APPENDIXES

3 Appendix A

The rate equations of the model of photosynthetic carbon metabolism. The subscripts of
v₁, v₂.....v₁₃₁ correspond to the numbers in Fig. 1. The kinetic parameters in the rate
equations are listed in Appendices C and D. See Appendix G for definitions of
abbreviations.

$$\begin{split} & \text{RuBP} \times \text{Wc} \times \text{min}(1, \frac{\text{RuBP}}{\text{E}_{t}}) \\ & \text{v}_{1} = \frac{\text{RuBP} + \text{K}_{r}(1 + \frac{\text{PGA}}{\text{K}_{111}} + \frac{\text{FBP}}{\text{K}_{112}} + \frac{\text{SBP}}{\text{K}_{113}} + \frac{\text{Pi}}{\text{K}_{114}} + \frac{\text{NADPH}}{\text{K}_{115}})) \\ & \text{W}_{C} = \frac{\text{V}_{Cmax} \times \text{CO}_{2}}{\text{CO}_{2} + \text{K}_{M11}(1 + \frac{\text{O}_{2}}{\text{K}_{M12}})} \\ & \text{v}_{2} = \frac{\text{V}_{2} \times (\text{PGA} \times \text{ATP} - \frac{\text{DPGA} \times \text{ADP}}{\text{K}_{E2}})}{(\text{PGA} + \text{K}_{M21})(\text{ATP} + \text{K}_{M22}(1 + \frac{\text{ADP}}{\text{K}_{M23}}))} \\ & \text{v}_{3} = \frac{\text{V}_{3} \times \text{DPGA} \times \text{NADPH}}{(\text{DPGA} + \text{K}_{M31})(\text{NADPH} + \text{K}_{M32})} \\ & \text{v}_{5} = \frac{\text{V}_{5} \times (\text{GAP} \times \text{DHAP} - \frac{\text{FBP}}{\text{K}_{E5}})}{\text{K}_{M51}\text{K}_{M52}(1 + \frac{\text{GAP}}{\text{K}_{M51}} + \frac{\text{DHAP}}{\text{K}_{M52}} + \frac{\text{FBP}}{\text{K}_{M53}} + \frac{\text{GAP} \times \text{DHAP}}{\text{K}_{M51}\text{K}_{M52}}) \end{split}$$

$$v_{6} = \frac{V_{6} \times (FBP - \frac{F6P \times Pi}{K_{E6}})}{FBP + K_{M61}(1 + \frac{F6P}{K_{I61}} + \frac{Pi}{K_{I62}})}$$

$$TEMP1 = Xu5P \times (1 + \frac{E4P \times Ri5P}{Km71}) + E4P + Ri5P$$

$$Den = 1 + (1 + \frac{GAP}{K_{M72}}) \times (\frac{F6P}{K_{M104}} + \frac{S7P}{K_{M103}}) + \frac{GAP}{K_{M102}} + \frac{TEMP1}{K_{M101}}$$

$$v_{7} = \frac{V_{7} \times (F6P \times GAP \times K_{E7} - Xu5P \times E4P)}{(K_{M71} \times K_{M101} \times Den)}$$

$$v_{8} = \frac{V_{8} \times (DHAP \times E4P - \frac{SBP}{K_{E8}})}{(E4P + K_{M82})(DHAP + K_{M81})}$$

$$v_{9} = \frac{V_{9} \times (SBP - \frac{Pi \times S7P}{K_{E9}})}{SBP + K_{M9}(1 + \frac{Pi}{K_{I9}})}$$

$$v_{10} = \frac{V_{10} \times (GAP \times S7P \times K_{E10} - Ri5P \times Xu5P)}{(K_{M71} \times K_{M101} \times Den)}$$

2 Alternate simplified equations for v_7 and v_{10} can also be used following Poolman et al

$$v_{13} = \frac{V_{13} \times (ATP \times Ru5P - \frac{ADP \times RuBP}{K_{E13}})}{(ATP \times (1 + \frac{ADP}{K_{1134}}) + K_{M132}(1 + \frac{ADP}{K_{1135}}))(Ru5P + K_{M131}(1 + \frac{GAP}{K_{1131}} + \frac{RuBP}{K_{1132}} + \frac{Pi}{K_{1133}}))}$$

$$v_{16} = \frac{V_{16} \times (ADP \times Pi - \frac{ATP}{K_{E13}})}{(ADP + K_{M161})(Pi + K_{M162})}$$

$$v_{23} = \frac{V_{23} \times GIP \times ATP}{(GIP + K_{M231})((1 + \frac{ADP}{K_{123}})(ATP + K_{M232}) + \frac{K_{M232} \times Pi}{K_{A231} \times PGA + K_{A232} \times F6P + K_{A233} \times FBP})}$$

$$N = 1 + (1 + \frac{K_{M313}}{P_{ext}})(\frac{Pi}{K_{M312}} + \frac{PGA}{K_{M32}} + \frac{GAP}{K_{M33}} + \frac{DHAP}{K_{M311}})$$

$$v_{31} = \frac{V_{31} \times DHAP}{K_{M311}N}$$

$$v_{32} = \frac{V_{32} \times PGA}{K_{M32}N}$$

$$v_{33} = \frac{V_{33} \times GAP}{K_{M33}N}$$

$$\begin{array}{l} \frac{1}{2} \\ \frac{1}{2} \\ 3 \quad v_{55} = \frac{V_{55} \times (\text{UTPc} \times \text{G1Pc} - \frac{\text{UDPGc} \times \text{OPOPc}}{K_{\text{E551}}}) \\ \frac{1}{K_{\text{m551}} K_{\text{m552}}(1 + \frac{\text{UTPc}}{K_{\text{m551}}} + \frac{\text{G1Pc}}{K_{\text{m552}}} + \frac{\text{UDPGc}}{K_{\text{m553}}} + \frac{\text{OPOPc}}{K_{\text{m554}}} + \frac{\text{UTPc} \times \text{G1Pc}}{K_{\text{m555}} + \frac{\text{UDPGc} \times \text{OPOPc}}{K_{\text{m555}}} + \frac{1}{K_{\text{m555}}} K_{\text{m5552}} + \frac{1}{K_{\text{m553}}} K_{\text{m5554}}}) \\ 4 \quad v_{56} = \frac{V_{56} \times (\text{F6Pc} \times \text{UDPGc} - \frac{\text{SUCPc} \times \text{UDPc}}{K_{\text{E56}}}) \\ \frac{1}{(\text{F6Pc} + K_{\text{m561}}(1 + \frac{\text{FBPc}}{K_{1562}}))(\text{UDPGc} + K_{\text{m562}}(1 + \frac{\text{UDPc}}{K_{1561}})(1 + \frac{\text{SUCPc}}{K_{1563}})(1 + \frac{\text{SUCPc}}{K_{1565}})(1 + \frac{\text{Pic}}{K_{1565}})) \\ 5 \quad v_{57} = \frac{V_{57} \times (\text{SUCPc} - \frac{\text{SUCc} \times \text{Pic}}{K_{\text{m571}}} \\ \frac{1}{\text{SUCPc} + K_{\text{m571}} \times (1 + \frac{\text{SUCc}}{K_{\text{m572}}})} \\ 6 \quad v_{58} = \frac{V_{58} \times \text{F26BPc}}{K_{\text{m581}} \times (1 + \frac{\text{F26BPc}}{K_{\text{m581}}})(1 + \frac{\text{Pic}}{K_{1582}})(1 + \frac{\text{F6Pc}}{K_{1581}})} \\ 7 \quad v_{59} = \frac{V_{59} \times (\text{ATPc} \times \text{F6Pc} - \frac{\text{ADPc} \times \text{F26BPc}}{K_{\text{m591}} \times (1 + \frac{\text{ADPc}}{K_{1591}}))} \\ 8 \quad v_{60} = \frac{V_{60} \times (\text{ATPc} \times \text{UDPc} - \text{ADPc} \times \text{UTPc}/\text{KE60})}{K_{\text{m603}} \times (1 + \frac{\text{ATPc}}{K_{\text{m602}}} + \frac{\text{UDPc}}{K_{\text{m602}}} + \frac{\text{ADPc}}{K_{\text{m601}}} + \frac{\text{UTPc}}{K_{\text{m601}}} + \frac{\text{ADPc} \times \text{UTPc}}{K_{\text{m601}}})} \\ \end{array}$$

