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Plasma clearance, biodistribution and therapeutic
properties of mitoxantrone encapsulated in
conventional and sterically stabilized liposomes after
intravenous administration in BDF1 mice
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Summary Mitoxantrone can be efficiently loaded into large unilamellar vesicles using a transmembrane pH gradient. Release studies
indicate that these drug-loaded carriers are highly stable and even after dissipation of the residual pH gradient retain more than 85% of
encapsulated mitoxantrone following dialysis at 37°C for 5 days. In murine studies we have compared the plasma clearance and
biodistribution of both mitoxantrone and liposomal lipid following intravenous administration of free drug or mitoxantrone encapsulated in
either conventional or sterically stabilized liposomes. In contrast to the rapid blood clearance observed for free mitoxantrone, both liposomal
systems provided extended circulation lifetimes, with over 90% of the drug present 1 h after administration and 15-30% remaining at 24 h. In
agreement with previous reports, longer plasma half-lives were observed for sterically stabilized liposomes than for conventional systems. In
addition, a strong correlation between drug and carrier biodistribution was seen, with uptake occurring mainly in the liver and spleen and
paralleling plasma clearance. This would suggest that tissue disposition reflects that of drug-loaded liposomes rather than the individual
components. Liposomal encapsulation also significantly reduced mitoxantrone toxicity, allowing administration of higher, more efficacious
drug doses. In a murine L1210 tumour model, for example, no long-term survivors were seen in animal groups treated with free drug, whereas

at the maximum therapeutic dose of liposomal mitoxantrone survival rates of 40% were observed.
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Liposomes have been widely employed as carrier systems for anti-
cancer drugs. These microscopic lipid systems tend to accumulate
within organs of the reticuloendothelial system (RES) and also at
disease sites, including tumours (Morgan, et al, 1985; Ogihara et
al, 1986; Presant et al, 1986; Williams et al, 1986). As a result,
they offer the potential to modify both the pharmacokinetics and
biodistribution of entrapped drugs. In the case of doxorubicin, this
results in a significant reduction in drug levels within the heart and
a corresponding decrease in cardiotoxicity (Rahman et al, 1980;
Gabizon et al, 1982; Olson et al, 1982; Mayer et al, 1989). Similar
benefits have been reported for other anthracycline antineoplas-
tics, including daunorubicin and epirubicin (Forssen, 1988;
Gabizon, 1992). Further, in the case of the antimitotic agent
vincristine, liposomal encapsulation has been shown to both
reduce drug toxicity and enhance efficacy (Mayer et al, 1990a;
Boman et al, 1994). This improvement in antineoplastic activity is
believed to result from sustained drug release following accumula-
tion of the liposomal carrier at the tumour site (Boman et al, 1994).
As a cell cycle-specific agent, vincristine cytotoxicity is highly
dependent on exposure time.

As noted above, following intravenous administration, conven-
tional liposomes tend to be cleared from the circulation by phago-
cytic cells within the liver and spleen. Liposome recognition and
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subsequent uptake is believed to be triggered by protein binding to
the vesicle surface (Chonn, et al, 1992; Funalo et al, 1992). This
protein binding can be inhibited, however, by introducing into the
liposomal membrane lipid derivatives possessing long, hydrophilic
poly(ethylene glycol) chains. These sterically stabilized liposomes
exhibit much longer blood circulation times than equivalent
conventional liposomes (Klibanov et al, 1990; Allen et al, 1991)
and when used as drug carriers can enhance delivery to tumour
sites, resulting in improved anti-cancer efficacy (Papajopoulos et
al, 1991; Huang et al, 1992; Vaage et al, 1992).

