Nucleotide Sequences of Saccharomycopsis fibuligera Genes for Extracellular β-Glucosidases as Expressed in Saccharomyces cerevisiae

MAKOTO MACHIDA, ISAO OHTSUKI, SAKUZO FUKUI, AND ICHIRO YAMASHITA*

Center for Gene Science, Hiroshima University, Shitami, Higashi-Hiroshima 724, Japan

Received 20 June 1988/Accepted 26 August 1988

We isolated two genes for extracellular β -glucosidase, *BGL1* and *BGL2*, from the genomic library of the yeast *Saccharomycopsis fibuligera*. Gene products (BGLI and BGLI) were purified from the culture fluids of *Saccharomyces cerevisiae* transformed with *BGL1* and *BGL2*, respectively. Molecular weights of BGLI and BGLII were estimated to be 220,000 and 200,000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The two β -glucosidases showed the same enzymatic characteristics, such as thermodenaturation kinetics and dependencies on pH and temperature, but quite different substrate specificities: BGLI hydrolyzed cellobiose efficiently, but BGLII did not. This result is consistent with the observation that the *S. cerevisiae* transformant carrying *BGL1* fermented cellobiose to ethanol but the transformant carrying *BGL2* did not. Southern blot analysis revealed that the two β -glucosidase genes were derived from *Saccharomycopsis fibuligera* and that the nucleotide sequences of the two genes are closely related. The complete nucleotide sequences of the two genes were determined. *BGL1* and *BGL2* encode 876- and 880-amino-acid proteins which were shown to be highly similar to each other. The putative precursors begin with hydrophobic segments that presumably act as signal sequences for secretion. Amino acid analysis of the purified proteins confirmed that *BGL1* and *BGL2* encode BGLI and BGLII, respectively.

The enzyme β -D-glucosidase catalyzes the hydrolysis of alkyl and aryl β -D-glucosides (e.g., methyl- β -D-glucoside and *p*-nitrophenyl- β -D-glucoside) as well as glycosides containing only carbohydrate residues (e.g., cellobiose). The enzyme is widely distributed, from microorganisms to vertebrates (13). Microbial β -glucosidases play a part in assimilation of cellulose.

Recently, ethanol production by fermentation of cellulose has received much attention as an alternative energy source, since cellulose is available in abundant biomass. During the enzymatic hydrolysis of cellulose, cellobiose is usually accumulated because of the weak β -glucosidase (cellobiase) activity of most cellulolytic microorganisms (13). Although the yeast *Saccharomyces cerevisiae* is most widely used in the ethanol fermentation industry, this organism cannot utilize cellobiose because it does not possess a permease for cellobiose and, with the exception of strain C (6), does not produce an extracellular cellobiase (3, 10).

In recent years, a great deal of interest has developed in genetic manipulation of industrial ethanol-fermenting yeast organisms. We have been very interested in the yeast genes encoding secretable proteins and have developed the ability of *S. cerevisiae* cells to secrete proteins extracellularly. Previously, we constructed *S. cerevisiae* strains capable of fermenting starch to ethanol by introducing either glucoamylase genes or an α -amylase gene (4, 5, 14–17, 19).

It would be interesting to construct a cellobiose-fermenting *S. cerevisiae* strain by introducing a secretable cellobiase gene. We searched for the source of the gene from yeast cells, since we anticipated that gene products derived from closely related organisms would be secreted more

3147

efficiently from *S. cerevisiae*. The cellobiose-assimilating yeast *Saccharomycopsis fibuligera* was found to produce an extracellular cellobiase (unpublished data) and is therefore a potential donor of the cellobiase gene.

Although many β -glucosidases were purified from diverse organisms, little is known about the amino acid sequence of the enzyme. However, Kohchi and Toh-e reported the amino acid sequence of *Candida pelliculosa* β -glucosidase, deduced from the nucleotide sequence (7). It has been proposed that an aspartic acid residue plays important roles in the action of β -glucosidase (1), but the overall structure-function relationship of the enzyme is not well understood.

In this paper, we report that *S. cerevisiae* was engineered to ferment cellobiose to ethanol by introduction of a gene coding for an extracellular cellobiase from *Saccharomycopsis fibuligera*. We also describe the nucleotide sequences of *BGL1* and *BGL2* and amino acid analyses of their gene products. These studies led to the conclusion that *BGL1* and *BGL2* are structural genes for two β -glucosidases of different substrate specificities. Comparative studies reveal conserved amino acid sequences in yeast β -glucosidases which may be essential to enzyme function.

MATERIALS AND METHODS

Strains and media. S. cerevisiae YIY345 (a leu2 ura3 his4) was used as a recipient. Escherichia coli JA221 (15) was used for plasmid propagation. YEPD, YEPC, and YPGL (18) are rich yeast media containing 1% yeast extract, 2% polypeptone, and, as carbon sources, glucose, cellobiose, and glycerol and lactic acid, respectively. SD minimal medium (12) supplemented with histidine (20 μ g/ml) was used for selective growth of yeast cells. The indicator plate for β-glucosidase activity was SD supplemented with 1 mM p-nitro-

^{*} Corresponding author.

FIG. 1. Restriction maps of cloned segments and localization of essential regions. Plasmids pSfCB1 and pSf β G1 are the original plasmids; the others are subcloned plasmids. The fragment designated S was used as a probe for Southern blot analysis of genomic DNA. The restriction sites for *Bam*HI (B), *Eco*RI (E), *Kpn*I (K), *Pst*I (Pt), *Bst*EII (Bt), *Eco*RV (Ev), *Pvu*II (Pv), *Sal*I (S), and the *Bam*HI-*Sau*3A boundary (B/Sau) are indicated. The yeast transformants carrying each of the plasmids shown were cultured in YEPD. Culture fluids were assayed for β -glucosidase activities with cellobiose and PNPG as substrates. Symbols: +, activities were detected; -, no detectable activities were found. kb, Kilobases.

phenyl- β -D-glucoside (PNPG) and histidine. Bacterial media were described previously (2).

Preparation of DNA and other genetic methods, Plasmid and chromosomal DNAs were prepared as described previously (15). Transformation of yeast and $E. \ coli$ cells and Southern blot analyses were performed as described previ-

TABLE 1. β-Glucosidase activities and fermentation of cellobiose in *S. cerevisiae* transformants^{*a*}

		β-0								
Plasmid	YE	EPD	YF	GL	YE	EPC	Fermentation			
	Aryl	Cello	Aryl	Cello	Aryl	Cello				
pSfCB1	+	+	+	+	+	+	+			
pSfβG1	+	_	+	-	+	-	-			
pYI1	-	-	-	-	-		_			

^{*a*} S. cerevisiae transformants carrying pSfCB1, pSf β G1, or pYI1 (the vector plasmid) were cultured with shaking in three media (YEPD, YPGL, and YEPC) for 3 days. Culture fluids were dialyzed extensively against deionized water and assayed for β -glucosidase activity. Aryl β -glucosidase (Aryl) and cellobiase (Cello) activities were determined with PNPG and cellobiose, respectively, as substrates. +, Activities detected; -, no significant activities found. Cell densities, determined at an optical density of 660 nm, were 13 for pSfC β 1-carrying transformants, 2.1 for pSf β G1-carrying transformants, and 2.3 for pYI1-carrying transformants. Fermentation tests were carried out by the classic Durham tube method as follows: a loopful amount of cells was inoculated into 5 ml of YEPC with a Durham tube and cultured statically at 28°C for up to 2 weeks. +, Fermenting: -, nofermenting.

ously (15). Recombinant plasmid DNA from the Saccharomycopsis fibuligera genomic library, which had been constructed by using pYI1 as a vector DNA (15), was used. Plasmid pYI1 carries ampicillin and tetracycline resistance genes for *E. coli* and also *LEU2*, *URA3*, and a replication origin of 2 μ m of DNA for *S. cerevisiae*.