$$\begin{split} & \text{RuBP} \times \text{W}_{\text{o}} \times \min(1, \frac{\text{RuBP}}{\text{E}_{\text{t}}}) \\ & \text{v}_{111} = \frac{\text{RuBP} + \text{K}_{\text{r}}(1 + \frac{\text{PGA}}{\text{K}_{111}} + \frac{\text{FBP}}{\text{K}_{112}} + \frac{\text{SBP}}{\text{K}_{113}} + \frac{\text{PI}}{\text{K}_{114}} + \frac{\text{NADPH}}{\text{K}_{115}})) \\ & \text{W}_{\text{o}} = \frac{\text{V}_{111} \times \text{O}_2}{\text{O}_2 + \text{K}_{\text{o}}(1 + \frac{\text{CO}_2}{\text{K}_{\text{C}}})} \\ & \text{v}_{112} = \frac{\text{V}_{112} \times \text{PGCA}}{\text{PGCA} + \text{K}_{\text{m}112}(1 + \text{GCA/K}_{11121})(1 + \text{Pi/K}_{11122})} \\ & \text{v}_{113} = \frac{\text{V}_{113} \times (\text{ATP} \times \text{GCEA} - \frac{\text{ADP} \times \text{PGA}}{\text{K}_{\text{E}113}})}{(\text{ATP} + \text{Km}_{1131}(1 + \frac{\text{PGA}}{\text{K}_{1113}}))(\text{GCEA} + \text{K}_{\text{m}1132})} \\ & \text{v}_{121} = \frac{\text{V}_{121} \times \text{GCAc}}{\text{GCAc} + \text{K}_{\text{m}121}} \\ & \text{v}_{122} = \frac{\text{V}_{122} \times (\text{GOAc} \times \text{SERe} - \frac{\text{HPRc} \times \text{GLYc}}{\text{K}_{\text{E}122}})}{(\text{GOAc} + \text{K}_{\text{m}1221})(\text{SERc} + \text{K}_{\text{m}1222}(1 + \frac{\text{GLYc}}{\text{K}_{11221}})))} \end{split}$$

$$v_{123} = \frac{V_{123} \times (HPRc \times NADHc - \frac{NADc \times Gcea}{K_{E123}})}{HPRc + K_{m1231}(1 + HPRc/K_{I123})}$$
$$v_{124} = \frac{V_{124} \times (GOAc \times GLUc - \frac{KGc \times GLYc}{K_{E124}})}{(GOAc + K_{m1241})(GLUc + K_{m1242}(1 + GLYc/K_{I124}))}$$
$$v_{131} = \frac{V_{131} \times GLYc}{GLYc + K_{m1311}(1 + SERc/K_{I1311})}$$

$$v_{1in} = V_{1T} \frac{GCEAc}{GCEAc + K_{M1011}(1 + \frac{GCAc}{K_{I1011}})}$$

$$v_{1out} = V_{1T} \frac{GCEA}{GCEA + K_{M1011}(1 + \frac{GCA}{K_{I1011}})}$$

$$v_{2out} = V_{2T} \frac{GCA}{GCA + K_{M1012}(1 + \frac{GCEA}{K_{I1012}})}$$

$$v_{2in} = V_{2T} \frac{GCAc}{GCAc + K_{M1012}(1 + \frac{GCEAc}{K_{I1012}})}$$

T3P = GAP + DHAPPent = Ru5P + Ri5P + Xu5P HexP = G6P + F6P + G1P

$$GAP = \frac{T3P}{1 + K_{e4}}$$
$$DHAP = \frac{K_{e3} \times T3P}{1 + K_{e4}}$$

2

$$[CA] = [ADP] + [ATP]$$

$$[CN] = [NADP] + [NADPH]$$

$$[CP] = [Pi] + [PGA] + 2[BPGA] + [GAP] + [DHAP] + 2[FBP] + [F6P] + [E4P] + 2[SBP]$$

$$+ [S7P] + [Xu5P] + [Ri5P] + [Ru5P] + 2[RuBP] + [G6P] + [G1P] + [ATP] + [PGCA]$$

$$[CA_c] = [ADP_c] + [Ri5P] + [Ru5P] + 2[RuBP] + [G6P] + [G1P] + [ATP] + [PGCA]$$

$$[CA_c] = [ADP_c] + [ATP_c]$$

$$[CP_c] = 2*([FBP_c] + [F26BP_c]) + [PGA_c] + [T3P_c] + [HexP_c] + [SUCP] + [UTP_c] + [ATP_c] + [Pi]$$

$$[CN_c] = [NAD_c] + [NADH_c]$$

$$[CU_c] = [UDP_c] + [UTP_c]$$

1 Appendix B

4

5

6

- 2 Differential equations to describe rates of change in each intermediate of carbon
- 3 metabolism. See Appendix A for definition of $v_1, v_2 \dots v_{131}$.

$$\frac{d[RuBP]}{dt} = v_{13} - v_{1} - v_{111}; \qquad \qquad \frac{d[GOAc]}{dt} = v_{121} - 122 - 124 \\ \frac{d[PGA]}{dt} = 2v_{1} - v_{2} - v_{32} + v_{111} + v_{113}; \qquad \qquad \frac{d[SER]}{dt} = v_{131} - v_{122} \\ \frac{d[DPGA]}{dt} = v_{2} - v_{3}; \qquad \qquad \frac{d[GDAc]}{dt} = v_{131} - v_{122} \\ \frac{d[SER]}{dt} = v_{2} - v_{3}; \qquad \qquad \frac{d[GDAc]}{dt} = v_{122} + v_{124} - 2v_{131} \\ \frac{d[SER]}{dt} = v_{3} - 2v_{5} - v_{7} - v_{8} - v_{10} - v_{31} - v_{33}; \qquad \qquad \frac{d[GCEAc]}{dt} = v_{122} - v_{123} \\ \frac{d[FBP]}{dt} = v_{5} - v_{6}; \qquad \qquad \frac{d[GCEAc]}{dt} = v_{123} - v_{113} - v_{104} \\ \frac{d[SSP]}{dt} = v_{9} - v_{10}; \qquad \qquad \frac{d[GCEA]}{dt} = v_{110} - v_{113} - v_{104} \\ \frac{d[GCEA]}{dt} = v_{112} - v_{204} + v_{2in} \\ \frac{d[ATP]}{dt} = v_{6} - v_{7} - v_{23}; \qquad \qquad \frac{d[GCAc]}{dt} = v_{111} - v_{112} \\ \frac{d[GCAc]}{dt} = v_{204} - v_{121} - v_{2in} \\ \frac{d[GCAc]}{dt} = v_{10} - v_{121} - v_{2in} \\ \frac{d[GCAc]}{dt} - v_{10} - v$$

$$\frac{d[OPOPc]}{dt} = v_{55} - v_{61}$$

$$\frac{d[UTPc]}{dt} = v_{60} - v_{55}$$

$$1 \quad \frac{d[SUCPc]}{dt} = v_{56} - v_{57}$$

$$\frac{d[SUCc]}{dt} = v_{57} - v_{62}$$

$$\frac{d[PGAc]}{dt} = v_{32} - v_{pga_use}$$

$$\frac{d(T3Pc)}{dt} = v_{31} + v_{33} - 2v_{51}$$

$$\frac{d(FBPc)}{dt} = v_{51} - v_{52}$$

$$\frac{d[HexPc]}{dt} = v_{52} - v_{55} - v_{59} + v_{58} - v_{56}$$

$$\frac{d[F26BPc]}{dt} = v_{59} - v_{58}$$

$$\frac{d[UDPGc]}{dt} = v_{55} - v_{56}$$

$$\frac{d[ATPc]}{dt} = v_{atpf} - v_{59} - v_{60}$$

1 Appendix C

- 2 Kinetic parameters of the enzymes of the Calvin cycle, starch synthesis and triose
- 3 phosphate export illustrated in Fig. 1.