Mitoxantrone is an anthracenedione derivative that shows good
antineoplastic activity against breast cancer, leukaemia and
lymphoma and this drug appears to exhibit less cardiotoxicity than
doxorubicin (Smith, 1983; Shenkenberg and Von Hoff, 1986). A
liposomal formulation of this agent has been reported to show
lower toxicity and, in some instances, greater efficacy than the free
drug (Schwendener et al, 1991; Pestalozzi et al, 1992). The lipo-
somal formulation employed in these previous studies, however,
consisted of an electrostatic complex between the cationic drug
and liposomes containing acidic phospholipids, and relatively
rapid plasma clearance of the drug was observed following intra-
venous administration (Schwendener et al, 1991). In the present
study, therefore, we have developed systems in which mitox-
antrone is encapsulated within the liposome aqueous interior,
employing a transmembrane pH gradient to drive drug uptake. We
then compared the pharmacokinetics and therapeutic properties of
conventional liposome carriers and sterically stabilized liposomes.
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MATERIALS AND METHODS

Mitoxantrone hydrochloride (Novantrone) was obtained from
Cyanamid Canada (Montreal, Quebec) in saline solution (2.0 mg
ml-'). Distearoylphosphatidylcholine (DSPC) and poly(ethylene
glycol)-dipalmitoylphosphatidylethanolamine (DPPE-PEG,)
were purchased from Avanti Polar Lipids (Birmingham, AL,
USA). Cholesterol (standard for chromatography) was obtained
from Sigma Chemicals (St Louis, MO, USA). [*H]Cholesterol
hexadecyl ether and [*H]dipalmitoylphosphatidylcholine (DPPC)
were supplied by NEN (DuPont Canada, Mississauga, Ontario)
and ["“C]mitoxantrone (10 pCi 100 pl-') was a generous gift from
Lederle. Packard Ultima Gold liquid scintillation cocktail was
obtained from Packard Instrument Company (Meriden, CT, USA).
Nigericin (90-95% pure) was obtained from Sigma and prepared
in ethanol. BDFI and CD1 mice (8-9 weeks old, 18.0-23.0 g)
were purchased from Charles River and were initially housed in
microisolation cages (five mice per cage) during a 1-week quaran-
tine period. Mice were then moved to conventional Nalgene cages
and maintained on wood shavings. Animal rooms followed a 12-h
day/night cycle with mean temperature 22°C and mean humidity
35%. Mice were fed standard, certified commercial mouse food
(LabDiet, The Richmond Standard) and provided with municipal
tap water, ad libitum. Normal (pooled) mouse serum (CL8000)
was produced by Cedar Lane Laboratories and stored at —10°C or
below. All other reagents, salts, buffers and organic solvents were
of analytical reagent grade or better.

Preparation of large unilamellar vesicles (LUVs)

The lipid mixtures DSPC/cholesterol (Chol) (55:45 molar ratio)
and DSPC/Chol/DPPE-PEG,,, (50:45:5 molar ratio) were
dissolved in benzene — methanol (95:5, v/v), rapidly frozen in
liquid nitrogen and then lyophilized at <60 mT for a minimum of 5
h (Virtis lyophilizer with liquid nitrogen cold trap). During
lyophilization, the lipid mixture was protected from light.

Multilamellar vesicles (MLVs) were prepared by hydrating the
dry lipid mixture in 300 mM citrate pH 4.0 at the desired phospho-
lipid concentration. Following incubation at 60°C for 5 min with
occasional vortexing, the sample was transferred to a S ml cryovial
and taken through five freeze—thaw cycles employing liquid
nitrogen and incubation at 60°C (Mayer et al, 1986a). Large unil-
amellar vesicles were prepared from these frozen and thawed
MLVs by extruding the sample through three stacked 100-nm-pore
size polycarbonate filters (20 times) at 65°C using an Extruder
(Lipex Biomembranes, Vancouver, BC, Canada) (Hope et al,
1985). A transmembrane proton gradient was established by
passing an aliquot (1.2 ml) of the LUV suspension down a
Sephadex G-50 (medium) column (1.0 cm X 15.0 cm) equilibrated
with degassed 150 mM sodium chloride 25 mM Hepes buffer
(pH 7.4). Fractions (0.5 ml) were collected and the most concen-
trated vesicle fractions combined.