Assay for β -glucosidase activity. The reaction mixture (final volume, 50 µl) contained 4 mM substrate (as described for each experiment), 60 mM McIlvaine buffer (pH 5.0), and the enzyme solution. The reaction mixture was incubated at 30°C. The reaction was stopped, and optical density was determined by one of two methods: (i) for measurement of *p*-nitrophenol, 0.5 ml of 0.25 M Na₂CO₃ was added to the reaction mixture, and optical density at 400 nm was determined; (ii) for measurement of glucose liberated from the substrate, the reaction mixture was boiled for 1 min and then cooled on ice. Glucose was determined with a Gluo-statt assay kit as recommended by the supplier (Fujisawa Yakuhin Kogyo Co., Osaka, Japan). One unit of enzyme activity is defined as the amount of enzyme that hydrolyzed 1 µmol of substrate per min.

Yeast colonies secreting β -glucosidase were easily identified by the yellow halo observed after a solution of 0.25 M Na₂CO₃ was poured onto colonies grown on the indicator plate.

Protein assay. Protein concentration was measured with a protein assay kit (Bio-Rad Laboratories, Richmond, Calif.), with bovine serum albumin as the standard.

Purification step	Total act	tivity ^a (U)	Protei	n (mg)	Sp (U/mg o	act" f protein)	Yield (%)			
	BGLI	BGLII	BGLI	BGLII	BGLI	BGLII	BGLI	BGLII		
Culture fluid	438	3,190	192	150	2.28	21.3	100	100		
Ammonium sulfate precipitation	406	3,020	107	95.2	3.81	31.7	93	95		
Acetone precipitation	326	2,770	28.4	39.6	11.5	69.9	74	87		
DEAE-Sephadex A-50	302	1,150	18.1	17.4	16.7	66.1	69	36		
Sepharose 6B	74.3	523	1.69	3.12	44.0	168	17	16		

TABLE 2. Purification of BGLI and BGLII

^a β-Glucosidase activities were determined with PNPG as a substrate.

Determination of molecular weight. Molecular weights were determined by 10% polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) by the method of Laemmli (8). The gel was stained for protein with Coomassie brilliant blue R-250. A calibration curve was made with erythrocyte membrane proteins.

Purification of β-glucosidase. S. cerevisiae transformants carrying either BGL1 or BGL2 were cultured in YEPC or YEPD, respectively, at 28°C for 4 days with shaking at 250 rpm on a G10 Gyrotory shaker (New Brunswick Scientific Co., Inc., Edison, N.J.) in four 5-liter Erlenmeyer flasks, each containing 1 liter of medium.

Culture fluid was obtained by centrifugation at 5,000 rpm for 10 min and concentrated fivefold by using a rotary evaporator at room temperature. The solution was brought to 80% saturation by addition of solid ammonium sulfate and left overnight at 4°C. Precipitates were collected by centrifugation. Precipitates remaining in the supernatant were collected by vacuum filtration through a thick bed of Standard Super-Cel (Nakarai Chemicals, Kyoto, Japan) over Toyo no. 2 filter paper (Toyo Roshi Co., Tokyo, Japan) on a Büchner funnel. Both precipitates were dissolved in 10 mM Tris hydrochloride buffer (T buffer), pH 7.0, and dialyzed for 2 days against the same buffer.

Acetone at -20° C was added to the dialyzed solution to a final concentration of 50% (vol/vol). The precipitate was collected by centrifugation, dissolved in T buffer, and dialyzed overnight against the same buffer.

The dialyzed solution was applied to a DEAE–Sephadex A-50 column (1.5 by 11.4 cm) equilibrated with T buffer. After the column was washed with T buffer, the enzyme was eluted with a linear gradient of NaCl (0.0 to 1.0 M) in T buffer. Active fractions were collected, concentrated in a dialysis tube with powder of polyvinylpyrrolidone K-90, and dialyzed overnight against T buffer.

NaCl and glycerol were added to the dialyzed solution to final concentrations of 0.1 M and 10% (vol/vol), respectively. The solution was applied to a Sepharose 6B column (1.5 by 71.6 cm) equilibrated with T buffer containing 0.1 M NaCl. The enzyme was eluted with the same buffer, and the active fractions were collected and concentrated with polyvinylpyrrolidone K-90. The purified enzyme was dialyzed overnight against T buffer.

Amino acid analysis. Amino-terminal sequences of the purified β -glucosidases were determined with an automated protein sequencer (Applied Biosystems, Foster City, Calif.). Amino acid compositions were determined with an amino acid analyzer (Japan Electronic Co.) after hydrolysis of proteins at 110°C for 22 h in 6 N HCl containing 1% thioglycolic acid.

DNA sequence analysis. DNA was sequenced from M13 subclones by the dideoxy chain termination method of Sanger et al. (11).

RESULTS

Cloning of the Saccharomycopsis fibuligera B-glucosidase genes. Recombinant plasmid DNA from the Saccharomycopsis fibuligera genomic library was used to transform S. cerevisiae YIY345 (leu2 ura3) to leucine and uracil prototrophy. Transformants carrying a plasmid capable of producing β -glucosidase activity were then selected by their ability to form yellow halos around colonies on the selection plates containing PNPG (the substrate for β -glucosidase). Several halo-forming transformants thus obtained were subcultured to single colonies on YEPD (rich) agar to allow other plasmids present in the transformant to segregate out. From the resulting halo-forming clones, the plasmids were recovered and then transformed again to bacteria by transformation to ampicillin resistance. Recombinant plasmids were purified from bacterial cultures and used to transform the yeast recipient strain (YIY345) to Leu⁺ Ura⁺. The plasmids transforming the yeast cells to halo forming were selected and identified as plasmids carrying putative β -glucosidase genes. We thus obtained two plasmid DNAs (pSfCB1 and pSfβG1). Restriction maps of the cloned DNAs are shown in Fig. 1.

Fermentation of cellobiose to ethanol by S. cerevisiae transformants. S. cerevisiae transformants carrying pSfCB1, pSf β G1, or pYI1 (the vector plasmid) were cultured in three media (YEPD, YPGL, and YEPC) (Table 1). The transformant carrying pSf β G1 secreted only aryl β -glucosidase activity, whereas the transformant carrying pSfCB1 secreted both cellobiase and aryl β -glucosidase activities (the latter activ-

FIG. 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified β -glucosidases (BGLI and BGLII). Positions of marker proteins are indicated; kd, kilodaltons.

FIG. 3. Dependencies on pH (a) and temperature (b) and thermodenaturation kinetics (c) of BGLI (\bigcirc) and BGLII (\square). β -Glucosidase activity was determined with PNPG as a substrate. pH dependencies were examined in McIlvaine buffer (pH 2.0 to 8.0; final ionic strength was adjusted to 0.1 with KCl) at 30°C. Temperature dependencies were examined at 30 to 60°C in 60 mM McIlvaine buffer (pH 5.0). Activities are presented as percentages of the maximum activity. Thermodenaturation kinetics were examined as follows. Samples were incubated at the indicated temperatures for 30 min and then immediately cooled on ice. The remaining activities were assayed at 30°C. Residual activity after the heat treatment is presented as a percentage of the original activity.

ity was apparently contributed by an aryl β -glucosidase activity of cellobiase, as demonstrated by further investigations). The transformed cells with pSfCB1 grew fully in YEPC and fermented cellobiose in static culture, in which ethanol was accumulated in the medium at a concentration of about 1%, as detected by high-performance liquid chromatography. It is likely that the β -glucosidase activities in the culture fluids were due to secretion but not to leakage from cells, since the activities increased in proportion to cell growth (data not shown). The transformed cells carrying either pSf β G1 or pYI1 grew very little in YEPC or did not ferment cellobiose. These results suggest that pSfCB1 and pSf β G1 encode different types of β -glucosidase: cellobiase and aryl β -glucosidase, respectively.