4 Table C1

- 5 The Michaelis-Menten constants, inhibition constants and activation constants of the enzymes in
- 6 the Calvin cycle, starch synthesis and triose phosphate export. The response coefficient of each

7 parameter was calculated for the initial nitrogen distribution (See text).

RN ^a	Reaction	Par ^b	Value	Descriptio	CC ^e	Reference
			(mM) ^c	\mathbf{n}^{d}		
1	RuBP+CO ₂ →2PGA	K _{M11}	0.0115	CO ₂	-0.60	Jordan and Ogren (1981), Tcherkez et al.
						(Tcherkez et al., 2006)
1	RuBP+CO ₂ →2PGA	K _{M12}	0.222	O_2	0.54	Jordan and Ogren (1981), von Caemmerer (2000)
1	RuBP+CO ₂ →2PGA	K _{M13}	0.020	RuBP	-0.07	Farquhar (1979)
1	RuBP+CO ₂ \rightarrow 2PGA	K ₁₁₁	0.84	PGA	8×10 ⁻⁴	Badger and Lorimer (1981)
1	RuBP+CO ₂ \rightarrow 2PGA	K ₁₁₂	0.04	FBP	1×10 ⁻³	Badger and Lorimer (1981)
1	RuBP+CO ₂ \rightarrow 2PGA	K ₁₁₃	0.075	SBP	0.02	Badger and Lorimer (1981)
1	RuBP+CO ₂ →2PGA	K _{I14}	0.9	Pi	2×10 ⁻⁴	Badger and Lorimer (1981)
1	RuBP+CO ₂ →2PGA	K ₁₁₅	0.07	NADPH	0.004	Badger and Lorimer (1981)
2	$PGA+ATP \leftrightarrow ADP + DPGA$	K _{M21}	0.240	PGA	6×10 ⁻⁴	Larsson-Raznikiewicz (1967), Kopkesecundo et
						al. (1990)
2	$PGA+ATP \leftrightarrow ADP + DPGA$	K_{M22}	0.390	ATP	2×10 ⁻³	Larsson-Raznikiewicz (1967), Kopkesecundo et
						al. (1990)
2	$PGA+ATP \leftrightarrow ADP + DPGA$	K _{M23}	0.23	ADP	-1×10 ⁻³	Lee (1982)
2	$PGA+ATP \leftrightarrow ADP + DPGA$	K_{E2}	7.6	Equ.		Laisk et al. (1989); Dietz et al (1984); Heber et al
			$\times 10^{-4}$	Const.		(1986)
3	$DPGA \!\!+\!\! NADPH \!\!+\!\! H^{\scriptscriptstyle +} \! \leftrightarrow \!\! GAP$	K _{M31}	0.004	BPGA	-5×10 ⁻⁵	Trost et al. (1993)
	+ Pi+NADP					
3	$DPGA + NADPH + H^+ \leftrightarrow GAP$	K _{M32}	0.100	NADPH	-4×10 ⁻⁵	Cerf (1978), Ferri et al (1978), Trost (1993),
	+ Pi+NADP					Macioszek and Anderson (1987)
4	$DHAP \leftrightarrow GAP$	K_{E4}	0.05	Equ.	6×10 ⁻³	Bassham and Krause (1969)
				Const.		
5	$\text{GAP+DHAP} \leftrightarrow \!\! \text{FBP}$	K _{M51}	0.3	GAP	-2×10 ⁻³	Iwaki et al (1991)
5	$\text{GAP+DHAP} \leftrightarrow \!\! \text{FBP}$	K _{M52}	0.4	DHAP	-9×10 ⁻⁴	Iwaki et al (1991)
5	$\text{GAP+DHAP} \leftrightarrow \!\! \text{FBP}$	K _{M53}	0.02	FBP	3×10 ⁻⁴	Brooks and Criddle (1966), Schnarrenberger and
						Kruger (1986)
5	$\text{GAP+DHAP} \leftrightarrow \!\! \text{FBP}$	K_{E5}	7.1	Equ.	5×10 ⁻⁵	Bassham and Krause (1969),
				Const.		Iwaki et al (1991)
6	FBP→F6P+Pi	K _{M61}	0.033	FBP	-2×10 ⁻³	Charles and Halliwell (1981)
6	FBP→F6P+Pi	K ₁₆₁	0.7	F6P	4×10 ⁻⁴	Heldt (1983)
6	FBP→F6P+Pi	K ₁₆₂	12	Pi	1×10 ⁻⁵	Charles and Halliwell (1981)
6	FBP→F6P+Pi	K_{E6}	6.7×10 ⁵	Equ	4×10-9	Bassham and Krause (1969), Laisk et al.(1989)

