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Effects of retinoic acid and fenretinide on the c-erbB 2
expression, growth and cisplatin sensitivity of breast
cancer cells
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Summary We investigated the effects of all-trans retinoic acid (ATRA) and fenretinide (4-HPR) on c-erbB-2 expression in SK-BR-3, BT-474
and MCF-7 breast cancer cells and on the growth, differentiation, apoptosis and cisplatin (CDDP) sensitivity of SK-BR-3 cells. It has been
reported that oestrogen inhibits c-erbB-2 in oestrogen receptor-positive breast cancer cells. Using ELISA, Westem and Northem analysis we
have demonstrated that ATRA and 4-HPR exert similar effects down-regulating c-erbB-2 protein and mRNA in c-erbB-2-overexpressing SK-
BR-3 and BT-474 and in normally expressing MCF-7 cells. Both retinoids inhibit SK-BR-3 cell growth. ATRA induces cellular enlargement and
flattening, suggesting epithelial differentiation. 4-HPR causes nuclear and cytoplasmic condensation, DNA fragmentation and externalization
of phosphabdylserine, indicating apoptosis. c-erbB-2 expression/activity has been linked to sensitivity against CDDP. Therefore, combinations
of ATRA or 4-HPR with CDDP were tested for their anti-proliferative activity. Retinoid-conditioned cells were either exposed to retinoid and
CDDP (schedule 1, 'continuous retinoid treatment') or to CDDP alone (schedule II, 'retinoid pretreatment'). This retinoid-conditioning followed
by CDDP ± retinoid yields stronger growth inhibition compared with unconditioned cells, which were exposed to CDDP ± retinoid (schedule
111, 'no retnoid pretreatment'). The inefficacy of schedule Ill indicates that retioidconditioning is essential for the improvement of the
antiproliferative effect. The interactions in schedules I and II are synergistic for ATRA and CDDP, but slightly antagonistic for 4-HPR and
CDDP. However, 4-HPR + CDDP is more effective in growth inhibition than each drug alone.
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Retinoids control physiological processes. such as vision, embry-
onic development and tissue maturation. In addition. retinoids
inhibit carcinogenic transformation and the growth of established
tumours. The antiproliferative effects of retinoids are frequently
associated with cell differentiation and/or programmed cell death
(Bollag et al, 1994; Krupitza et al. 1995). Retinoids have come
under the scrutiny of oncologists to assess their potential in cancer
prevention and therapy. AlU-trans retinoic acid (ATRA) is effective
against acute promyelocytic leukaemia (for review see Fenaux
et al. 1997) and 13-cis retinoic acid is effective against cervical
cancer and squamous cancer of the skin. The clinical use of
retinoids is compromised, however, by the high hepatotoxicity.
Promising results concerning therapeutic efficacy and toxicity
have been reported for N-(4-hydroxyphenyl) retinamide (fenre-
tinide, 4-HPR) (Veronesi et al, 1996), which accumulates in the
mammary gland and which is currently in clinical trials for the
prevention of breast cancer, oral cancer and basal cell carcinoma
(Costa et al, 1995). Retinoids bind and activate nuclear retinoic
acid receptors (RARs) and/or retinoid X receptors (RXRs), which
represent transcription factors that control retinoid-responsive
genes. These genes regulate cell growth and differentiation.
Compared with ATRA. 4-HPR reveals differential and weaker
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RARIRXR transactivation (Fanjul et al, 1996). which might
explain its low hepatotoxicity. It is possible that 4-HPR activates
additional, as yet undefined, signalling pathways (Kazmi et al.
1996). In addition. both retinoids inhibit the AP-1 transcription
factor (Fanjul et al, 1994, 1996), which becomes activated upon
growth factor signalling. Therefore, a negative interaction between
retinoid and growth factor signalling seems to occur.