Analysis of gene products. One of the two types of β glucosidases (BGLI or BGLII) was purified from the culture fluids of the transformants carrying either pSfCB1 or pSf β G1 (Table 2). Molecular weights of BGLI and BGLII were estimated to be 220,000 and 200,000 by SDS-PAGE (Fig. 2). The two β -glucosidases showed the same enzymatic characteristics, such as dependencies on pH (Fig. 3a) and temper-

TABLE 3. Substrate specificities of BGLI and BGLII

Substrata	Sp act ^a (U/mg of protein)							
Substrate	BGLI	BGLII						
PNPG	43.3	168						
<i>p</i> -Nitrophenyl α -glucoside	0.0	0.0						
<i>p</i> -Nitrophenyl β -galactoside	0.0	0.0						
<i>p</i> -Nitrophenyl β -xyloside	0.54	2.08						
Cellobiose	20.1	0.84						
Cellotriose	26.2	1.68						
Cellotetraose	27.1	1.46						
Gentiobiose	25.7	67.5						
Salicin	17.5	14.3						
Methyl-β-glucoside	3.61	52.4						
Methyl- α -glucoside	0.0	0.0						
Maltose	0.0	0.0						
Lactose	0.0	0.0						
Sucrose	5.01	0.34						

 a β-Glucosidase activities were determined with each of the substrates listed. Average specific activities from at least two independent experiments are presented (deviation was less than 10%).

ature (Fig. 3b) and thermodenaturation kinetics (Fig. 3c). However, substrate specificities of BGLI and BGLII were quite different. In particular, BGLI hydrolyzed cellobiose and cellooligosaccharides efficiently, but BGLII did not (Table 3). This result is consistent with the observation that the transformed cells carrying pSfCB1 (encoding BGLI) fermented cellobiose but that the transformed cells carrying pSf β G1 (encoding BGLII) did not (Table 1).

Southern blot analyses. To localize the region responsible for cellobiase (BGLI) or aryl β -glucosidase (BGLII) activity in plasmid pSfCB1 or pSf β G1, we subcloned restriction endonuclease-digested fragments of the original inserts. The smallest sequences essential for the activities (indicated by

FIG. 4. Southern blot analyses of the plasmids carrying *BGL1* and *BGL2*. Plasmids pSfCB1 (I) and pSf β G1 (II) were digested with the three combinations of restriction enzymes indicated (abbreviations are as in the legend to Fig. 1), electrophoresed, transferred to nitrocellulose papers, and hybridized with the fragments (A, B, and C) of the BGL1-coding sequence. Kb, Kilobases.

FIG. 5. Southern blot analyses of genomic DNAs from *Saccharomycopsis fibuligera* (Sf) and *S. cerevisiae* (Sc). Genomic DNAs were prepared, digested with *PstI*, and processed for hybridization with probe S (Fig. 1). kb, Kilobases.

thick lines in Fig. 1) showed similar restriction patterns, such as the sites for KpnI, BstEII, and EcoRV. Southern blot analyses were performed to examine whether DNA sequences of the two essential regions showed homology to each other (Fig. 4). Three fragments (designated A, B, and C) derived from the BGLI-encoding sequence were subcloned and used as hybridization probes. Plasmids pSfCB1 and pSf β G1 were digested with three combinations of restriction enzymes (KpnI plus BstEII, BstEII plus EcoRV, and EcoRV plus EcoRI) and probed with the subcloned A, B, and C fragments, respectively. Analyses revealed that the corresponding DNA fragments derived from BGLI- and BGLII-encoding sequences were highly homologous with each other.

We also performed Southern blot analyses to determine whether the two β -glucosidase genes were derived from the genomic DNA of *Saccharomycopsis fibuligera* (Fig. 5). Chromosomal DNA of *Saccharomycopsis fibuligera* was digested with *PstI* and probed with a subcloned fragment (S in Fig. 1) of pSfCB1. The data showed hybridizations of 1.8-, 1.6-, 1.25-, and 0.8-kilobase fragments derived from the BGLI-encoding sequence and of 6.4- and 1.25-kilobase fragments derived from the BGLII-encoding sequence, confirming that the two β -glucosidase genes were derived from *Saccharomycopsis fibuligera*. A 5-kilobase band could be derived from a 5' portion of *BGL1*. Chromosomal DNA of *S. cerevisiae* was also processed for hybridization, and no hybridized fragments were detected.

Nucleotide and deduced amino acid sequences of BGL1 and BGL2. Nucleotide and deduced protein sequences of BGL1 and BGL2 are shown in Fig. 6. BGL1 and BGL2 encode proteins of 876 and 880 amino acid residues with molecular weights of 96,200 and 96,800, respectively. The molecular weights of mature and secreted β -glucosidases (BGLI and BGLII) were found to be 220,000 and 200,000, respectively (Fig. 2), which suggests that a large part of the molecular weights may be contributed by carbohydrate; the deduced proteins encoded by BGL1 and BGL2 contain 16 and 12 potential N-glycosylation sites (Asn-X-Thr or Ser; asparagine residues are circled in Fig. 7). The deduced protein sequences were found to be highly similar to each other; about 83% of amino acid residues were identical (Fig. 7).

Amino acid analyses of BGLI and BGLII. The aminoterminal sequences of BGLI and BGLII, which were purified from culture fluids of the S. cerevisiae transformants, were determined by Edman degradation. The sequences NH₂-Val-Pro-Ile-Gln-X-Tyr-X-Gln-Ser-Pro-Ser-Gln-X-Asp-Glu-Ser-Ser and NH₂-Leu-Pro-Val-Gln-Thr-His-Asn-Leu-Thr-Asp-Asn-Gln-Gly-Phe-Asp-Glu-Glu-Ser-Ser were obtained for BGLI and BGLII, respectively. These peptides were identical to those predicted from the DNA sequences (underlined in Fig. 6). Amino acid compositions of the purified proteins matched those predicted (data not shown). The correlation between DNA and protein sequences confirmed that BGL1 and BGL2 are the structural genes for BGLI and BGLII and showed that both precursors contain aminoterminal extensions of 17 amino acids that are probably cleaved during export of the proteins. The leader sequences resemble signal sequences found in a wide variety of secretory protein precursors.

DISCUSSION

Construction of cellobiose-fermenting S. cerevisiae. The structural gene for β -glucosidase is present in S. cerevisiae (3), but it is very poorly expressed (10). Furthermore, this organism does not have a permease for cellobiose (10). These properties could explain why S. cerevisiae is unable to ferment cellobiose. The simplest strategy for constructing cellobiose-fermenting S. cerevisiae is to clone and express a gene for a secretable cellobiase. Several of the β -glucosidase genes thus far cloned failed to confer cellobiose-fermenting ability on S. cerevisiae, since their gene products were either not secreted or unable to hydrolyze cellobiose (7, 9, 10).

We isolated the gene for extracellular cellobiase and constructed, by introducing the gene, an *S. cerevisiae* strain capable of fermenting cellobiose to ethanol. However, ethanol production by this transformant was very low, mainly because the recipient used was a laboratory strain. Further studies should be done on introduction of the gene into industrial strains.

Polymorphic β -glucosidases with different substrate specificities. It was shown by Southern blot analysis that the two genes for extracellular β -glucosidases cloned in this study exist in the genome of *Saccharomycopsis fibuligera*. One, as described above, encodes the β -glucosidase which is capable of hydrolyzing cellobiose, and another apparently encodes aryl or alkyl β -glucosidase. To our knowledge, this is the first report showing that polymorphic β -glucosidases with highly similar sequences possess quite different substrate specificities.

Figure 7 shows the best-fit alignment of three amino acid sequences from *Saccharomycopsis fibuligera* (this work) and *C. pelliculosa*. These proteins share several homologous peptides (boxed in Fig. 7) which are likely to be essential for enzymatic activities. Although BGLI and BGLII are highly homologous with each other, they also contain several nonhomologous peptides (underlined in Fig. 7), some of which may function in specific enzymatic actions so as to determine substrate specificities.