				Const.		
7	F6P+GAP→E4P+Xu5P	K _{M71}	0.1	Xu5P	4×10 ⁻⁴	Murphy and Walker (1982), Laisk et al (1989)
7	F6P+GAP→E4P+Xu5P	K _{M72}	0.1	GAP	2×10 ⁻³	Sprenger et al (1995), Schenk et al (1998)
7	F6P+GAP→E4P+Xu5P	K_{E7}	10	Equ.	9×10 ⁻⁴	Bassham and Krause (1969), Laisk et al.(1989)
				Const.		
8	E4P+DHAP→SBP	K_{M8}	0.02	SBP	0	Brooks and Criddle (1966)
8	E4P+DHAP→SBP	K _{M81}	0.4	DHAP	-3×10 ⁻⁴	Iwaki et al (1991)
8	E4P+DHAP→SBP	K _{M82}	0.2	E4P	-6×10 ⁻⁴	Estimate
8	E4P+DHAP→SBP	K_{E8}	1.07	Equ.	4×10 ⁻³⁴	Bassham and Krause (1969), Laisk et al.(1989)
				Const.		
9	SBP→S7P+Pi	K _{M9}	0.05	SBP	-0.03	Woodrow et al (1983), Cadet and Meunier (1988)
9	SBP→S7P+Pi	K ₁₉	12	Pi	3×10 ⁻⁴	Woodrow et al(1983)
9	SBP→S7P+Pi	K_{E9}	6.7×10 ⁵	Equ.	4×10 ⁻⁸	Bassham and Krause (1969), Laisk et al.(1989)
				Const.		
10	S7P+GAP→Ri5P+Xu5P	K _{M101}	0.118	P5P	2×10 ⁻⁴	Racher (1961), Laisk et al (1989)
10	S7P+GAP→Ri5P+Xu5P	K _{M102}	0.072	GAP	-4×10 ⁻⁴	Albe (1991); Laisk et al (1989)
10	S7P+GAP→Ri5P+Xu5P	K _{M103}	0.46	S7P	-5×10 ⁻⁴	Albe (1991); Laisk et al (1989)
10	S7P+GAP→Ri5P+Xu5P	K_{M104}	1.54	F6P	3×10 ⁻⁵	Albe (1991); Laisk et al (1989)
10	S7P+GAP→Ri5P+Xu5P	K_{E10}	1.17	Equ.	8×10 ⁻⁴	Bassham and Krause (1969), Laisk et al.(1989)
				Const.		
11	Ri5P↔Ru5P	K_{E11}	0.4	Equ.	2×10 ⁻³	Bassham and Krause (1969)
				Const.		
12	Xu5P↔Ru5P	K_{E12}	0.67	Equ.	3×10 ⁻³	Bassham and Krause, (1969)
				Const.		
13	Ru5P+ATP→RuBP+ADP	K _{M131}	0.05	Ru5P	-4×10 ⁻³	Gardemann et al (1983), Omnaas et al (1985)
13	Ru5P+ATP→RuBP+ADP	K _{M132}	0.059	ATP	-2×10 ⁻³	Laing et al (1981), Gardemann et al (1983),
						Omnaas et al (1985)
13	Ru5P+ATP→RuBP+ADP	K ₁₁₃₁	2	PGA	2×10 ⁻⁴	Gardemann et al (1983)
13	Ru5P+ATP→RuBP+ADP	K ₁₁₃₂	0.7	RuBP	4×10 ⁻³	Gardemann et al (1983)
13	Ru5P+ATP→RuBP+ADP	K ₁₁₃₃	4	Pi	2×10 ⁻⁵	Gardemann et al (1983)
13	Ru5P+ATP→RuBP+ADP	K ₁₁₃₄	2.5	ADP	1×10 ⁻³	Gardemann et al (1983)
13	Ru5P+ATP→RuBP+ADP	K_{E13}	0.4	ADP	2×10 ⁻⁴	Gardemann et al (1983)
13	Ru5P+ATP→RuBP+ADP	K ₁₁₃₅	6846	Equ.	2×10 ⁻³	Bassham and Krause (1969), Laisk et al.(1989)
				Const.		
16	ADP+Pi→ATP	K _{M161}	0.014	ADP	-1×10 ⁻⁵	Davenport and Mccarty (1986)
16	ADP+Pi→ATP	K _{M162}	0.3	Pi	-6×10 ⁻⁴	Aflalo and Shavit (1983)
16	ADP+Pi→ATP	K _{M163}	0.3	ATP	5×10 ⁻⁶	r.f. Laisk et al. (1989)
16	ADP+Pi→ATP	K_{E16}	5.7	Equ.	0	Bassham and Krause (1969), Laisk et al.(1989)
				Const.		
21	F6P↔G6P	K_{E21}	2.3	Equ.	-2×10 ⁻³	Bassham and Krause (1969)
				Const.		
22	G6P↔G1P	K_{E22}	0.058	Equ.	-5×10 ⁻⁵	Colowick and Sutherland (1942)
				Const.		
23	G1P+ATP+Gn→PPi+ADP+	K _{M231}	0.08	G1P	-6×10 ⁻⁵	Pettersson and Ryde-Pettersson (1988)
	G_{n+1}					
23	G1P+ATP+Gn→PPi+ADP+	K _{M232}	0.08	ATP	-4×10 ⁻⁵	Pettersson and Ryde-Pettersson (1988)

	G_{n+1}					
23	$G1P+ATP+Gn \rightarrow PPi+ADP+$	K _{A231}	0.1	PGA	2×10 ⁻⁵	Pettersson and Ryde-Pettersson (1988)
	G_{n+1}					
23	$G1P+ATP+Gn \rightarrow PPi+ADP+$	K _{A232}	0.02	F6P	2×10 ⁻⁶	Pettersson and Ryde-Pettersson (1988)
	G_{n+1}					
23	$G1P+ATP+Gn \rightarrow PPi+ADP+$	K _{A233}	0.02	FBP	3×10 ⁻⁷	Pettersson and Ryde-Pettersson (1988)
	G_{n+1}					
23	$G1P+ATP+Gn \rightarrow PPi+ADP+$	K ₁₂₃	10	ADP	7×10 ⁻⁶	Pettersson and Ryde-Pettersson (1988)
	G_{n+1}					
31	P_{ext} +DHAP _i \rightarrow Pi+DHAP _o	K _{M311}	0.077	DHAP	-6×10 ⁻⁵	Fliege et al (1978), Portis Jr. (1983)
31	P_{ext} +DHAP _i \rightarrow Pi+DHAP _o	K _{M312}	0.63	Pi	1×10 ⁻⁵	Fliege et al (1978), Portis Jr. (1983)
31	P_{ext} +DHAP _i \rightarrow Pi+DHAP _o	K _{M313}	0.74	Pext	-4×10 ⁻⁴	Fliege et al (1978), Portis Jr. (1983)
32	$P_{ext} + PGA_i \rightarrow Pi + PGA_o$	K _{M32}	0.25	PGA	-9×10 ⁻⁶	Fliege et al (1978), Portis Jr. (1983)
33	P_{ext} +GAP _i \rightarrow Pi+GAP _o	K _{M33}	0.075	GAP	-3×10 ⁻⁶	Fliege et al (1978), Portis Jr. (1983)

1

2 ^aRN: Reaction number corresponding to the number in Fig. 1.

3 ^b Parameters beginning K_M represent the Michaelis-Menten constant of the metabolite listed in the *description* column

4 Parameters beginning with *K*₁ represent the inhibition constant of the inhibitor listed in the *description* column.

5 Parameters beginning with *K*_A represent the activation constant of the activator listed in the *description* column.

 $^{\circ}$ The units of the equilibrium constant are mM (which is equivalent to mmol Γ^{-1}) for all constants, except K_e. The unit of K_e for

7 reactions with one substrate and one product, or reactions with two substrates and two products is dimensionless. The unit of Ke for

8 reactions with one substrate and two products is mM. The unit for reactions with two substrates and one product is (mM)⁻¹.

9 ^d The description column lists the compounds to which the kinetic constant applies.

10 ^e Response coefficients for different parameters used in the model

Table C2 1

- 2 3 The maximum rate of each enzyme $\left(V_{m}\right)$ normalized on maximum Rubisco carboxylation activity
- (V₁)

Maximum	Enzyme	Reaction	V_m/V_1	Reference
Velocity				
V_1	Rubisco	RuBP+CO₂→2PGA	1	Latzko et al (1981),
				Woodrow (1986),
				Geiger et al. (1999),
				Haake et al.(1999),
				Chen et al. (2005),
				Strand et al. (2000),
				Strand et al (1999),
				Tamoi et al (2006),
				Peterkofsky and
				Racher (1961), Chen
				et al (2005)
V_2	PGA Kinase	$PGA+ATP \rightarrow ADP + DPGA$	10.3	Same as above
V_3	GAP dehydragenase	DPGA+NADPH \rightarrow GAP +	1.39	Same as above
		Pi+NADP		
V_5	FBP Aldolase	$GAP+DHAP \rightarrow FBP$	0.42	Same as above
V_6	FBPase	FBP→F6P+Pi	0.25	Same as above
V_7	Transketolase	F6P+GAP→E4P+Xu5P	1.07	Same as above
V_8	Aldolase	E4P+DHAP→SBP	0.42	Same as above
V_9	SBPase	SBP→S7P+Pi	0.11	Same as above
V_{10}	Transketolase	S7P+GAP→Ri5P+Xu5P	1.07	Same as above
V ₁₃	Ribulosebiphosphate kinase	Ru5P+ATP→RuBP+ADP	3.71	Same as above
V_{16}	ATP synthase	ADP+Pi→ATP	5.5	Same as above
V ₂₃	ADP-glucose	$ADPG+G_n \rightarrow G_{(n+1)}+ADP$	0.1	Same as above
	pyrophosphorylase and			
	Starch Synthase			
V_{31}	Phosphate translocator	$DHAP_i \rightarrow DHAP_o$	0.3	Lilley et al (1977)
V ₃₂	Phosphate translocator	$PGA_i \rightarrow PGA_o$	0.3	Lilley et al (1977)
V ₃₃	Phosphate translocator	$GAP_i \rightarrow GAP_o$	0.3	Lilley et al (1977)

Table C3 The concentrations of the metabolites used in the model. The range of values found
in the literature are given in the adjacent column, together with their source.