Progression of carcinomas has been linked to the expression of
oncogenes, such as c-mvc and c-erbB-2 (also referred to as HER-2
or neu) (Somay et al. 1992; Grunt et al. 1995). At present. c-erbB-
2 represents one of the most important oncogenes in breast cancer.
c-erbB-2 amplification/overexpression occurs in approximately
25% of breast carcinomas and is associated with an unfavourable
clinical outcome. It codes for a 1 85-kDa protein. which belongs to
the membrane-anchored type 1 (epidermal growth factor receptor-
related) receptor tyrosine kinases and which becomes indirectly
activated by epidermal growth factor-like ligands (for review see
Grunt and Huber, 1994). c-erbB-2 can be inhibited by steroids and
cytokines (Read et al. 1990: De Bortoli et al. 1992; Marth et al.
1992; Kalthoff et al. 1993; Nehme et al. 1995). We and others
have demonstrated a negative interaction between the oestrogen
receptor and c-erbB-2 (Read et al. 1990; Grunt et al. 1995; Saceda
et al, 1996). Recently, we have also shown that c-erbB receptor
activation elevates the expression of RAR-a in SK-BR-3 cells
(Flicker et al, 1997).

Here, we investigated the effects of retinoids on c-erbB-2
expression in SK-BR-3. BT-474. MCF-7 and MDA-MB-468
breast cancer cells. The responses to ATRA and 4-HPR were
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further analysed in SK-BR-3 cells with respect to morphology and
growth rate. In addition, evidence suggesting that c-erbB-2 expres-
sion/activity is associated with alterations of the sensitivity against
cytotoxic drugs, such as cisplatin (CDDP) (Hancock et aL 1991;
Benz et al, 1993; Arteaga et al, 1994; Pietras et al, 1994) prompted
us to examine the effect of ATRA and 4-HPR on CDDP-mediated
cytotoxicity in SK-BR-3 cells.

MATERIALS AND METHODS

Cell culure

SK-BR-3, BT-474, MCF-7 and MDA-MB-468 mammary carci-
noma cells (American Type Culture Collection, Rockville, MD,
USA) were maintained in a-MEM (Gibco, Karlsruhe, Germany)
containing 10% fetal calf serum (Gibco) (standard medium) in a
humidified 5% carbon dioxide atmosphere at 370C. In subcon-
fluent experimental cultures, the standard medium was replaced
after 3-4 days with phenol red-free RPMI 1640 (Gibco) supple-
mented with 5% fetal calf serum, which had been reated with
dextran-coated charcoal (HyClone, Logan, UT, USA) to reduce
the content of steroids and hormones (steroid-depleted medium).
After a 3-day incubation, the test compounds were added.

Test compounds

Stock solutions of ATRA (Sigma, St Louis, MO, USA), 4-HPR
(gift from Janssen-Cilag, Vienna, Austria), taxol (Sigma) and
etoposide (Sigma) were prpared in dimethyl sulphoxide
(DMSO). The final concentration ofDMSO in the cultures did not
exceed 0.1% (vtv). CDDP (kindly provided by Bristol Myers-
Squibb, Vienna, Austria) was reconstituted according to the manu-
facturer's recommendation to a concentration of 1 mg ml-l 0.9%
sodium chloride. Stocks were stored light-protected at -80C.

Enzyme-linked immunosobent assay

For quantitative determination of c-erbB-2 protein, the Human
neu Quantitative Enzyme-Linked Immunosorbent Assay System
(Oncogene Science, Manhasset, NY, USA) was applied using the
manufacturer's protocols. Briefly, 1-10 x 105 cells per well were
plated in six-well plates (Costar, Cambridge, MA, USA) and
grown for 3 days followed by 3 days of steroid depletion.
Subsequently, the cultures were exposed to ATRA or 4-HPR. The
protein content in the lysates of trypsinized cells was detrmined
according to Bradford (Bio-Rad Laboratories, Munich, Germany)
and 0.5-10 jig of total protein was subjected to the assay. The
optical densities were determined in a microplate reader and the
amount of c-erbB-2 protein was given in arbitrary human neu units
(HNU) jig-' total protein.