On the basis of studies of the chemical modification of the fungal β -glucosidase (1), the aspartic acid residue in the peptide NH₂-Val-Met-Ser-Asp-Trp-Ala-Ala-His-His-Ala-Gly-Val-Ser-Gly-Ala-Leu is proposed to be essential for enzymatic activities. We found similar peptides in both BGLI and BGLII (asterisks in Fig. 7). To elucidate further the structure-function relationship of β -glucosidase, we should analyze mutant enzymes whose amino acid residues are substituted by protein engineering.

a																								~~			G	BstE GTGA	11 C CA	AGCA	rggc
ATACIGAGGT T	CITTAX	-240 EAT A1) (744400	GAG	лсто		-220 7AGG	TTGC	2AAGC	- CAC	ATAI	-2 TTG	200 TTTI	AGTI	TC A	ACAT	'ллаg	-180 A AG	AAAA	TCAA	ACA	AAAC	2444	AAAC	aagi	ж А	ATCT	атаа	A AT	AAAA	raaa
-12 Acaaaataga g	0 ATAAAA	NCA N	ATAGA	-10 AAT /	00 00	CAAA	а ат	*	AAAT	-80 1214	AATA	TAN	TAAI	3444	-0 -0	TATA	AATC	T CI	TGAC	7.AAA	-40	CTTC	CAT	TTAC	ATAG	AA G		AATI	T GA	ACCCC	CAAA
1					_		~	_	Stul	_	~	_	~	<u></u>	~	איזייני	~		TAT	.	~ ~	TTT	~~~~	TCC:	CAG	ACA	GAT	GAG	SacI	TCC (CAA
ATG TTG AT Met Leu Me 1	GATA (t Ile)	Wal G	n Leu	Leu	Val	Phe 10	ala Ala	Leu	Gly	Leu	Ala	Val	Ala	Val	Pro	Ile 20	Gln	Asn	Tyr	Thr	Gln	Ser	Pro	Ser	Gln	Arg 30	Asp	Glu	Ser	Ser (iln
TGG GTG AG Trp Val Se	c cog (r Pro i	CAT TY His Ty 40	n TAI Ar Tyr	OCA Pro	ACT Thr	CCA Pro	CAA Gln	GGT Gly	GGT Gly	AGG Arg	CIC Leu 50	CAA Gln	GAC Asp	GTC Val	TGG Trp	CAA Gln	GAA Glu	GCA Ala	TAT Tyr	GCT Ala	AGA Arg 60	GCA Ala	aaa Lys	GCC Ala	ATC Ile	GTT Val	GGC Cly	CAG Gln	AIG / Met /	ACT i Thr i	ILE 70
GTT GAA AA Val Glu Ly	G GTC / s Val /	AAT TI Asn Le	ng acc au Thr	ACT	Kor GGT Gly	ACC Thr 80	GGT Gly	TGG Trp	CAA Gln	tta Leu	gat Asp	CCA Pro	TGT Cys	GTT Val	GGT Gly	AAT Asn 90	ACC Thr	GGT Gly	TCT Ser	GTT Val	CCA Pro	AGA Arg	TTC Phe	00С Gly	ATC Ile	CCA Pro 100	AAC Asn	CTT Leu	TGC (Cys)	CTA (Leu (3AA 31n
GAT GGG CC Asp Gly Pr	A TIG	GGT GT Gly Va 110	TT OGP	TTC Phe	GCT Ala	GAC Asp	TIT Phe	GTT Val	ACT Thr	аас с1у	TAT Tyr 120	CCA Pro	TCC Ser	ocr Gly	CTT Leu	GCT Ala	ACT Thr	GGT Gly	GCA Ala	ACG Thr	TTC Phe 130	aat Asn	AAG Lys	gat Asp	TTG Leu	TTT Phe	CTT Leu	CAA Gln	AGA (Arg	GCT (Gly (2AA 31n 140
GCT CTC GG Ala Leu Gl	T CAT (Y His (GAG T Glu Pi	ic aa Ne asi	AGC Ser	aaa Lys	GGT Gly 150	GTA Val	CAT His	ATT Ile	GOG Ala	TTG Leu	GGC Gly	OCT Pro	GCT Ala	GIT Val	000C Gly 160	CCA Pro	CIT Leu	GCT Gly	GTC Val	aaa Lys	GOC Ala	AGA Arg	GGT Gly	GGC Gly	AGA Arg 170	AAT Asn	TTC Phe	GAA Glu	GCC : Ala 1	rrr Phe
GGT TOC GA Gly Ser As	C CCA	TAT C. Tyr La	IC CAV	GOT	ACT Thr	GCT Ala	GCT Ala	GCT Ala	GCA Ala	ACC The	ATC Ile 190	ала Lys	GGT Gly	CIC Leu	CAA Gln	GAG Glu	aat Asn	AAT Asn	GTT Val	ATG Met	GCT Ala 200	tgt Cys	GIC Val	aag Lys	CAC His	TTT Phe	ATT Ile	GGT Gly	AAC Asn	GAA Glu	3AA Gln 210
GAA AAG TA Glu Lys Ty	C AGA	CAG CI Gln Pi	CA GAS	CGAC Asp	ATA Ile	AAC Asn	OCT Pro	GOC Ala	ACC Thr	AAC Asn	CAA Gln	ACT Thr	ACT Thr	ала Lys	GAA Glu	GCT Ala	ATT Ile	AGT Ser	GCC Ala	AAC Asn	ATT Ile	CCA Pro	GAC Asp	AGA Arg	GCC Ala	ATG Met	CAT His	GCG Ala	TIG Leu	TAC Tyr :	FTG Leu
		_				220	_			_						230	Hir	cII			m c	~	~ ~~	~		240	mc	2002	MTV2	220	~
TGG CCA TI Trp Pro Pt	T GOC He Ala	GAT T Asp S 250	og gri er Val	' CGA Arg	GCA Ala	GGT Gly	Val	Gly	Ser	Val	Met 260	Cys	Ser	Tyr	Asn	Arg	Val	AAC. Asn	λsn	Thr	Tyr 270	Ala	Cys	Glu	Asn	Ser	Tyr	Met	Met	Asn	His 280
TTG CTT M Leu Leu Ly	a GAA s Glu	GAG T Glu L	ng gor su Gly	r TIT 7 Phe	CAA Gln	GGC Gly 290	TTT Phe	GTT Val	GTT Val	TOG Ser	GAC Asp	TGG Trp	GOT Gly	GCA Ala	CAA Gln	TTA Leu 300	AGT Ser	GGG Gly	GTT Val	TAT Tyr	AGC Ser	GCT Ala	ATC Ile	TCG Ser	GGC Gly	TTA Leu 310	GAT Asp	ATG Met	TCT Ser	ATG Met	JCT Pro
GGT GAA GI Gly Glu Va	G TAT	GGG G Gly G 320	GA TOX ly Try	G AAC Asn	ACC Thr	GGC Gly	ACG Thr	TCT Ser	TTC Phe	TGG Trp	GGT Gly 330	CAA Gln	AAC Asn	TIG Leu	ACG Thr	aaa Lys	GCT Ala	ATT Ile	TAC Tyr	aat Asn	GAG Glu 340	ACT Thr	GIT Val	CCG Pro	ATT Ile	GAA Glu	AGA Arg	tta Leu	gat Asp	GAT Asp	ATG Met 350
GCA ACC M Ala Thr Ar	G ATC Ig Ile	TTG G Leau A	CT GC La Ali	r TTG a Leu	TAT Tyr	GCT Ala	ACC Thr	aat Asn	AGT Ser	TTC Phe	CCA Pro	ACA Thr	Gan Glu	Asp	His	Leu 370	CCA Pro	AAT Asn	TTT Phe	TCT Ser	TCA Ser	TGG Trp	ACA Thr	ACG Thr	aaa Lys	GAA Glu 380	TAT Tyr	GGC Gly	aat Asn	aaa Lys	TAT Tyr