Metabolite	Model default	Concentration range	Reference
name	(mmol l ⁻¹)	(mmol l ⁻¹)	
RuBP	2.000	0.6-6	Bassham and Krause (1969), Dietz and Heber (1984), Schimkat
			et al (1990), Woodrow and Mott (1993)
PGA	2.400	1.4-12	Schimkat et al (1990), Woodrow and Mott (1993)
DPGA	0.0011	0.8-1.4	Dietz and Heber (1984), Woodrow and Mott (1993)
GAP	0.02	0.032-0.04	Bassham and Krause (1969), Dietz and Heber (1984),
			Woodrow and Mott (1993)
DHAP	0.48	0.37-0.7	Bassham and Krause (1969), Dietz and Heber (1984), Schimkat
			et al (1990)
FBP	0.670	0.067-0.52	Bassham and Krause (1969), Dietz and Heber (1984), Schimkat
			et al (1990), Woodrow and Mott (1993)
E4P	0.050	0.02-0.05	Bassham and Krause (1969), Woodrow and Mott (1993)
S7P	2.0	0.248- 0.4	Bassham and Krause (1969), Woodrow and Mott (1993)
SBP	0.30	0.114-0.3	Bassham and Krause (1969), Schimkat et al (1990), Woodrow
			and Mott (1993)
ATP	0.68	0.2-2.5	Bassham and Krause (1969), Woodrow and Mott (1993),
			Igamberdiev et al (2001)
NADPH	0.21	0.21	Giersch et al (1980), Woodrow and Mott (1993)
CO_2	0.012	0.006	Dietz and Heber (1984)
O_2	0.26	0.25	Model estimate
HexP	2.2	3.2-4.85	Schimkat et al (1990), Woodrow and Mott (1993), Winter et
			al (1994)
PenP	0.25	0.05-0.3	Bassham and Krause (1969), Schimkat et al (1990), Woodrow
			and Mott (1993)
Pi	5	4-10	Dietz and Heber (1984), Schimkat et al (1990), Woodrow and
			Mott (1993)
СР	15	15	Lilley et al (1977)
CA	1.5	1.5	Igamberdiev et al (2001)
CN	0.5	0.5	Giersch et al (1980)
Pext	0.5	5	Bligny et al (1990), Woodrow and Mott (1993)

1 Appendix D

- 2 Kinetic parameters of the enzymes of photorespiration (PCOP). The source of each value
- 3 is given in the final column.

4 Table D1

5 The Michaelis-Menten constants and inhibition constants for enzymes in PCOP

RN ^a	Reaction	Param. ^b	Value	Description ^d	CC ^e	Reference
			(mM) ^c			
112	2-PGCA +H ₂ O → GCA + Pi	K _{M112}	0.026	PGCA	-5×10 ⁻⁷	Christeller and
						Tolbert (1978)
112	2-PGCA +H ₂ O → GCA + Pi	K ₁₁₁₂₁	94	GCA, competitive	5×10 ⁻⁹	Christeller and
				with PGCA		Tolbert (1978)
112	2-PGCA +H ₂ O → GCA + Pi	K ₁₁₁₂₂	2.55	Pi, competitive	7×10 ⁻⁹	Christeller and
				with PGCA		Tolbert (1978)
113	$GCEA + ATP \rightarrow PGA + ADP$	K _{M1131}	0.21	ATP	1×10 ⁻⁸	Kleczkowski et al
						(1985)
113	$GCEA + ATP \rightarrow PGA + ADP$	K _{M1132}	0.25	GCEA	-3×10 ⁻¹⁰	Kleczkowski et al
						(1985)
113	$GCEA + ATP \rightarrow PGA + ADP$	K ₁₁₁₃	0.36	PGA, competitive	-2×10 ⁻⁸	Kleczkowski and
				with ATP		Randall (1988)
113	$GCEA + ATP \rightarrow PGA + ADP$	K _{E113}	300	Equil. Const.	6×10 ⁻⁸	Kleczkowski et al
						(1985)
121	$GCA_{c}+0_{2}\rightarrow H_{2}O_{2}+GOAc$	K _{M121}	0.1	GCAc	-8×10 ⁻⁹	Tolbert (1981)
122	$GOAc + SERc \rightarrow HPRc + GLYc$	K _{M1221}	0.15	GOAc	-1×10 ⁻⁸	Nakamura and
						Tolbert (1983)
122	$GOAc + SERc \rightarrow HPRc + GLYc$	K _{M1222}	2.7	SERc	4×10 ⁻¹²	Nakamura and
						Tolbert (1983)
122	$GOAc + SERc \rightarrow HPRc + GLYc$	K ₁₁₂₂₁	33	GLYc,	2×10 ⁻¹⁴	Nakamura and
				competitive with		Tolbert (1983)
				SERc		
122	$GOAc + SERc \rightarrow HPRc + GLYc$	K _{E122}	0.24	Equil. Const.	-2×10 ⁻⁸	Guynn (1982)
123	$HPRc + NADc \rightarrow NADHc + GCEAc$	K _{M123}	0.09	HPRc	-2×10 ⁻¹¹	Kleczkowski and
						Edwards (1989)
123	$HPRc + NADc \rightarrow NADHc + GCEAc$	K ₁₁₂₃	12	HPRc, self	-1.5×10 ⁻⁹	Kleczkowski and
				inibition		Edwards (1989)
123	$HPRc + NADc \rightarrow NADHc + GCEAc$	K _{E123}	2.5	Equil. Const.	-6×10 ⁻¹⁰	Guynn (1982)
			$\times 10^5$			
124	$GOAc + GLUc \rightarrow KGc + GLYc$	K _{M1241}	0.15	GOAc	1×10 ⁻⁷	Nakamura and
						Tolbert (1983)
124	$GOAc + GLUc \rightarrow KGc + GLYc$	K _{M1242}	1.7	GLUc	-2×10 ⁻⁸	Nakamura and
						Tolbert (1983)
124	$GOAc + GLUc \rightarrow KGc + GLYc$	K ₁₁₂₄	2	GLYc competitive	-2×10 ⁻¹³	Calibrated

				with GLU		
124	$GOAc + GLUc \rightarrow KGc + GLYc$	K_{E124}	607	Equi. Const.	-3×10 ⁻¹⁴	Cooper and Meister
						(1972)
131	$GLYc + NADc \rightarrow CO2 + NH3 +$	К _{м1311}	6	GLYc	-2×10 ⁻¹³	Douce et al (2001)
	SERc +NADHc					
131	GLYc + NADc	K ₁₁₃₁₁	4	SERc, competitive	6×10 ⁻⁹	Douce et al (2001)
	\rightarrow CO2 + NH3 + SERc +NADHc			with GLYc		
101a	$GCEAc \rightarrow GCEA$	K _{M1011}	0.39	GCEA	-4×10 ⁻⁸	Howitz and McCarty
						(1986)
101a	GCEAc→GCEA	K ₁₁₀₁₁	0.28	GCA, competitive	-2×10 ⁻¹¹	Howitz and McCarty
				with GCEA		(1986)
101b	GCA→GCAc	K _{M1012}	0.2	GCA	-4×10 ⁻⁹	Howitz and McCarty
						(1985)
101b	GCA→GCAc	K ₁₁₀₁₂	0.22	GCEA,	-1×10 ⁻¹⁰	Howitz and McCarty
				competitive with		(1985)
				GCA		

1 abcde The description is same as in the Table C1.