Western blotting
Cells were plated at 1 x 101 per well in 24-well plates (Costar)
and were grown in 1 ml of standard medium to subconfluence
followed by 3 days of steroid depletion. Subsequently, the cells
were exposed to 10 gm ATRA for 24 h. Preparation of protein
samples, electrphoretic separation and transfer were performed
as described (Grunt et al, 1995). pI85c1bB-2 was detected using
mouse monoclonal anti-c-erbB-2 (Oncogene Science), whereas
tyrosine-speific protein phoshorylation was det ined by

mouse monoclonal anti-phosphotyrosine (Upstate Biotechnology,
Lake Placid, NY, USA) (1 jg ml-', 4 h, room temperature).

Ntmher blotng
Cells were grown to subconfluence in standard medium in T75
tissue culture flasks (Falcon, Franklin Lakes, NJ, USA). After
3 days of steroid-depletion, the cells were exposed to ATRA
or 4-HPR. RNA was extracted with RNAzol B (Cinna/Biotecx,
Houston, TX, USA). Processing of the samples, electrphoresis
in 1% formaldehyde-containing agarose gels, transfer onto
Immobilon S membranes (Millipore, Bedford, MA, USA) and
detection of specific mRNAs using random primer-labelled
biotinylated cDNA probes were performed as described (Krupitza
et al, 1995). A 0.48-kb EcoRl-HindlI fiagment from the c-erbB-
2 cDNA inserted into pGEM-3 was used for the detection of c-
erbB-2 transcripts and a 1.3-kb EcoRI-Hindi fragment from the
GAPDH cDNA inserted into pSP65 was used as internal standard.

Agarose gel

Cells were depleted from steroids as described for Northern blot-
ting. After teatment with ATRA or 4-HPR (10 jiM, 4 days), the
DNA fragmentation was determined as described by Bissonnette
et al (1992). Briefly, cells were incubated in lysis buffer (5 mm
Tris-HCl, pH 8, 10 mm EDTA, 0.5% Triton X-100; 30 min, 4°C).
The lysates were centrifuged (13 000 r.p.m., 20 min, 40C) to
separate fragmented DNA (soluble) from intact chromatin (pellet).
Soluble DNA was extracted with phenol-chlorofom--isoamyl-
alcohol, precipitated and washed with ethanol and dissolved in
10 mm Tris-HCl (pH 8), 1 mM EDTA. DNA (10 jig) was incubated
with 1 jig of DNase-free RNase (Boehringer-Mannheim,
Germany) (1 h, 370C) and subjected to electrophoesis in 15%
agarose gels.

Annexin V

Approximately 5 x 10' cells were grown for 3 days in 12-well
plates (Costar), steroid depleted for 3 days and exposed to ATRA,
4-HPR, taxol or etoposide (10 jiM, 48 h). Detection of phospha-
tidylseine on the cell surface was performed with annexin
V-FITC and evaluated by flow cytomety as described by the
manufacturer (Clontech, Palo Alto, CA, USA).

Proiafe assays

Sinre-agent teatmen
Exponentially growing, steroid-depleted cells were plated in 96-
well plates (Costar, 3000 cells per well in 100 jl). Test compounds
were added after 24 h of cell attachment and cell numbers were
determined at various time points using the CellTiter 96Tm Aq,
Non-Radioactive Cell Proliferanon Assay (Promega, Madison,
WI, USA) adhering to the manufacturer's protocol. The optical
densities of experimental cultures were detrmined in a microplate
reader and were related to controls. Results represent means ± s.d.
of triplicate determinations.