Liposomal encapsulation of mitoxantrone

Mitoxantrone (2.0 mg ml-') was titrated to pH 7.4 using 0.1 M
sodium hydroxide and an appropriate volume of DSPC/Chol
LUVs exhibiting a transmembrane pH gradient (pH4.0, /pH7.4_ )
was added to achieve a drug to phospholipid molar ratio of
0.416:1. This mixture was adjusted to the desired final mitox-
antrone concentration by addition of 150 mm sodium chloride, 25
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mM Hepes pH 7.4 and incubated at 55°C for 60 min. In preliminary
experiments to determine the kinetics of mitoxantrone uptake,
aliquots (100 pl) of this mixture were taken at various times and
unencapsulated drug removed by passage of the LUVs through
a 1-ml Sephadex G-50 (medium) minicolumn (Pick, 1981).

Release kinetics of liposomal mitoxantrone in vitro

Large unilamellar vesicles composed of DSPC/Chol (55:45 molar
ratio) or DSPC/Chol/DPPE-PEG,,, (50:45:5 molar ratio), and
containing [*H]DPPC as a lipid marker, were prepared as described
earlier. Drug loading was achieved by incubation of mitoxantrone
with the LUVs (0.416:1 drug — phospholipid molar ratio) at 55°C
for 60 mins. The loaded liposomes were then transferred to dial-
ysis tubing (Spectra/Por 2, mol. wt cut-off 12-14 000) and dial-
ysed against 250 volumes of 150 mM sodium chloride 25 mm
Hepes pH 7.4 at 37°C with constant stirring. At 24 h, the trans-
membrane pH gradient was collapsed by the addition of nigericin
(25 nM) to both the contents of the dialysis bag and the external
solution. At various times up to 120 h, aliquots were removed from
the dialysis bag and assayed for lipid (liquid scintillation counting)
and mitoxantrone (see spectrophotometric assay below).

Plasma clearance and biodistribution study

Large unilamellar vesicles composed of either DSPC/Chol
(55:45) or DSPC/Chol/DPPE-PEG,,, (50:45:5) were prepared
as described earlier but containing the non-exchangeable, non-
metabolizable lipid marker [*H]cholesterol hexadecyl ether
(Huang, 1983). Mitoxantrone was loaded as described earlier at a
drug — phospholipid molar ratio of 0.416:1, employing ['*C]mitox-
antrone as a radiolabelled marker.

The plasma clearance and tissue distribution of free mitoxantrone,
mitoxantrone-loaded DSPC/Chol liposomes, control ‘empty’
DSPC/Chol liposomes, mitoxantrone-loaded DSPC/Chol/DPPE-
PEG,,,, liposomes and control ‘empty’ DSPC/Chol/DPPE-PEG,,,
liposomes, were determined in female BDFI mice (mean body
weight, 20 g). For the free drug and both liposomal mitoxantrone
formulations, single intravenous doses were administered via a
lateral tail vein at 10 mg kg~' mitoxantrone in an injection volume
of 200 pl. Control liposomes (no mitoxantrone) were administered
at the same phospholipid dose as that of the drug-loaded vesicles.
At 1, 4, 24 and 72 h, three animals from each experimental group
were anaesthetized (160 mg kg-' Ketamine, 20 mg kg-' xylazine)
and blood samples taken by heart puncture using a 25-gauge
needle. Blood (approximately 200 ul) was collected into ‘Micro-
tainer’ tubes containing EDTA and placed on ice. Animals were
then sacrificed by cervical dislocation and dissected to remove the
lungs, liver, spleen, kidney and muscle.

Liposomal lipid and mitoxantrone concentrations in plasma were
determined by dual-label liquid scintillation counting (Beckman
LS3801 instrument) with a detection limit set of 50 d.p.m. over
background. Plasma samples containing high concentrations of
mitoxantrone were first decolorized with 30% hydrogen peroxide.
Plasma and tissue levels of mitoxantrone given under Results will
include any radiolabelled metabolites. In the case of liposomal
mitoxantrone, plasma drug levels can be considered to represent
encapsulated mitoxantrone in view of the very rapid clearance of
free drug from this compartment (see Results).