Table D2 The maximum rate of each enzyme (V_m) of the PCOP as given in Table 1, but here
normalized on the maximum Rubisco carboxylation activity (V₁).

4

Max.	Enzyme	Reaction	V_m/V_1	Reference
Velocity	name			
V_{111}	Rubisco	$RuBP + O_2 \rightarrow PGA +$	0.24	Ueno et al (2005);
		PGCA		Marek and
				Sspalding (1991);
				Ku et al (1991),
				Devi and
				Raghavendra (1993)
				Devi et al. (Devi et
				al., 1995)
V_{112}	Phosphoglycolate	$\text{2-PGCA +}H_2O \rightarrow \text{GCA}$	18.0	Same as above
	phosphatase	+ Pi		
V_{113}	Glycerate kinase	$GCEA + ATP \rightarrow PGA$	1.96	Same as above
		+ ADP		
V ₁₂₁	Glycolate oxidase	$GCA_C+0_2 \rightarrow$	0.45	Same as above
		H ₂ O ₂ +GOAc		
V ₁₂₂	Serine glyoxylate	$GOAc + SERc \rightarrow HPRc$	1.13	Same as above
	aminotransferase	+ GLYc		
V ₁₂₃	NADH-		3.44	Same as above
	hydroxypyruvate	$\mathrm{HPRc} + \mathrm{NADc} \rightarrow$		
	reductase	NADHc + GCEAc		
V ₁₂₄	Glutamate glyoxylate		0.94	Same as above
	aminotransferase	$\text{GOAc} + \text{GLUc} \rightarrow \text{KGc}$		
	(GGAT)	+ GLYc		
V_{131}	Glycine decarboxylase	$\text{GLYc} + \text{NADc} \rightarrow \text{CO}_2$	0.86	Same as above
		+ NH3 + SERc		
		+NADHc		
$\mathbf{V}_{1\mathrm{T}}$	Glycerate/glycolate	$GCEAc \leftrightarrow GCEA$	0.4	Howitz and McCarty
	transporter			(1986)
V_{2T}	Glycerate/glycolate	$GCAc \leftrightarrow GCA$	0.4	Howitz and McCart
	transporter			(1985)

6 ^a see table C2

1 Table D3

- 2 The concentrations of the metabolites of photorespiration (PCOP). The range of values found in
- 3 the literature are given in the adjacent column, together with their source.
- 4

Metabolite	Locat-	Concentration (mM)	Assumptions	Reference
	ion"			
NADH	Chl	0.22	This was kept constant in	Igamberdiev et al (2001)
			the preliminary model	
NADHc	Cyto	0.47	As for NADH	Igamberdiev et al (2001)
NAD	Chl	0.08	As for NADH	Igamberdiev et al (2001)
NADc	Cyt	0.02	As for NADH	Igamberdiev et al (2001)
ATP	Chl	0.68		Igamberdiev et al (2001)
ATPc	Cyt	0.36	As for NADH	Igamberdiev et al (2001)
ADP	Chl	0.82		Igamberdiev et al (2001)
ADPc	Cyt	0.64	As for NADH	Igamberdiev et al (2001)
GLUc	Cyt	24	As for NADH	Winter et al (1993)
KGc	Cyt	0.4	As for NADH	Winter et al (1993)
Pic	Chl	5	As for NADH	Pieters et al (2001)
SERc	Cyt	7.5		Winter et al (1993)
GLYc	Cyt	1.8		Winter et al (1993)
PGA	Chl	4.3		Winter et al(1994)
GOAc	Cyt	0.028	30 µl cytosol per mg	Winter et al (1993),
	·		chlorophyll	Wingler et al (1997)
GCA	Chl	0.36	1 5	Coombs and Whittinghar
				(1966)
GCAc	Cvt	0.36		Coombs and Whittinghar
	-) ((1966)
PGCA	Chl	0.003	Based on the Michaelis-	(1900)
10011	em	0.000	Menton equation for	
			reaction 112 ^b	
HPRC	Cvt	0.004	Based on the Michaelis-	
III KC	Cyt	0.004	Menton equation for	
			reaction 122 b	
CCEA	Chl	0.19	Decident the Michaelie	
GCEA	Chi	0.18	Based on the Michaelis-	
			Menton equation for	
	a .	0.10	reaction 113	
GCEAc	Cyt	0.18	Assume equilibrium with	
			stromal Glycerate	
			concentration	

Comment: ^a Chl: chloroplast stroma; Mit: Mitochondrion; Cyt: Cytosol;

1 Appendix E

2 Kinetic parameters of enzymes in the metabolic pathway leading to sucrose synthesis in

3 the cytosol.

4 Table E1

- 5 The Michaelis-Menten constants and inhibition constants for enzymes in the metabolic pathway
- 6 leading to sucrose synthesis in the cytosol.
- 7

RN ^a	Reaction	Param ^b	Value	Descri	CC ^e	Literature
			(mmol l ⁻¹) ^d	-ption ^c		
51	$DHAPc + PGAc \leftrightarrow FBPc$	K _{m511}	.020	FBPc	4×10 ⁻⁶	Anderson et al. (1975)
51	$DHAPc + PGAc \leftrightarrow FBPc$	K _{m512}	.300	GAPc	-4×10 ⁻⁶	Iwaki et al. (1991)
51	$DHAPc + PGAc \leftrightarrow FBPc$	K _{m513}	.400	DHAPc	-4×10 ⁻⁶	Iwaki et al. (1991)
51	$DHAPc + PGAc \leftrightarrow FBPc$	K _{m514}	.014	SBPc	0	Harris and Koniger
						(1997)
51	$DHAPc + PGAc \leftrightarrow FBPc$	K_{E51}	12		2×10 ⁻⁶	Thomas et al. (1997)
52	$FBPc \leftrightarrow F6Pc + Pic$	K _{m521}	.0025	FBPc	-8×10 ⁻⁵	Jang et al. (2003)
52	$FBPc \leftrightarrow F6Pc + Pic$	K ₁₅₂₁	.7	F6Pc	4×10 ⁻⁵	Heldt et al. (1983)
52	$FBPc \leftrightarrow F6Pc + Pic$	K ₁₅₂₂	12	Pic	2×10 ⁻⁵	Charles & Halliwell
						(1981)
52	$FBPc \leftrightarrow F6Pc + Pic$	K ₁₅₂₃	7*10 ⁻⁵	F26BPc	8×10 ⁻⁵	Jang et al. (2003)
52	$FBPc \leftrightarrow F6Pc + Pic$	K_{E52}	6663		4×10 ⁻⁸	Bassham and Krause
						(1969)
55	$G1Pc + UTPc \leftrightarrow GDPc + UDPGc$	K _{m551}	.14	G1Pc	-1×10 ⁻⁷	Nakano et al. (1989)
55	$G1Pc + UTPc \leftrightarrow GDPc + UDPGc$	K _{m552}	.1	UTPc	-1×10 ⁻⁷	Nakano et al. (1989)
55	$G1Pc + UTPc \leftrightarrow GDPc + UDPGc$	K _{m553}	.11	OPOPc	6×10 ⁻⁸	Nakano et al. (1989)
55	$G1Pc + UTPc \leftrightarrow GDPc + UDPGc$	K _{m554}	.12	UDPGc	7×10 ⁻⁸	Nakano et al. (1989)
55	$G1Pc + UTPc \leftrightarrow GDPc + UDPGc$	K _{E55}	0.31	Equi	1×10^{-4}	Lunn and Rees (1990)
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K _{m561}	0.8	F6Pc		
	UDPc				-8 ×10⁻⁵	Lunn and Rees (1990)
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K _{m562}	2.4	UDPGc	-1×10 ⁻⁴	Lunn and Rees (1990)
	UDPc					
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K ₁₅₆₁	.7	UDPc	1×10^{-4}	Harbron et al. (1981)
	UDPc					
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K ₁₅₆₂	.8	FBPc	5×10 ⁻⁵	Harbron et al. (1981)
	UDPc					
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K ₁₅₆₃	0.4	SUCPc	3×10 ⁻⁵	Harbron et al. (1981)
	UDPc					
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K ₁₅₆₄	11	Pic	3×10 ⁻⁵	Harbron et al. (1981)
	UDPc					
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K ₁₅₆₅	50	Sucrose	2×10 ⁻⁷	Salermo and Pontis
	UDPc					(1978)
56	$UDPGc + F6Pc \leftrightarrow SUCPc +$	K_{E56}	10	Equl.	4×10 ⁻⁶	Lunn and Rees (1990)