GCT GAC A Ala Asp As	NC ACT In Thr	ACC G Thr G	NG AT	r GTC a Val	AAA Lys	Hir GTC Val	AAC AAC Asn	TAC Tyr	AAT Asn	GIG Val	GAC Asp 400	CCA Pro	TCA Ser	aat Asn	GAC Asp	ТАТ Тут	TTT Phe	ACG Thr	GAG Glu	GAC Asp	ACA Thr 410	GCT Ala	TTG Leu	aag Lys	GTT Val	GCT Ala	GAG Glu	GAA Glu	TCT Ser	ATT Ile	GTG Val 420
CTT TTA A Leu Leu Ly	a aat As Asn	GAA A Glu A	AC AN Sn Asi	C ACT	TIG	CCA Pro	ATT Ile	TCT Ser	CCC Pro	GAA Glu	AAG Lys	GCT Ala	AAA Lys	AGA Arg	TTA Leu	CTA Leu	TTG Leu	TOG Ser	oor Gly	ATT Ile	GCT Ala	Sti GCA Ala	GGC Gly	CCT Pro	GAT Asp	CCG Pro	ATA Ile	GGT Gly	TAT Tyr	CAG Gln	tgt Cys
GAA GAT CA	A TCT	TOC A	CA AA	r 000	GCT	430 TTG	TTT	CAA Gla	GGT	TGG	GGT	TCT	GGC Gly	AGT	GTT Val	440 GGT	TCT	CCA PTD	AAA Lvs	TAT	CAA Gln	GTC Val	ACT	OCA Pro	TTT Phe	450 GAG Glu	GAA Glu	ATT Ile	TCT Ser	TAT TVT	CTT Leu
GCA AGA AA	A AAC	460 AAG A	ng caj	1 GLY	GAT	TAT	ATT		GNG	тст	470 TAC	GAC	TTA	œ	CAA	GIT	ACT	AAA	GTA	GCT	480 TCC	GAT	GCT	CAT	TTG	TCT	ATA	GIT	GTT	GIC	490 TCT
Ala Arg Ly	rs Asn.∶	Lys M	et Glu) Phe	Asp	Tyr 500 Hii	Ile ncII	Be	Glu	Ser	Tyr	Asp	Leu	Ala	Gln	Val 510	Thr	Lys	Val	Ala	Ser	Asp	Ala	HIS	Leu	Ser 520	Ile GAA	Val	Val	GCT	GAA
Ala Ala Se	r Gly	Glu G 530	ly Ty	: Ile	Thr	Val	Asp	Gly	Asn	Gin	Gly 540	Asp	Arg	Lys	Asn	Leu	Thr	Leu	Trp	Asn	Asn 550	Gly	Asp	Lys	Leu	Ile	Glu	Thr	Val	Ala	Glu 560
AAC TGT GO Asn Cys Al	CAAT A Asn	ACT G The V	TT GT al Va	r GTT L Val	GTT Val	ACT Thr 570	TCT Ser	ACT Thr	GGT Gly	CAA Gln	ATT Ile	AAT Asn	TTT Phe	GAA Glu	GGC Gly	TTT Phe 580	GCT Ala	GAT Asp	His	CCA Pro	AAT Asn	Val	Thr	Ala	Ile	Val 590	Trp	Ala	Gly	Pro	Leu
GGT GAC AG Gly Asp Ar	a toc g Ser	GGG A Gly T 600	CT GC hr Ali	r ATC A Ile	GOC Ala	aat Asn	ATT Ile	CTT Leu	TTT Phe	oor Gly	AAA Lys 610	GCG Ala	AAC Asn	CCA Pro	TCA Ser	GGT Gly	CAT His	CTT Leu	CCA Pro	TIC	ACT Thr 620	ATT Ile	GCT Ala	AAG Lys	ACT	GAC Asp	gat Asp	GAT Asp	ТАС Тут	ATT Ile	0CA Pro 630
ATT GAA AG Ile Glu Tr	C TAC Ir Tyr	AGT O Ser P	CA TO TO Sec	g agi r Ser	GCT Gly	GAA Glu 640	OCT Pro	GAA Glu	GAC Asp	AAC Asn	CAC His	TTG Leu	GTT Val	GAA Glu	AAT Asn	GAC Asp 650	TTG Leu	CTT Leu	GTT Val	GAC Asp	TAT Tyr	AGA Arg	TAT Tyr	TTT Phe	GAA Glu	GAG Glu 660	AAG Lys	aat Asn	ATT Ile	GAG Glu	CCA Pro
AGA TAC GO Arg Tyr Al	a TTT a Phe	GGT T Gly T	AT GG yr Gl	c TIG y Leu	TCT	TAC Tyr	aat Asn	GAG Glu	TAT Tyr	GAA Glu	GTT Val	AGC Ser	aat Asn	GCA Ala	AAG Lys	GTC Val	TCG Ser	GCA Ala	GOC Ala	aaa Lys	AAA Lys 690	GIT Val	GAT Asp	GAG Glu	GAG Glu	TTG Leu	CCT Pro	GAA Glu	CCA Pro	GCT Ala	ACC Thr 700
TAC TTA TO Tyr Leu Se	x GAG r Glu	TTT A Phe S	GC TX er Ty	r CM r Gln	AAT Asn	GCA Ala	aaa Lys	GAC Asp	AGC	aaa Lys	AAT	CCA Pro	AGT Ser	gat Asp	GCT Ala	TTT	GCT Ala	CCA Pro	GCA Ala	GAT Asp	TTA Leu	AAC Asn	AGA Arg	GTT Val	AAT Asn	GAG	TAC Tyr	CIT Leu	TAT Tyr	CCA Pro	TAT Tyr
						710										/20									~	/30			_	~	~
tta gat ag Leu Asp Se	ir Asn	GTT A Val T 740	oc TI hr Le	a aaa 1 Lys	.GAC ∶λsp	GGA Gly	AAC Asn	TAT Tyr	GAG Glu	TAT Tyr	ССТ Рго 750	GAT Asp	GCC Gly	ТАС Тут	AGC	Thr	GAG	Gln	AGA Arg	Thr	ACA Thr 760	Pro	AAC	Gln	Pro	Gly	Gly	Gly	Leu	GLY	GGC Gly 770
AAC GAT GO Asn Asp Al	T TIG a Leu	TGG G Trp G	AG GT lu Va	C GCI L Ala	TAT Tyr	AAC Asn 780	TCC Ser	ACT Thr	GAT Asp	AAG Lys	TTT Phe	GIT Val	CCA Pro	CAG Gln	GGT Gly	AAC Assn 790	TCC Ser	ACT Thr	GAT Asp	AAG Lys	TIT Phe	GIT Val	Pro	CAG Gln	TIG Leu	TAT Tyr 800	TTG Leu	aaa Lys	CAC His	CCT Pro	GAG Glu
GAT GGC AN Asp Gly Ly	vg TTT /s Phe	GAA A Glu T 810	cc cc hr Pr	r ATI 5 Ile	CAA Gln	TTG Leu	AGA Arg	GOG Gly	TTT Phe	GAA Glu	AAG Lys 820	GTT Val	GAG Glu	TTG Leu	TCC Ser	ona COG Pro	GGT Gly	GAG Glu	aag Lys	aag Lys	ACA Thr 830	GTT Val	GAT Asp	TIG Leu	AGG Arg	Leu	TTG Leu	AGA Arg	AGA Arg	GAT ASP	CTT Leu 840
AGT GIG IG Ser Val Tr	GGAT TPASP	ACC A Thr T	CC AG	A CAG g Gln	TCI Ser	TOG	ATC	GTT Val	GAA Glu	TCT Ser	GGT Gly	ACT	TAT Tyr	GAG Glu	Stul GOC Ala	TIA	ATT Ile	GGC Gly	GTT Val	GCT Ala	GTT Val	aat Asn	EC GAT Asp	ATC	AAG Lys	ACA Thr 870	TCT Ser	GTC Val	CTG Leu	TTT Phe	ACT Thr
+1 ATT TGA Ile Stp. 876		+20				050	+40					+6	0			380		+80					+10	0		370		•	120		