Combined fteatnent wfith retinros and CDDP
Three protocols were applied. Schedule I ('continuous reioid
treatment'): cells were conditioned for 2 days with l-7, 10-6, l0- M
ATRA or 1 x, 2 x, 4 x 10-6 M 4-HPR followed by 3 days' exposure
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Table 1 Spontaneous expression and ATRA (10 gm, 24 h)-rnediated down-
regulation of c-erbB-2 protein in breast cancer cells determined by EUSA

Cell line c-erbB-2 protein expressI

Control ATRA
(HNU ig-1 proteln) (% of control)

ieanb s.d.b Meanb s.d.b

SK-BR-3 169.1 34.2 57 0
BT-474 105.5 16.0 60 7
MCF-7 4.7 1.3 43 5
MDA-MB-468 0.0 0.1 NCc NCc

aHuman neu units - overexpression defined by >10 HNU gig- total protein.
bMean values and standard deviatons (s.d.) from six experiments carried out
in duplicate. cNo change from negativity.

A

to the same retinoid concentrations combined with various doses of
CDDP. Schedule II ( retinoid pretreatment'): the 2-day period of
retinoid conditioning was followed by 3 days with CDDP alone.
Schedule HI (*no retinoid pretreatment'): cells grown in the
absence of retinoids (2 days) were exposed to combinations of
ATRA + CDDP or 4-HPR + CDDP (3 days).

Data analysis for combination treatment
Synergism, additivity or antagonism of the drugs was determined
by calculating the combination index (CI) using the equation: Clx =
(D),/(Dx), + (D),/(Dx), + alD),(D),/(Dx),(Dx), where Clx repre-
sents the CI value for x% effect (Dx), and (Dx), are the doses of
agents 1 and 2 required to exert x% effect alone, whereas (D), and
(D), represent the doses of agents 1 and 2 that elicit the same x%
effect in combination with the other agent respectively. a describes
the type of interaction: a = 0 for mutually exclusive drugs (similar
modes of action), a = 1 for mutually non-exclusive drugs (indepen-
dent modes of action) (Sacks et al, 1995). The CI values were deter-
mined for 50% growth inhibition, and the equation was solved for
a = 0 and for a = 1. CI = 1 indicates additivity, CI < 1 synergism
and CI > 1 antagonism. In addition, the geometric isobologram
method was applied for drug concentrations causing 50% growth
inhibition (ICO). The IC,O values of the retinoids and of CDDP
were plotted on the x or v axis, respectively, and a line connecting
these two points was drawn. Synergism is encountered if the exper-
imental point falls below that line, whereas antagonism occurs if
the point lies above it (Sacks et al. 1995).

ATA - +
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BT-474 MCF-7 K-R-3_ + _ + - +

Figure 1 The effect of ATRA (10 a, 24 h) on p185c-"2 expression in
breast cancer cells [c-erbB-2 antbody (Ab), lanes 1-6] and on protein
tyrosine phosphorylabon of SK4BR-3 cells [phosphotyrosine (P-Tyr) Ab, lanes
7 and 8]. Westem analysis
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RESULTS

Expression of c-erbB-2

Spontaneous expression
A c-erbB-2-specific ELISA was used to compare the baseline
expression of the c-erbB-2 protein in four mammary carcinoma
cell lines (Table 1). Overexpression. defined by > 10 HNU gg-'
protein (Nugent et al, 1992), was found in SK-BR-3 and BT-474
cells, whereas MCF-7 cells contained normal levels of c-erbB-2.
MDA-MB-468 cells were negative for this oncoprotein.

The effects ofATRA and 4-HPR
Exposure of SK-BR-3, BT-474 and MCF-7 cells to 10 giM ATRA
for 24 h reduced the c-erbB-2 protein to 40%-60 relative to

2 4 2 4 1 2
Tr (CtVA

VWaldcoaa (0.1%DM90)
i10plATRA

R.myaw2ib sain IOpATRA
Figure 2 c-erbB-2 protein expression in SK-BR-3 cells. EUSA. (A) Kinetcs
of ATRA-meciated inhibition. (B) Sustained down-regulabton by ATRA

controls (Table 1). This effect was seen in c-erbB-2-over-
expressing and in normally expressing cell lines, suggesting that
ATRA-mediated down-regulation of c-erbB-2 is independent from
the level of spontaneous expression. The authenticity of the

British Journal of Cancer (1998) 78(1), 79-87

-

0 Cancer Research Campaign 1998



82 ThW Grunt et al

A
ATPA (m)

SfN s& so sJIP 5

c.elbB-2

B

Trn (h) 8 24 48

AFITRA - + - + - +

c-ibB-2

.,. ..-A -
.5_.