	UDPc			Const.		
57	$SUCPc \leftrightarrow Pic + SUCc$	K _{m571}	.35	SUCPc	-2×10 ⁻⁵	Whitaker (1984)
57	$SUCPc \leftrightarrow Pic + SUCc$	K _{i572}	80	SUCc	3×10 ⁻⁸	Whitaker (1984)
57	$SUCPc \leftrightarrow Pic + SUCc$	K_{E57}	780	Equil.	3×10 ⁻⁷	Lunn and Rees (1990)
				Const.		
58	$F26BPc \leftrightarrow F6Pc + Pic$	K _{m581}	.032	F26BPc	-9×10 ⁻⁶	Macdonald et al. (1989)
58	$F26BPc \leftrightarrow F6Pc + Pic$	K ₁₅₈₁	.1	F6Pc	8×10 ⁻⁵	Villadsen and Nielsen (2001)
58	$F26BPc \leftrightarrow F6Pc + Pic$	K ₁₅₈₂	.5	Pic	8×10 ⁻⁵	Villadsen and Nielsen (2001)
59	$F6Pc + ATPc \leftrightarrow F26BPc +$	K _{m591}	0.5	ATPc	8×10 ⁻⁵	Walker and Huber
	ADPc					(Walker and Huber, 1987)
59	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K _{m592}	.021	F26BPc	-7×10 ⁻⁴	Garcia de Frutos and Baanante (1995)
59	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K _{m593}	0.5	F6Pc	8×10 ⁻⁵	Walker and Huber (1987)
59	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K ₁₅₉₁	.16	ADPc	-6×10 ⁻⁵	Kretschmer and
	ADIC					(1984)
59	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K ₁₅₉₂	0.7	DHAPc	-1×10 ⁻⁵	Markham and Kruger
59	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K _{E59}	590		-1×10 ⁻⁷	Cornish-Bowden (1997)
60	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K_{m601}	0.042	ADPc	NA	Kimura and Shimada (1988)
60	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K _{m602}	1.66	ATPc	NA	Kimura and Shimada (1988)
60	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K _{m603}	0.28	UDPc	NA	Jong and Ma (1991)
60	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	K _{m604}	16	UTPc	NA	Fukuchi et al (1994)
60	$F6Pc + ATPc \leftrightarrow F26BPc + ADPc$	$K_{\rm E60}$	16	Equili.	NA	Lynn and Guynn (1978)
61	$SUCPc \leftrightarrow SUCc + Pic$	K _{E61}	1.2*10 ⁷	Equili.	-4×10 ⁻³	Flodgaard and Fleron (1974)
62	$SUCc \leftrightarrow Sink$	K _{m621}	5	Sucrose	-5×10 ⁻⁷	Weschke et al. (2000)

^{abcde} The description is same as in the Table C1.

1 **Table E2**

- 2 The maximum rate of each enzyme (V_m) as given in Table 1 for enzymes in the metabolic
- 3 pathway leading to sucrose synthesis, but here normalized on the maximum Rubisco
- 4 carboxylation activity (V_1) .
- 5

Maximum	Reaction	V_m / V_1	Reference
Velocity			
V ₅₁	$DHAPc + PGAc \leftrightarrow FBPc$	0.037	Chen et al (2005),
			Strand et al. (2000),
			Strand et al (1999),
			Chen et al. (2005)
V ₅₂	$FBPc \leftrightarrow F6Pc + Pic$	0.022	Same as above
V55	$G1Pc + UTPc \leftrightarrow GDPc +$	0.040	Same as above
	UDPGc		
V ₅₆	$UDPGc + F6Pc \leftrightarrow SUCPc$	0.019	Same as above
	+ UDPc		
V ₅₇	$SUCPc \leftrightarrow Pic + SUCc$	0.19	Same as above
V_{58}	$F26BPc \leftrightarrow F6Pc + Pic$	0.007	Same as above
V ₅₉	$F6Pc + ATPc \leftrightarrow F26BPc +$	0.002	Villadsen and
	ADPc		Nielsen (2001)
V_{60}	$ATPc + UDPc \leftrightarrow UTPc +$	1	Villadsen and
	ADPc		Nielsen (2001)

6 ^a see Table C2

1 Table E3

- 2 The concentrations of metabolites in the metabolic pathway leading to sucrose synthesis in the
- 3 cytosol.
- 4

Metabolite	Locat-	Concentration	Reference
	ion ^a	$(mmol l^{-1})$	
TPc	Cyt	2.3	Stitt et al. (1980), Stitt et
			al. (1985), Gerhardt et al.
			(1987), Laisk et al. (1989)
FBPc	Cyt	2	As above
F26BPc	Cyt	7×10 ⁻⁶	As above
UTc	Cyt	1	As above
HexPc	Cyt	6	As above
UDPG	Cyt	0.6	As above
PTc	Cyt	15	As above
ATc	Cyt	1	As above