1 ATG Met	tig Leu	TTG Leu	ATT Ile	TTG Leu	GAA Glu	CTC Leu	TTA Leu	Sca GTA Val	I CTT Leu 10	ATT Ile	ATA Ile	сос с1у	CTT Leu	GGA Gly	GTT Val	GCT Ala	CIT Leu	CCT Pro	GTT Val 20	CAA Gln	ACT Thr	CAT His	AAT Asn	CIG Leu	ACT Thr	GAT Asp	AAT Asn	CAA Gln	GGC Gly 30	TTT Phe	GAT Asp	GAA Glu	GAA Glu	AGC Ser
TCC Ser	CAA Gln	TGG Trp	ATT Ile	AGC Ser 40	COG Pro	CAT Ris	TAT Tyr	TAT Tyr	CCA Pro	ACT Thr	CCA Pro	CAA Gln	ogt Gly	GGT Gly 50	AGG Arg	CTC Leu	CAA Gln	GGC Gly	GTC Val	TGG Trp	CNG Gln	GAT Asp	GCT Ala	TAC Tyr 60	ACC Thr	aaa Lys	GCA Ala	aaa Lys	GOC Ala	CTC Leu	GTT Val	AGC Ser	CAG Gln	ATG Met 70
ACT Thr	ATT Ile	GTT Val	GAA Glu	AAG Lys	GTC Val	AAT Asn	TTG Leu	ACC Thr	ACC Thr 80	Kp GCT Cly	ACC Thr	GGT Gly	TGG Trp	CAA Gln	tta Leu	GGT Gly	CCA Pro	TGT Cys	GTT Val 90	GGT Gly	AAC Asn	ACC The	GGT Gly	TCT Ser	GIT Val	CCA Pro	AGA Arg	TTC Phe	GGC Gly 100	ATC Ile	OCA Pro	AAC Asn	CIT Leu	TGC Cys
CIA Leu	CAA Gln	gat Asp	GGA Gly	0CA Pro 110	TIG Leu	GGT Gly	GTT Val	AGA Arg	Leu	ACT Thr	GAT Asp	TTC Phe	TCT Ser	ACA Thr 120	GGT Gly	TAT Tyr	CCA Pro	TCT Ser	сас С1у	ATG Met	GOC Ala	ACC The	GGT Gly	GCA Ala 130	ACG Thr	TTC Phe	AAT Asn	aag Lys	GAT Asp	TTG Leu	TTC Phe	CTT Leu	CAA Gln	AGA Arg 140
GGT Gly Stul	CAA Gln	GCT Ala	CTT Leu	GGC Gly	CAC His	GAG Glu	TTC Phe	λAC λsn	AGC Ser 150	aaa Lys	GGT Gly	GTA Val	CAT His	ATT Ile	GCA Ala	TTG Leu	GGC Gly	OCT Pro	GCT Ala 160	GTT Val	сос с1у	CCA Pro	CTT Leu	GGT Gly	GTC Val	aaa Lys	GCC Ala	AGA Arg	GGT Gly 170	GGC Gly	CGA Arg	AAT Asn	TTC Phe	GAG Glu
GCC Ala	TIT Phe	GGT Gly EC	TCC Ser	GAC Asp 180	CCA Pro	TAT Tyr	CIC	CAA Gln	GGT Gly	ATT Ile	GCT Ala	GCT Ala Sa	GCT Ala	GCA Ala 190	ACC The	ATC Ile	aaa Lys	GGT Gly	CIC Leu	CAA Gln	GAG Glu	AAT Asn	AAT Asn	GTT Val 200	ATG Met	GCT Ala	tgt Cys	GTC Val	aag Lys	CAC His	TTT Phe	ATT Ile	GGT Gly	AAC Asn 210
GAA Glu	CAA Gln	gat Asp	ATC Ile	TAC Tyr	AGA Arg	Gln	Pro	AGT Ser	AAT Asn 220	AGT Ser	алс Lys	GTC Val	GAC Asp	CCC Pro	GNG Glu	TAT Tyr	gat Asp	CCA Pro	GCT Ala 230	ACA Thr	aaa Lys	GAG Glu	TCT Ser	ATT Ile Hir	AGT Ser NCII	GCT Ala	λλΤ λsn	ATT Ile	CCA Pro 240	GAC Asp	AGA Arg	GCC Ala	ATG Met	CAT His
GAG Glu	TTG Leu	ТАС Тут	TIG Leu	TGG Trp 250	CCA Pro	Phe	GOC Ala	GAT Asp	TCT Ser	ATT Ile	OGA Arg	GCA Ala	GGT Gly	GTT Val 260	GGT Gly	TCT Ser	GIT Val	ATG Met	TGC Cys	TCT Ser	ТАТ Тут	AAC Asn	λGA λrg	GIC Val 270	AAC Asn	AAC Asn	ACA Thr	TAC Tyr	TCP Ser	TGC Cys	GAA Glu	AAC Asn	TCT Ser	TAC Tyr 280
ATG Met	ATT [leA	AAT sn H	CAT Lis I	TIG Leu 1	CTT (au)	AAA Lys	GAA Glu	GAA Glu	TTG Leu 290	GGT Gly	TTT Phe	CAA Gln	GGC	TIT Phe	GTT Val	GTT Val	TOG Ser	GAC Asp	TGG Trp 300	GCT Ala	GOC Ala	CAA Gln	ATG Met	AGT Ser	GGG Gly	GCT Ala	TAT Tyr	AGT Ser	GCT Ala 310	ATC Ile	TCT Ser	GOG Gly	TTA Leu	GAT Asp
Met	Ser	Met	Pro	GGT Gly 320	GAG	Leu	Leu	GIY	GQC	TGG	AAT	The	GGT Gly	AAA Lys 330	Ser	TAC Tyr	Trp	GC	CAG Gin	AAC Asn	Leu	ACC The	Lys	GCC Ala 340	Val	TAT Tyr	AAT Asn	GAG Glu	ACT	GIC Val	Pro	ATT	GAA Glu	AGA Arg 350
Leu	Asp	Asp	Met	Ala	Hi.	AGA Arg	Ile	Leu	Ala 360	Ala	Leu	Tyr	Ala	Thr	AAT	Ser	Phe	Pro	Thr 370	Lys	Asp	Arg	Leu	Pro	AAC	Phe	Ser	Ser	Phe 380	Thr	Thr	Lys	Glu	TAT Tyr
GLy	Asn	Glu	Phe	Phe 390	Val	Asp	Lys	Thr	Ser	Pro	Val	Val	Lys	Val 400	Asn	His	Phe	Val	Asp	Pro	Ser	Asn	Asp	Phe 410	Thr	Glu	Asp	Thr	Ala	Leu	Lys	Val	Ala	Glu 420
Glu GGT	Ser IAC	Ile	Val.	Lau	Leu	Lys CAG	Asn TCA	Glu	Lys 430 GTT	Asn GAT	Thr GGG	Leu	Pro	Ile	Sec	Pro	Asn TGG	Lys	Val 440 TCT	Arg	Lys	Leu	Leu	Leu	Ser	Gly	Ile	Ala	Ala 450	Gly	Pro	Asp	Pro	Lys
