmol min−1 mg−1 protein; Km,
K∞ in m; K1 in m−1; n arbitrary units; a: first enzyme; b: second enzyme; c: Akaike’s information criterion; d: comparison to the
equation indicated; e: F-value for the indicated comparison; f: critical F-value for a=0.05; g: coefficients of variation, in percent
(estimated by the nonlinear regression software); h: a negative value for F indicates that the sum of squared residuals of the
model with the higher number of parameters is greater than the sum of squared residuals for the model with fewer parameters.
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the points with respect to increasing substrate concentration.
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Table 3 Kinetic parameters and statistical evaluation of NT formation in presence of 50 m SPA

Model Vmaxa Kma; K∞a na; K1a Vmaxb Kmb; K∞b nb; K1b AICc Comp.d Fe F{0.05}f

Eq. 1 4.9 431 −31.2 Eq. 2 9.5 4.75
CVg 9.6 16
Eq. 2 3.4 221 1.32 −38.0 Eq. 5 22 4.1
CVg 8.8 15 8.1
Eq. 4 1.8 431 3.1 431 −27.2
CVg 810 1325 460 753
Eq. 5 0.7 54 2.1 195 2.38 −59.3 Eq. 7 0.2 5.12

Eq. 8 0.9 5.12
CVg 66 86 23 4.4 17
Eq. 7 0.9 81.6 0.9 1.9 194 2.41 −57.6
CVg 388 624 69 132 8.7 54
Eq. 8 1.2 108.0 0.0017 2.1 217 2.51 −58.8
CVg 161 153 14030 2020 179 432

Equations 3 and 6 did not yield a convergent solution. Equation 4 was not included in the comparison with the F-test because
it provided values for the sum of squared residuals which were identical as for equation 1. Vmax in nmol min−1 mg−1 protein;
Km, K∞ in m; K1 in m−1; n arbitrary units; a: first enzyme; b: second enzyme; c: Akaike’s information criterion; d: comparison to
the equation indicated; e: F-value for the indicated comparison; f: critical F-value for a=0.05; g: coefficients of variation, in
percent (estimated by the nonlinear regression software).
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Figure 7 Residual plots for the iterations of model-equations 1–5, 7 and 8 of NT-formation rates in presence of 50 m SPA.

formation rate vs AMI concentration curve with 15 data is mediated by CYP3A3/4 [5]. It is evident that at least
one other enzyme is involved in this metabolism. Apoints, a larger number of data points than would

usually be obtained, to allow fitting of more complex contribution of CYP1A1/2 and CYP2D6 to this reaction
was effectively ruled out, since AMI-demethylation wasmodel equations with additional iterated parameters.

The superiority of equation 5 was clearly indicated by not decreased by specific chemical inhibitors of these
cytochromes [5].the AIC and by the F-test (Table 1). The plots of

residuals vs predicted values [10, 22] displayed an Assuming that CYP3A3/4 accounts for the ‘sigmoidal
part’ of Figure 1 in a two enzyme pathway, abolishingobvious improvement in the scattering of points of

equation 5 vs equations 1–4, whereas the residual plot CYP3A3/4 activity should result in residual demethylase
activity conforming to single MM kinetics. The Eadieof equation 6 provided no further improvement.

Therefore, a model consisting of a MM-enzyme and a Hofstee plot of the NT formation rates in presence of
KET is consistent with this hypothesis (Figure 3b). AtHill-enzyme appears to describe NT-formation with

reasonable precision. 500 m however, a decrease in AMI demethylation rate
was observed (Figure 3a), as typically occurs in the caseThe finding that more than one enzyme is involved

in this reaction is consistent with ongoing work in of substrate or product inhibition. Equation 3 achieves
the lowest AIC, and the introduction of additionalwhich we have found that the N-demethylation of AMI
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Figure 8 Plot of NT-formation rate vs AMI concentration (a) and Eadie-Hofstee plot (b) for NT-formation rates in presence
of 10 m KET and 50 m SPA. The solid line in both graphs represents the curve of best fit as iterated with equation 6. The
broken line joins the points with respect to increasing substrate concentration.

Table 4 Kinetic parameters and statistical evaluation of NT formation in presence of 10 m KET and 50 m SPA

Model Vmaxa Kma; K∞a na; K1a Vmaxb Kmb; K∞b nb; K1b AICc Comp.d Fe F{0.05}f

Eq. 1 0.3 68 −91.6 Eq. 2 −0.01h 4.75
Eq. 3 5.1 4.75

CVg 3.6 11
Eq. 2 0.3 69 0.99 −89.6 Eq. 5 −4.2h 4.1

Eq. 6 22.5 4.1
CVg 7.6 21 11
Eq. 3 0.4 98 0.0006 −94.9 Eq. 5 −4.4h 4.1

Eq. 6 14.4 4.1
CVg 11 19 55
Eq. 4 0.1 68 0.3 68 −87.6
CVg 1445 4406 347 1057
Eq. 5 0.13 17 0.1 93 3.12 −58.8 Eq. 8 446 5.12
CVg 22 39 21 6.3 22
Eq. 6 0.05 7.0 0.8 443 0.0041 −111.1 Eq. 8 4.9 5.12
CVg 53 89 55 84 92
Eq. 8 0.12 16.5 0.0020 0.2 105 2.36 −115.6
CVg 25 38 2495 401 54 132