Organs and tissues were weighed and a 10% homogenate pre-
pared in distilled water using a Brinkmann Polytron homogenizer.
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An aliquot (200 pl) of the homogenized sample was then digested
with 500 pl of Solvable at 50°C for 3 h. After cooling, EDTA
(50 pl of a 200 mm stock solution) was added followed by 30%
hydrogen peroxide (200 pul) and finally 10 M hydrogen chloride
(25 pl). After incubation at room temperature for 1 h, scintillation
cocktail was added and the samples then kept in the dark overnight
before determining liposomal lipid and mitoxantrone levels using
dual-label liquid scintillation counting. A plasma correction factor
was used in the calculation of tissue liposome and drug levels.

Trapezoidal area under the curve (AUC) calculations were
based on average plasma and tissue levels of mitoxantrone and
liposomal lipid at the indicated time points.

Anti-tumour efficacy study

Female BDF1 mice were inoculated intravenously with 10* L1210
murine tumour cells, derived from the ascites fluid of a previously
infected BDF1 mouse. Free mitoxantrone or mitoxantrone encapsu-
lated in either DSPC/Chol or DSPC/Chol/DPPE-PEG,,,, liposomes
was administered via a lateral tail vein, 24 h after tumour cell inoc-
ulation. Animal weights were monitored daily for 14 days and
mortality determined up to 60 days. Mean and median survival
times and percentage increase in life span (%ILS) of treated
animals compared with untreated controls, were calculated. In addi-
tion, liposomal — free (L/F) survival time ratio values, which reflect
the anti-cancer potency of liposomal mitoxantrone compared with
free mitoxantrone, at the same dose, were determined.
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Figure 1 Uptake of mitoxantrone by DSPC/Chol (55:45 mol/mol) liposomes.
Mitoxantrone was loaded at a drug to phospholipid molar ratio of 0.416:1 into
vesicles exhibiting a transmembrane pH gradient (pH4.0, /pH7.4_ ) at 23°C
(O) and (@) at 55°C Mitoxantrone was assayed as indicated under Materials
and methods using the spectrophotometric procedure whereas DSPC was
quantitated by phosphate assay
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Analytical procedures

In some experiments, mitoxantrone was quantified using a spec-
trophotometric assay. An aliquot of the liposomal drug was diluted
with distilled water to a volume of 300 pl and 1200 pl of 5% Triton
X-100 (w/v) then added. The mixture was heated at 60°C for 5 min
to release all the encapsulated mitoxantrone and absorbance then
read at 666.5 nm. Drug concentration in the sample was then deter-
mined by comparison to a standard curve (0-60 nmol mitox-
antrone). This spectroscopic assay was compared with the use of
['*C]mitoxantrone to determine mitoxantrone uptake and release in
vitro and for determination of drug levels in plasma. Both assays
gave similar results.

Vesicle size distributions were determined by quasielastic light
scattering using a Nicomp 270 submicron particle sizer as
described previously (Madden et al, 1988). Phospholipid concen-
trations were determined by phosphate assay after perchloric acid
digestion (Fiske and Subbarow, 1925).

RESULTS

Academic and clinical studies of liposomal anti-cancer drugs have
been greatly facilitated by the development of a remote-loading
procedure that allows efficient drug encapsulation into preformed
liposomes. This technique takes advantage of drug redistribution in
response to a transmembrane pH gradient (Mayer et al, 1986b,
Cullis et al, 1989; Madden et al, 1990). As shown in Figure 1, when
mitoxantrone is incubated at 55°C with DSPC/Chol liposomes
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Figure 2 Release of mitoxantrone from DSPC/Chol (55:45 mol/mol)
liposomes (O) and DSPC/Chol/DPPE-PEG,,, (50:45:5) liposomes (®) under
dialysis conditions at 37°C. Mitoxantrone was loaded at a drug to
phospholipid molar ratio of 0.416:1 and at 1.0 mg mi-'. Nigericin (25 nm) was
added at 24 hs. Mitoxantrone (['*C]mitoxantrone) and phospholipid ([*H]
DPPC) were determined by liquid scintillation counting as described under
Materials and methods
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Table 1 Mean area under the curve (AUC) for mitoxantrone and liposomal lipid in plasma and selected tissues: comparison of conventional and sterically

stabilized liposomes

Plasma (umol h mi-) Liver (umol h g-')