5

6 Comment: ^a Chl: chloroplast stroma; Mit: Mitochondrion; Cyt: Cytosol;

2 Appendix F

3	Molecular weight and catalytic number of the enzymes in photosynthetic carbon metabolism
4	

Enzyme Name	EC	Molecular Weight (D)	Catalytic number ¹ (s ⁻¹)	Reference
Rubisco	4.1.1.39	588000	2*	Spreitzer and
				Salvucci (2002)
PGA Kinase	2.7.2.3	45000	540	Fifis and Scopes
				(1978), Bentahir et al
		100000	50	(2000)
GAP Dehydrogenase	1.2.1.12	180000	50	Speranza and Ferri
Aldalaaa	4 1 2 12	142000	65	(1982) Kmiagar and
Aldolase	4.1.2.13	143000	05	Sschnarrenberger
				(1983) Moorhead
				and Pplaxton (1990)
FBPase	3.1.3.11	160000	22.9	Tang et al. (2000),
				Reichert et al.(2000)
Transketolase	2.2.1.1	160000	69	Nilsson et al (1998)
				Teige et al. (1989)
SBPase	3.1.3.37	66000	81	Cadet et al. (1988),
				Cadet and Meunier
DPK	27110	90000	615	(1987) Surek et al. (1985)
1 KK	2.7.1.19	90000	015	Porter et al. (1985) ,
ADPG Pyrophospho-	2.7.7.27	210000	546	Kleczkowski et al.
rylase				(1991), Li and
-				Preiss(1992)
Phosphoglycolate	3.1.3.18	100000	292	Kim et al. (2004),
phosphatase				Kerr and Gear (1974)
Chugarata Vinaga	27121	47000	200	Vlaarkovalii at al
Olycelate Killase	2.7.1.51	47000	200	(1985) Kleczkowski
				and Randall (1988)
Glycolalate oxidase	1.1.1.79	125000	437	Kleczkowski et al.
5				(1986), Zelitch(1955)
Serine Glyoxylate	2.6.1.45	85000	97	Ireland and Joy
aminotransferase				(1983; Paszkowski
				and Niedzielska,
Clucarata dahudraganasa	1 1 1 20	90000	1620	1990) Julliard and Proton
Giveenate dellydrogenase	1.1.1.29	90000	1029	Gilet (1997) Jzumi
				et al. (1990)
Glutamate Glyoxylate	2.6.1.44	70800	54	Paszkowski and
aminotransferase				Niedzielska (1989)
Glycine decarboxylase	1.4.4.2	270000	18	Hiraga and Kikuchi
				(1980), Kochi and
(where whether a construction of the second	2 7 1 105	200000	0200	Kikuchi (1974)
6-phospholiucto-2-	2.7.1.105	390000	9300	Villausen and Nielsen (2001) Baez
Killase				et al. (2003)
fructose-2,6-	3.1.3.46	390000	1550	Pilkis et al. (1987),
bisphosphate 2-				Villadsen and
phosphatase				Nielsen (2001),
UDP Glucose	2.7.7.9	53000	400	Gustafson and
pyrophosphorylase				Gander (1972),
				Sowokinos et al
Sucrose phosphate	2 4 1 14	480000	640	Sonnewald et al
synthase			0.10	(1993)
Sucrose phosphatase	3.1.3.24	120000	2500	Echeverria and
				Salerno (1994), Lunn
				et al. (2000)

Appendix G: List of Abbreviations and their units

Abbreviation ^a	Full Name	Units
Α	The photosynthetic CO ₂ uptake rate	μ mol m ⁻² s ⁻¹
ADPG	ADP-glucose	mmol l ⁻¹
ADPGPP	ADP glucose pyrophosphorylase	NA
ATc	Total ADP and ATP concentration in cytosol	mmol l ⁻¹
ATPase	ATP synthase	NA^b
[CO ₂]	CO ₂ concentration	µmol mol ⁻¹ or mmol l ⁻¹
CA	Total adenylate nucleotide in the chloroplast stroma including ATP and ADP	mmol l ⁻¹
CN	Total of NADP ⁺ and NADPH in chloroplast stroma	mmol l ⁻¹
СР	The total concentration of phosphate in chloroplast stroma	mmol l ⁻¹
DHAP	Dihydroxyacetone-phosphate	mmol l ⁻¹
DPGA	1,3-bisphosphoglycerate	mmol l ⁻¹
E4P	Erythrose 4-phosphate	mmol l ⁻¹
Et	Total Rubisco concentration	mmol l ⁻¹
F6P	Fructose 6-phosphate	mmol l ⁻¹
FBP	Fructose 1,6-bisphosphate	mmol l ⁻¹
F26BP	Fructose 2,6–bisphosphate	mmol l ⁻¹
G1P	Glucose 1-phosphate	mmol l ⁻¹
G6P	Glucose 6-phosphate	mmol l ⁻¹
GAP	Glyceraldehyde 3-phosphate	mmol l ⁻¹
GAPDH	Glyceraldehyde 3-phosphate dehydogenase	NA
GCA	Glycollate	mmol l ⁻¹
GCEA	Glycerate	mmol l ⁻¹
GDC	Glycine decarboxylase	NA
GLUc	Glutamate	mmol l ⁻¹
GLYc	Glycine in cytosol	mmol l ⁻¹
GOA	Glyoxylate	mmol l ⁻¹
HexP	Hexose phosphate, includes F6P, G6P, and G1P	NA
GGAT	Glycine glyoxylate aminotransferase	NA
GSAT	Glyoxylate serine aminotransferase	NA
HPR	Hydroxypyruvate	mmol l ⁻¹
KGc	α-Ketoglutarate	mmol l ⁻¹
ODE	Ordinary differential equation	NA
[O ₂]	Oxygen concentration in atmosphere	mmol mol ⁻¹
OPOP	Pyrophosphate	mmol l ⁻¹
PCOP	Photosynthetic carbon oxidation pathway	NA
PCRC	Photosynthetic carbon reduction cycle	NA
PenP	Pentose phosphate including Ri5P, Ru5P, Xu5P	mmol l ⁻¹
3-PGA	3-Phosphoglycerate	mmol l ⁻¹
PGCA	3-Phosphoglycollate	mmol l ⁻¹
PRK	Ribulose-5-phosphate kinase	NA
PGCA Pase	Phosphoglycollate phosphotase	NA

3-phosphoglycerate kinase	NA
Ribose 5-phosphate	mmol l ⁻¹
Phosphoribulose kinase	mmol l ⁻¹
Total phosphate concentration in cytosol	mmol l ⁻¹
Ribulose 5-phosphate	mmol l ⁻¹
Ribulose1,5-bisphosphate Carboxylase/Oxygenase	NA
Total RuBP concentration in stroma	mmol l ⁻¹
Ribulose 1,5-biphosphate	mmol l ⁻¹
Sedoheptulose 7-phosphate	mmol l ⁻¹
Sedoheptulose 1,7-bisphosphate	mmol l ⁻¹
Sedoheptulosebisphosphatase	NA
Serine in cytosol	mmol l ⁻¹
Sucrose phosphate phosphatase	NA
Sucrose phosphate synthetase	NA
Triose phosphate utilization	NA
Sucrose in cytosol	mmol l ⁻¹
Sucrose phosphate in cytosol	mmol l ⁻¹
Triose phosphate including DHAP and GAP	mmol l ⁻¹
The rate of RuBP oxygenation	$\mu mol \ m^{-2} \ s^{-1} \ or \ mmol \ l^{-1} \ s^{-1}$
Uridine Diphosphate Glucose	mmol l ⁻¹
UDP glucose pyrophosphorylase	NA
Total UDP and UTP concentration in cytosol	mmol l ⁻¹
The rate of RuBP carboxylation	μ mol m ⁻² s ⁻¹ or mmol l ⁻¹ s ⁻¹
The rate of ATP formation in cytosol	$\mu mol \ m^{-2} \ s^{-1} \ or \ mmol \ l^{-1} \ s^{-1}$
The rate of PGA utilization in cytosol	μ mol m ⁻² s ⁻¹ or mmol l ⁻¹ s ⁻¹
Xylulose 5-phosphate	mmol l ⁻¹
	3-phosphoglycerate kinase Ribose 5-phosphate Phosphoribulose kinase Total phosphate concentration in cytosol Ribulose 5-phosphate Ribulose 1,5-bisphosphate Carboxylase/Oxygenase Total RuBP concentration in stroma Ribulose 1,5-biphosphate Sedoheptulose 7-phosphate Sedoheptulose 7-phosphate Sedoheptulose 1,7-bisphosphate Sedoheptulosebisphosphatase Serine in cytosol Sucrose phosphate phosphatase Sucrose phosphate utilization Sucrose phosphate in cytosol Triose phosphate in cytosol Triose phosphate in cytosol Triose phosphate Glucose UDP glucose pyrophosphorylase Total UDP and UTP concentration in cytosol The rate of RuBP carboxylation The rate of ATP formation in cytosol The rate of PGA utilization in cytosol Xylulose 5-phosphate

1 ^a A suffix c was added to the name of metabolites appeared in cytosol if the metabolite also exists in stroma. For example, PGA is the

2 phosphoglycerate in stroma; while PGAc is the phosphoglycerate in cytosol.

3 ^bNA: Not applicable