Equation 7 did not yield a convergent solution. Equation 4 was not included in the comparison with the F-test because it
provided values for the sum of squared residuals which were identical as for equation 1. Vmax in nmol min−1 mg−1 protein; Km,
K∞ in m; K1 in m−1; n arbitrary units; a: first enzyme; b: second enzyme; c: Akaike’s information criterion; d: comparison to the
equation indicated; e: F-value for the indicated comparison; f: critical F-value for a=0.05; g: coefficients of variation, in percent
(estimated by the nonlinear regression software); h: a negative value for F indicates that the sum of squared residuals of the
model with the higher number of parameters is greater than the sum of squared residuals for the model with fewer parameters.

parameters does not improve the quality of fit according S-mephenytoin 4∞-hydroxylation [28, 29], a CYP2C19
mediated reaction [30, 31]. However, a polyclonal goatto the F-test (Table 2). However, the parameters do not

match those derived for the MM kinetic component of anti rat CYP2C11 antibody did not substantially affect
NT formation in this liver sample. It did inhibitthe formation rate curve without inhibitor. The concen-

tration of KET was 10 m, which should abolish all 4∞-hydroxy-mephenytoin formation in microsomes of
this same liver tissue by 66% [6]. Thus, CYP2C19 isCYP3A3/4 activity. However, KET may produce some

degree of inhibition of other CYP isoforms at this unlikely to contribute to any significant extent to this
reaction. In contrast, SPA, a specific CYP2C9 inhibitorconcentration [27]. Previous reports provide evidence

that the N-demethylation of AMI co-segregates with [27, 32], displayed a concentration-dependent inhibition
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Figure 9 Residual plots for the iterations of model-equations 1–8 of NT-formation rates in presence of 10 m KET and 50 m

SPA.

of AMI N-demethylation (Figure 5), indicating that SPA decreased considerably but did not abolish
NT-formation rates. The complex shape of the resultingCYP2C9 contributes substantially to this reaction.

Incubating a fixed concentration of 50 m SPA (a Eadie-Hofstee plot indicated the need for a multi
parameter model. A small decrease in velocity at highconcentration likely to inhibit all CYP2C9 activity [27])

with increasing concentrations of AMI resulted in a substrate concentrations suggested substrate inhibition
and the slightly concave curvature might be attributablebiphasic pattern of the formation rate (Figures 6a, b),

with a convex-shaped low-affinity site and a linear high- either to a high and low affinity site or to variance in
the observed data points. This variance is exaggeratedaffinity site. This plot and the F-test and AIC analysis

(Table 3) are consistent with the presence of a low- for small substrate concentrations in the Eadie-Hofstee
plot. The model of an enzyme with substrate inhibitionaffinity Hill-enzyme and a high affinity MM-enzyme.

Values for Vmax and the Hill-coefficient were in the same and an enzyme with Hill-kinetics was suggested by AIC
(Table 4). The F-test supported equation 6, modellingrange as the parameters for the ‘Hill-enzyme’ as iterated

for the NT-formation rate curve without inhibitor, the combination of a MM-enzyme and a substrate
inhibited enzyme. Since equation 8 was not superior towhereas K∞ was different by a factor of 2.8 (Tables 1

and 3). Thus, it is likely that the Hill-enzyme is equation 6 based on the F-test, and the residuals were
fairly randomly scattered, we favour the simpler (fewerunaffected by SPA. However, the difference in K’ might

be attributable to the presence of the inhibitor, although parameter) model (equation 6) to describe these data
points.SPA is reported to be relatively specific for CYP2C9.

One should also consider that the iterative process is AMI N-demethylation appears to be mediated by
more than one enzyme, one of which reflects allostericsensitive to slight changes in observed values (e.g.,

rounding) especially with the application of multiple kinetics. The only CYP activity known to date to be
consistent with such kinetics is CYP3A3/4. KET elimin-parameter models.

Because two sites of AMI N-demethylation could be ated allosteric enzyme activity and the remaining
NT-formation was best described by modelling substrateidentified, despite the presence of SPA (assuming

complete inhibition of CYP2C9), at least three different inhibition. However, the contribution of an enzyme with
such kinetic properties to NT-formation was notenzymes are evidently involved in this pathway.

Removing CYP3A3/4 and CYP2C9 activity by incu- consistent with the modelling of AMI N-demethylation
without inhibitor. It is possible that KET, a strong butbation of AMI with fixed concentrations of KET and
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nonspecific CYP3A3/4 inhibitor, may have modified the predicted, which may predispose to clinical toxicity. It
is possible that such situations are often prevented byremaining N-demethylase activity as would be the case

for a substrate inhibited enzyme. It is also possible that an increasing relative contribution of CYP3A3/4. Thus
CYP3A3/4 may function as physiologic ‘backup’NT-formation at concentrations of AMI (without inhibi-

tor) higher than those that we tested (>500 m) may enzyme. This might also explain why CYP3A3/4 is the
most abundant CYP found in human liver [35].have become attenuated, thereby suggesting a model

that includes substrate inhibition. Our previous study
of NT-formation from AMI, although based on a
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