-

T W" a

44wr 2

GAPDH

Iz

....,. ~~~~~~~~~~~r

C~~~~~~*

c-eobB-2

..=.GAPDH

Figure 3 c-erbB-2 mRNA expression in SK-BR-3 cells. Northem analysi.

(A) Dose-dependent down-reglation of c-erbB-2 mRNA (4.8 kb) after 48 h

ATRA. (B) Kintc of the effect of 10 gu ATRA. (C) Sustained down-
regulation by 10 gm ATRA Upper panels, 30 9g of total RNA was probed
against c-erbB-2. Lower panels; stripped filters were rehybrnkzed against
GAPDH

protein detected by ELISA was proven by immunoblotting
demonstrating an ATRA-mediated decrease of pl85c-bB2 in all

cell lines tested. This was accompanied by a decreased level of

tyrosine-phosphorylated proteins (Figure 1). Inhibition of c-erbB-
2 was examined in more detail in SK-BR-3 cells. Cells exposed for

48 h to a concentration as low as 10 nm of ATRA had aleady
down-regulated c-erbB-2 protein. Doses between 1 and 10gm
yielded relatively similar degrees of inhibition (49-46% or 58-
55 HNU gg-' protein) relative to control (118 HNU ig-' protein)

Figure 4 Kintics of 4-HPRF-exiated reduction of c-erbB-2 protein
(A, EUSA) and mRNA (B, Nortemrn analysi). (B) Cels were exposed to

vehile (-) or to 10 gw 4-HPR (+)

(data not shown). In time course experiments, using 1 jM ATRA,
the first signs of c-erbB-2 down-regulation were discernible after

24 h and proceeded during the observation period (Figure 2A).
This down-regulation was stable even after removal of ATRA
from the culture (Figure 2B).
SK-BR-3 cells express large amounts of the 4.8-kb c-erbB-2

mRNA, which was down-regulated by ATRA in a dose- and time-

dependent manner relative to GAPDH (Figures 3A and B).
Inhibition of c-erbB-2 mRNA by ATRA occurred as early as 8 h

after retinoid addition (Figure 3B) and remained depressed even

after removal of ATRA from the culture (Figure 3C).
In analogy to ATRA, 4-HPR reduced c-erbB-2 protein and

mRNA in SK-BR-3 cells in a dose- (data not shown) and time-
dependent manner, as demonstrated by ELISA and Northern blot-
ting (Figures 4A and B).

Morphology

SK-BR-3 cells grew as loosely packed monolayers never reaching
100% confluence. One proportion of the cells spread and
presented a flattened shape, whereas the other proportion
remained rounded (Figure 5A). ATRA-teated cells increased in
size, spread further and demonstrated a flattened shape with
multiple cytoplasmic extensions, representing a more mature
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FLgure 5 Morphology of SK-BR-3 cells exposed (4 days) to vehicle (A),
10 jim ATRA (B) or 10 gm 4-HPR (C). Scale bars 20 jm. Note, ATRA-induced
differentiation causes flaitening and spreading (B), 4-HPR-meriated
apoptosis causes nuclear and cytoplasnic condensation and celular
roundi-p (C)

phenotype (Figure SB). The cells revealed large lacy nuclei that
contained large nucleoli and that were surrounded by sizeable flat
cytoplasms. Multinucleated cells were frequently seen in these
cultures. In contrast, 4-HPR-treated cells rounded up and showed
reduced adherence to the substrate (Figure 5C). Nuclear and cyto-
plasmic condensation, cellular partition into membrane bound-
vesicles (apoptotic bodies) and chromatin aggregation at the
nuclear membrane was observed in these cultures. These pheno-
types were stable for at least 2 weeks after retinoid removal (data
not shown).