Gly '	Tyr ICA	Glu GCA	Cys AAT	Ser 460 GCC	asp Aga	Gln AAG	Ser AAC	Суз Алл	Val ATG	Assp CAG	Gly TIT	Ala Gat	Leu TAT	Phe 470 ATC	Glu AGA	Gly GAG	Тгр ТСА	Gly TTT	Ser GAT	Gly TTA	Ser ACA	Val	Gly	Tyr 480 TCA	Pro	Lys	Тут ССТ	Gln	Val	Thr	Pro	Phe	Glu	Glu 490 ATT
Ile :	Ser	Ala	Asn	Ala GOG	Arg	Lys AGC	Asn GGG	Lys GAA	Met 500 Bst GGT	Gln EII TAC	Phe	Asp ATT	Tyr ATT	Ile GAT	Arg GGC	Glu AAC	Ser AGA	Phe GGT	Asp 510 GAC	Leu	Thr AAT	Gln AAT	Val GTG	Ser ACA	Thr TTG	Val TGG	Ala CAC	Ser AAC	Asp 520 AGT	Ala GAT	His AAT	Met TTG	Ser	Ile AAG
Val v	Val STT	val GCA	GAA	Ala 530 AAT	Val	Ser	Gly	Glu	Gly GTT	Tyr GTT	GTT	Ile ATT	Ile ACG	Азр 540 ТСТ	Gly	Asn GGC	Arg CAA	Gly GTT	Asp GAT	Lys GTG	Asn GAA	Asn Lindl AGC	Val II TTT	Thr 550 GOG	Leu Gat	Trp CAC	His cca	Asn AAT	Ser GTC	Азф Асс	Asn GCT	Leu ATC	Ile GTT	Lys 560 TGG
GCA (Val GGT	ALA 00A	Glu	Asn GGC	Cys GAT	Ala Bgl AGA	Asn II TCT	Thr GGA	Val 570 ACA	GCT	Val	GCC	AAC	Ser	CTT	Gly	GLn GGC	Val AAC	Asp 580 GCA	Val AAC	Glu	Ser	Phe GGT	CAT	Asp	His CCG	Pro	Asn ACT	Val 590 GTT	Thr GCT	Ala AAA	Ile AGT	Val	Trp GAT
GAT	DAT	ATC	00A	600 ATT	GIG	Arg	TAC	AAT			AAT	ALA GGC	GAG	fie 610 CCT	GAG	Phe GAC	AAT	Asn	Ala	Asm GCA	GAG	CAT	Gly	His 620 TTG	CTT	Pro Hin GTT	Phe cII GAC	Thr	Val AGA	Ala TAT	Lys	GAA	Asn GAG	Asp 630 AAG
AAT A	ATT Lle	GAG	CCA Pro	AGA	TAC TYT	GCA	TTT Phe	GGT	640 TAT TVT	GOC	TIG	TCT	TAC	AAT	GAG	TAT	AAA	GTT	650 AGC	AAT	GCA	AAG	GTC Val	TOG (GCA Ala	GOC	AAA	AAA	Arg 660 Hin GTT Val	CII GAC	GAA	GAG	TIG	CCA Prop
CAA (Gln)	CT Pro	aaa Lys	TIG Leu	670 TAT Tyr	TTA Lou	GCT Ala	GAG Glu	TAC Tyr	AGC Ser	TAC Tyr	AAC Asn	AAA Lys	ACT	680 GAG Glu	GAA Glu	ATA Ile	AAT Asn	AAT	OCT Pro	GAA Glu	GAC	GCT	TTC	690 TTT (Phe)	CCA	AGC	AAC Asn	GCT	AGA	Ec AGA Arg	ORI ATT Ile	CAA Gln	GAG	700 TTC
CIC : Leu :	DAC Iyr	CCA Pro	TAT Tyr	TTA Leu	GAT Asp	AGC Ser	AAT Asn	GTT Val	710 ACC Thr	TTG Leu	AAA Lys	GAC Asp	GGA Gly	AAC Asn	TAT Tyr	GAG Glu	TAT Tyr	CCT Pro	720 GAT Asp	GGC Gly	TAC Tyr	AGC Ser	ACA Thr	GAG (Glu (CAA Gln	AGA Arg	ACA Thr	ACG Thr	730 CCT Pro	ATC	CAA Gln	OCT (Pro	GGG Gly	GGC
GGC 2 Gly 1	rig Leu	GCA Gly	GGC Gly	740 AAC Asn	gat Asp	GCT Ala	TIG Leu	TGG Trp	GAG Glu	GIC Val	GCT ' Ala '	TAT . Tyr :	aaa Lys	750 GTT (Val (GAA Glu	GIG Val	GAC (GTT Val	CAA Gln	AAC Asn	TTG Leu	GGT Gly	AAC Asn	760 TCC / Ser /	ACT :	GAT Asp	AAG Lys	TTT Phe	GTT Val	CCA Pro	CAG Gln :	TIG : Leu '	TAT ' Tyr	770 TTG Leu
AAA (Lys I	AC lis	CCT Pro	GAA Glu	GAT Asp	cac cly	aag Lys	TTT Phe	GAA Glu	780 ACC Thr	COG Pro	GTT (Val (CAA Gln :	TTG Leu	AGA (Arg (GGG Gly	TTC Phe	GAA Glu	AAG Lys	790 GIT Val	GAG Glu	TTG Leu	TCC Ser	Smal CCG Pro	GGT (Gly (GAG . Glu :	AAG Lys	AAG Lys	ACA Thr	800 GTT Val	GAG Glu	TTT - Phe -	GAG (Glu)	CTT - Leu	TTG Leu
AGA / Arg /	IGA	Bgli GAT Asp	I CTT Leu	AGT	GTG Val	TGG Trp	GAT Asp	ACC Thr	ACC Thr 850	AGA Arg	CAA (Gln :	TCC ' Ser '	TGG Trp	ATC (GIT Val	GAA Glu	TCT Ser	GGT Gly	ACT Thr	TAT Tyr	S GAG Glu	tuI GCC Ala	TTA . Leu	830 ATT (Ile (GIY	GTT Val	GCT Ala	GTT Val	AAT Asn	Eco GAT Asp	RV ATC Ile	AAG 2 Lys '	ACA Thr	840 TCT Ser
GTC (Val 1	CTG CEU	TTT Phe	ACT	ATT Ile 880	1 TGA Stp.																								870					
TTT	11GA +14		TTTI GATA	+20 ACT	CITA	TAAT • •	TT T 160 AC C	acto Aatti	+ TTTC TGTC	40 т ат т аа	GTOG TTTT	FTCT +18 CTTA	AAA 0 TAT	TTAT AATC	+60 TTT	AAAA TTTC	*****	AA T 200 AT G	CTTT	+ TTCT TTCT	80 G TT G CT	CIGA GGCI	TTTT +22 GAAT	TTO 0 AAA	CAAT	+100 TAA	AAAG ATTT	TTTT	TG G 240 TT A	TTTT	+1 GCTT AATT	20 T TC C AT	ACTG	TTTC +260 TTAT