DNA frmentaton
Control cultures were devoid of cytoplasmic DNA fragments
(Figure 6, lane 3). ATRA-treated cells contain small amounts of
DNA fragments (lane 4), which range in size from approximately

Figure 6 DNA fragmentation in SK4BR-3 ceNs exposed (4 days) to vehicle
(lane 3), 10 gm ATRA (lane 4) or 10 jim 4-HPR (Lane 5). Size markers: Lane 1,
k.TINNHind ll; Lane 2, 0X174 RF DNA/Hae IlIl

Tabe 2 4-HPR- and drug-induced apoptosis after 48 h demonstrated by
phosphabtdyseuine Labelling with annexin V-FITC and flow cytometry

Annexin V
(MA ± scd)

Control 40 0
10 > ATRA 46 14
10gm4-HPR 275 75
10 g Taxol 202 49
10 g Etoposide 201 38

aMean fluorescence intensity (MFI) ± s.d. of duplicate experments.

23-1 kb. In 4-HPR-treated cells, apart from the DNA smear.
nucleosomal length fragmentation of cytoplasmic DNA (ladder)
was found at molecular sizes of 200 bp and multiples of this unit
(lane 5). DNA smears may be induced by necrotic cell loss.
whereas DNA 'laddering' represents the hallmark of apoptosis
(Trauth et al, 1989).

Annexin V

4-HPR-induced morphology and DNA 'laddering' correlated with
the appearance of phosphatidylserine on the cell surface, as
demonstrated by staining with annexin V-FITC (Table 2), which
represents a marker for apoptosis (Martin et al. 1995). In contrast
to ATRA, 4-HPR and the control substances taxol and etoposide
elevated the reactivity against annexin V.
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Figure 7 nhbibon of SK-BR-3 cell growth by ATRA (A) and 4-HPR (B)
detr as descrbed in Materias and methods

In vitro cell growth
Treatment with the single agents
Cytostasis of SK-BR-3 cells was obtained with l09 M ATRA and
complete growth arrest occurred with > I0-1 M ATRA (Figure 7A).
The dose window for ATRA-mediated growth inhibition was
fairly wide ranging from 10-9 to 10-5 M. In contrast, 4-HPR caused
a sharp decline in cell numbers within 106-61-5 M (Figure 7B).
Inhibition of proliferation occurred slowly with 1O-5 M ATRA,
whereas it was immediate (after 1 day) and higher for a similar
dose (8 x 106 M) of 4-HPR

Cornbined treatment with retinoids and CDDP
Two of tiree treatment protocols of combinatons of ATRA and
CDDP enhanced the growth-inhibiting effect compared with each
drug alone. Strongest inhibition occurred if the cultures had been

reated for 2 days with ATRA alone followed by ATRA and
CDDP for 3 days ('continuous retinoid tratment', Figure 8A).
Interestingly, a 2-day ATRA preincubation was sufficient to condi-
tion the cells for CDDP - even without the concurrent presence of
ATRA ('retinoid prentatment', Figure 8B). In contras, simulaneous

application of ATRA and CDDP without a preceding exposure to
ATRA did not improve the effect of CDDP ('no reinoid petreat-
ment', data not shown). Tberefore, ATRA-conditioning seems to be
important for the elevation of the CDDP-mediated growth reduction.
The same protocols were applied for combinations of 4-HPR with
CDDP. Again, continuous exposure for 5 days to 4-HPR including
CDDP co-treatment for the last 3 days induced the strongest
responses (Figue 8C). Some improvement of the CDDP effect was
obtained by separate application of 4-HPR followed by CDDP
(Figure 8D), whereas combination of both drugs without 4-HPR
prereatment was not superior to CDDP alone (data not shown).