-380 -360 -340 -320 -300 Тозелалта сатосавае озсагдасаа асозотист тесятозите атасабите абоссата атасабите атасабите атасабите атасабите

MAXWOOT TECHORACTA TACTEMATA ACHACITTA TEANETESA GRATETOST TITTETAAC CITICTARAT GOOSTAANI GOOSTAANI AANAOSACI TITCACAGA $^{-120}$ $^{-120}$ $^{-100}$ $^{-80}$ $^{-60}$ $^{-60}$

COCCAGTTTC

-280 TATTITAATA TIGCACATOG OGAGAAGCAT

+280 +300 Psti CGGFTCATTT CIATAGATTT ACIATGAOGT TGATTTTTTC ATCACTGCAG

b

FIG. 6. Nucleotide and deduced protein sequences of BGL1 (a) and BGL2 (b). Numbers above a sequence indicate the number of the nucleotide, in each direction, from the A in the translation-initiating ATG or the T in the stop codon TGA. Restriction sites are indicated above the nucleotide sequence. Numbers below the protein sequence denote the amino acid number, starting with 1 at the initiator methionine. Underlined is the amino-terminal peptide of the mature or secreted protein determined by direct sequencing.

Sf	I (1)	MLMIVQLLVPALGLAVAVPIQNTOSPSOR DE SSQWVSPHYYPTPQGGRLQDV WQEAYAR	(60)
Sf	$\mathbf{II}(1)$	L-LELIIGL-V-THNLTDN-GFEI	(62)
сp	(1)	<u>nenig-wat-a-añ-wna</u> <u>aw-ñwaw-netwu</u> <u>E-ot</u> iw- <u>av-w-t</u> i-	(397
Sf	I (61)	AKAIVGONTIVEKVELTTGTGWQLDPCVGNTGSVPRFGIPNLCLDDGPLGVRFADFVTGYPSG	(123)
SI	(60)		(125) (122)
۰p	(00)		(1227
Sf	I (124)	LATGATFNKDLFLQRGQALGHEFNSKGVHIALGPAVGPLGVKARGGRNFBAFGSDPYLQGTAA	(186)
Cp	(123)	M-ASSSQ-IYD-AV-I-SKGADAIVYMAGW-GH-PE-VI-	(185)
_			
c f	T (197)		(243)
Sf	II(189)	DISNSKVDPEYDPAE-	(247)
Сp	(186)	YLQI-SQG-VSTA-LHF-FAKKDKH-GKIDPGMFN-SSSL-SE-DBI	(247)
Sf	I (244)	YLWPFADSVRAGVGSVMCSYNR WNNTYACENSYMMNHLLKBELGFOGF VSDWGAOLSGVYSA	(306)
Sf	II(248)	I	(310)
Сp	(248)	EAGS-IKL-GSHQLL-YMTLYIDA-	(310)
Sf	I (307)	ISGLDMSMPGEVYGGWNTGTSFWGQNLTKAIYNETVPIERLDDMATRILAAL YATNSFPTED	(368)
Sf	11(311)		(372)
Сp	(311)	NALDC-AQY -GT-VL-G-L-QDLSJI-SGVHN	(363)
Sf	I (369)	HLPOPTSSWTTKEYGNKYYADOTTELVKVNYNVDPSNDPTEDTALKVAEESIVLLKNEONTLPI	(431)
Sf	11(373)	ROF	(435)
Ср	(364)	GINAQ-FLTE-HE-FKQQEGDVL-KHVRS-INRAVRS-V-GVHEL	(425)
Sf	I (432)	SPEKAKRLLLSGIAAGPDPIGYQCEDQSCTNGALFQGWGSGSVGSPKYQVTPFEEISYLARKN	(494)
SI	11(436)	N-VRKK	(498)
۰p	(1207		(4077
~ ~			
SI	I (495) TT(499)	KMQFDYIRESYDLAQVTKVASDAHLSIVVV SAASGEGYITVDGNQGDRANLTLWNNGDKLIE	(556)
Cp	(488)	-ISYEF-GD-WNQ-AAMDS-LY-DAA-E-AN-VEIGDYLNH-AVPK.	(549)
Sf	T (557)	TUAENCANTUUUUTSTCO INERCEADUDAUTAIUNACDICODECTAIANII PCKAMPCCUID	(610)
Sf	11(561)	λN-0	(622)
Сp	(550)	NISSINNI-IQ-DL-P-I-NEVIYSSYQDFVL-KVDE	(611)
Sf	I (619)	FTIAKTDDDYIP IETYSPSSGEPEDNHLVENDLLVDYRYFEEKNIEP RYAFGYGLSYNEYE	(680)
Sf	II(623)	VSN	(684)
Cp	(612)	DVNVKVDVPD -V- KPT-SIYDKY-K -VESNFS	(670)
Sf	I (681)	VSNAKVSAAKKVDEELPEPATYLSEFSYONAKDSKO PSDAFAPADLNRVNEYLYPYLDSOVT	(741)
Sf	II(685)	Q-KLA-YQKTEEINEP-SNAR-IQ-FQ	(745)
сp	(0/1)	D DIDIVIDVERS A ANI1 I-V-NMDBITV-EGERELAN-TIHDASS	(729)
Sf cf	I (742)	LKDGN YEYPDGYSTEQRTTPNQPG GGLGGNDALWEVAY	(802)
	(730)	I-ANSS-DELDG-KSLAAHTCGMLVTL-LL-SOIKVLMLVGLHLNCM-D	(806)
-			
c f	T (003)		100-
Sf	II(807)		(863) (869)
Сp	(793)	IQIMMNSQHLQCNYVDL-RCFWIKIILKLF-LN (825)	/

Sf I (866) NDIKTSVLFTI (876) Sf II(870) ----- (880)

FIG. 7. Sequence homologies among yeast β -glucosidases. Amino acid sequences deduced from the following β -glucosidase genes were aligned to maximize the homologies: Saccharomycopsis fibuligera BGL1 (SfI); Saccharomycopsis fibuligera BGL2 (SfII); and Candida pelliculosa β -glucosidase gene (Cp) (7). Symbols: -, residue is identical to that shown for Saccharomycopsis fibuligera BGL1; \Box , highly conserved region; \bigcirc , potential N-glycosylation site; ∇ , possible signal sequence cleavage site; *, conserved peptide including the active-site aspartic acid residue. Underlined are the nonhomologous peptides between BGLI and BGLII. Numbers in parentheses indicate amino acid numbers.

ACKNOWLEDGMENTS

We thank K. Yamaguchi (Kyowa Hakko Co.) for amino acid analyses of β -glucosidases.

This work was supported in part by grants from the Ministry of Education, Science and Culture of Japan.

LITERATURE CITED

- Bause, E., and G. Legler. 1974. Isolation and amino acid sequence of a hexadecapeptide from the active site of βglucosidase A3 from Aspergillus wentii. Hoppe-Seyler's Z. Physiol. Chem. 355:438-442.
- 2. Davis, R. W., D. Botstein, and J. R. Roth. 1980. Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 3. Duerksen, J. D., and H. Halvorson. 1958. Purification and properties of an inducible β-glucosidase of yeast. J. Biol. Chem. 233:1113–1120.
- Itoh, T., I. Ohtsuki, I. Yamashita, and S. Fukui. 1987. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. J. Bacteriol. 169:4171–4176.
- 5. Itoh, T., I. Yamashita, and S. Fukui. 1987. Nucleotide sequence of the α-amylase gene (*ALP1*) in the yeast Saccharomycopsis fibuligera. FEBS Lett. 219:339-342.
- Kaplan, J. G., and W. Tacreiter. 1966. The β-glucosidase of the yeast cell surface. J. Gen. Physiol. 50:9–24.
- Kohchi, C., and A. Toh-e. 1985. Nucleotide sequence of Candida pelliculosa β-glucosidase gene. Nucleic Acids Res. 13: 6273-6282.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
- Penttilae, M. E., K. M. H. Nevalainen, A. Raynal, and J. K. C. Knowles. 1984. Cloning of Aspergillus niger genes in yeast. Expression of the gene coding Aspergillus β-glucosidase. Mol.

Gen. Genet. 194:494-499.

- 10. Raynal, A., and M. Guerineau. 1984. Cloning and expression of the structural gene for β -glucosidase of *Kluyveromyces fragilis* in *Escherichia coli* and *Saccharomyces cerevisiae*. Mol. Gen. Genet. 195:108–115.
- 11. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- 12. Sherman, F., G. R. Fink, and C. W. Lawrence. 1974. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Woodward, J., and A. Wiseman. 1982. Fungal and other β-Dglucosidases—their properties and applications. Enzyme Microb. Technol. 4:73-79.
- 14. Yamashita, I., and S. Fukui. 1983. Molecular cloning of a glucoamylase-producing gene in the yeast *Saccharomyces*. Agric. Biol. Chem. 47:2689–2692.
- Yamashita, I., T. Itoh, and S. Fukui. 1985. Cloning and expression of the Saccharomycopsis fibuligera glucoamylase gene in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 23: 130–133.
- Yamashita, I., T. Itoh, and S. Fukui. 1985. Cloning and expression of the Saccharomycopsis fibuligera α-amylase gene in Saccharomyces cerevisiae. Agric. Biol. Chem. 49:3089–3091.
- Yamashita, I., T. Maemura, T. Hatano, and S. Fukui. 1985. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast *Saccharomyces diastaticus*. J. Bacteriol. 161:574–582.
- Yamashita, I., M. Nakamura, and S. Fukui. 1987. Gene fusion is a possible mechanism underlying the evolution of STA1. J. Bacteriol. 169:2142-2149.
- 19. Yamashita, I., K. Suzuki, and S. Fukui. 1985. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J. Bacteriol. 161:567-573.