The type of interaction (synergism vs antagonism) was deter-
mined for similar and independent mechanisms of drug action.
The CI values for 50% growth inhibition indicate that continuous
ATRA treatment and ATRA pretreatment synergistically elevate
(CI < 1), whereas 4-HPR slightly antagonizes the CDDP effect
(CI > 1) (Table 3). Analysis using the geometric isobologram
method yielded equivalent results (inserts in Figure 8A-D),
supporting the conclusions drawn from the CI values. Evaluation
of the third teatment schedule (no retinoid pretratment) was not
feasible, as no improvement of the CDDP effect was observed.

DISCUSSION
Retinoids inhibit cell proliferation, induce differentiation or trigger
apoptosis. The actual response depends on the given retinoid, the
type of cells and the growth conditions (Grunt et al, 1991, 1992a;
Krupitza et al, 1995). Two different mechanisms of retinoid action
are known. Interaction with RARs/RXRs induces wansactivation
of responsive genes and/or inhibition of the AP-1 transcription
factor (Fanjul et al, 1994, 1996). Retinoid receptors act as ligand-
dependent transcription factors and reveal striking homologies to
the steroid receptors. The molecular processes triggered by
retinoid/steroid receptors are different from those induced by c-
erbB-2, which transduces protein phosphorylation signals via the
mitogen-activated protein(MAP)-kinase cascade to transcription
factors such as AP-1. Yet, both signalling pathways control cell
growth and differentiation. Both retinoid/steroid receptors and c-
erbB-2 membrane receptor tyrosine kinases represent important
target structures for antineoplastic intervention. In breast cancer,
activation of c-erbB-2 inhibits the oestrogen receptor and, vice
versa, stimulation of the oestrogen receptor down-regulates c-
erbB-2, demonstrating a negative interaction between these path-
ways (Grunt et al, 1995; Saceda et al, 1996; Tang et al, 1996). In
contrast, activation of c-erbB-2 stimulates the expression of RAR-
a in SK-BR-3 cells (Flicker et al, 1997). These oestrogen receptor-
negative, c-erbB-2-overexpressing cells (Hynes et al, 1989)
contain RARs and are sensitive to retinoids (Pellegrini et al, 1995).

Here, we have demonstated that ATRA and 4-HPR inhibited c-
erbB-2 protein and mRNA and protein tyrosine phosphorylation in
SK-BR-3, BT-474 and MCF-7 cells, indicating that both agents
reduced the malignant characteristics of the cells. Corresponding
results have been obtained by Bacus et al (1990) and Pellegrini et
al ( 1995). No retinoic acid response element has been identified so
far, whereas AP-1, AP-2 and SP-l sites have been found in the
regulatory region of c-erbB-2.

D'Souza and colleagues (1993) demonstrated that c-erbB-2
expression is negatively correlated with the differentiation poten-
tial of mammary epithelial cells. The ATRA-induced morphology
of SK-BR-3 cells corresponds to a phenotype, which is observed
after stimulated differentiation of AU-565 breast cancer cells

Britsh Journal of Cancer (1998) 78(1), 79-87 0 Cancer Research CaMpaigI7 1996
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Fiure 8 The effects of ATRA (A and B) and 4-HPR (C and D) on CDDP-mecdated growth amrt in SK-BR-3 cells. (A and C) Contnuous treatment 2 days
ATRA14-HPR folowed by 3 days ATRA/4-HPR + CDDP. (B and D) Pretreatment 2 days ATRAN4-HPR folowed by 3 days CDDP alone. Inserts, isobolgram
analysis. The IC50-oeffetve points are shown. Combrinaions of ATRA with CDDP (A and B) yield synergistc effects, whereas 4-HPR combined with CDDP
(C and D) reveal saight antagoism

(Bacus et al, 1990) and of ovarian carcinoma cells (Grunt et al,
1991, 1992b, 1993). In contrast, the 4-HPR-induced phenotype is
reminiscent of apoptosis (Krupitza et al, 1995).

Experimental and clinical data indicate that c-erbB-2 expres-
sion/activity is associated with altered sensitivity against immuno-
logical, endocrine and chemotherapeutic intervention (Hancock et
al, 1991; Benz et al, 1993; Kalthoff et al, 1993; Tsai et al, 1993;
Arteaga et al, 1994; Pietras et al, 1994; Yu et al, 1996). It has been
established that c-erbB-2 overexpression correlates with multidrug
resistance of non-small-cell lung cancer (Tsai et al, 1993). In
breast cancer, some investigators have reported that c-erbB-2
overexpression/hyperactivation confers resistance against CDDP

(Benz et al, 1993), against cyclophosphamide, methotrexate and
fluorouracil (Paik, 1992), against tamoxifen (Benz et al, 1993) and
against paclitaxel (Yu et al, 1996). Others, however, have demon-
strated that c-erbB-2 activation elevates the sensitivity of c-erbB-
2-overexpressing cells against CDDP, which might be caused by
receptor-mediated inhibition of DNA repair enzymes, such as
DNA-polymerase-a and -0 (Hancock et al, 1991; Arteaga et al,
1994; Pietras et al, 1994). Interestingly. a DNA repair enzyme
activity has been described for the epidermal growth factor
receptor (Mroczkowski et al, 1984). Therefore, we wondered
whether retinoid-mediated inhibition of c-erbB-2 alters CDDP
sensitivity. Retinoids potentiate the antiproliferative effect of
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Table 3 Combinatbon of ATRA or 4-HPR with CDDP Determination of the
combination index for 50%/o growth inhibitiona

Combinaton index IC.,
Mutually exclusive Mutually non-exclusive

ATRA + CDDP
Continuous ATRA treatmnent 0.25 0.26
ATRA pretreatment 0.57 0.65

4-HPR + CDDP
Continuous 4-HPR treatment 1.12 1.42
4-HPR pretreatment 1.13 1.45

aCalculated as described in Materials and methods. Combination index <1,
=1 or >1 indicates synergism, additviy or antagonism. Mutually exclusive or
non-exdusive effects are produced by drugs with similar or independxent
modes of action. Representative values of one out of two independent
experiments each carried out in triplicate.

CDDP in ovarian cancer (Formelli and Cleris. 1993: Caliaro et al.
1997). in head and neck cancer (Shalinsky et al. 1995) and in
cervical carcinoma (Rustin. 1994). Here, we have demonstrated
synergy between ATRA and CDDP. but slight antagonism between
4-HPR and CDDP. However. the antiproliferative response to
combinations of 4-HPR and CDDP was stronger than that induced
by each drug alone. Preincubation with retinoids was essential for
elevated growth inhibition by CDDP. whereas simultaneous appli-
cation of retinoid and CDDP without retinoid pretreatment did not
improve the cell response. ATRA-mediated differentiation and 4-
HPR-induced apoptosis were accompanied by reduced c-erbB-2
expression. demonstrating that both processes deliver converging
signals for target gene regulation. However. both retinoids differed
in their potency to modulate CDDP sensitivity, indicating that addi-
tional mechanisms might be responsible for the potentiating effect
of ATRA. This is supported by work from Caliaro et al (1997), who
suggest that retinoid-mediated alteration of the glutathione-S-trans-
ferase activity accompanied by changes in platinum-DNA adduct
formation and in epidermal growth factor receptor expression could
account for the potentiation of CDDP cytotoxicity in ovarian
cancer cells. Retinoids not only represent promising drugs for
single-agent anti-cancer treatment. but may be even more
beneficial when given in combination with chemotherapeutics.
Application of such protocols could bypass the development
of resistance and limiting toxicities of retinoids and CDDP.
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