Spleen (umol h g-') Lung (umol h g-') Kidney (umol h g-')

Auc,, Auc,,, AUC, AUC,, AUC,  AUC,, AUC,  AUC, AUC,  AUC,
DSPC/Chol 11.51 4.44 2888  10.88 79.83 28.44 1.08 0.40 3.96 1.69
DSPC/Chol/PEG-PE 28.27 10.95 2720  9.69 45.71 16.31 2.02 0.49 411 157

exhibiting a pH gradient, rapid drug encapsulation is observed.
Essentially, complete uptake occurs within 60 min and this uptake
is stable with no loss of accumulated drug seen up to 3 h at this
temperature. In addition to being dependent on the imposed pH
gradient, this uptake is highly temperature sensitive. As shown in
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Figure 3 Plasma concentrations of mitoxantrone (A) and liposomal
phospholipid (B) as well as circulating mitoxantrone to phospholipid molar
ratio x 10 (C) in mice injected i.v. with free mitoxantrone (#), mitoxantrone
entrapped in DSPC/Chol (55:45 mol/mol) (@), and DSPC/Chol/DPPE-
PEG,,,, (50:45:5) (O) liposomes. The mitoxantrone dose was 10 mg kg'; the
phospholipid dose was 54 pmol kg-'; initial mitoxantrone to phospholipid
molar ratio was 0.416. Mitoxantrone ([**C]mitoxantrone) and phospholipid
([PHICHE) were assayed as described under Materials and methods. Mean +
s.e.m., n=3
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Figure 1, very little accumulation is seen for vesicles incubated
with drug at room temperature. This probably reflects the temper-
ature dependence of the permeability coefficient for DSPC/Chol
bilayers and is consistent with previous reports on liposomal
uptake of other anti-cancer agents (Mayer et al, 1986b). Lipo-
somes composed of DSPC/Chol/DPPE-PEG,,, exhibiting a pH
gradient (pH4.0,pH7.4 ) also showed essentially complete
uptake of mitoxantrone at 55°C.

Before comparing the pharmacokinetic and therapeutic proper-
ties of mitoxantrone in conventional or sterically stabilized lipo-
somes, it was important to determine whether the incorporation of
DPPE-PEG,,, influenced the physical properties of the liposomal
carrier. In particular we examined whether this PEG - lipid conju-
gate increased bilayer permeability and hence the rate of release of
encapsulated drug. Mitoxantrone, therefore, was loaded into
DSPC/Chol and DSPC/Chol/DPPE-PEG,,, liposomes and these
vesicles dialysed against Hepes-buffered saline at 37°C. Further,
after 24 h the residual transmembrane pH gradient was dissipated
by addition of the ionophore nigericin, and dialysis continued for
an additional 96 h. The stability of mitoxantrone-loaded liposomes
is well illustrated by the data presented in Figure 2. For liposomal
systems with or without DPPE-PEG,, no measurable drug loss
was seen over 24 h. Even after dissipation of the residual pH
gradient, only very slow leakage is observed with approximately
85% of the initially encapsulated mitoxantrone retained at 120 h
for both DSPC/Chol and DSPC/Chol/DPPE-PEG,, liposomes.
This slow drug release is surprising, particularly given that dissi-
pation of the pH gradient will not only remove the driving force
behind drug redistribution, but will also raise the intravesicular
pH, thereby increasing the proportion of mitoxantrone present as
the neutral, membrane permeant species. Clearly, even at 37°C,
the permeability coefficient of DSPC/Chol bilayers to mitox-
antrone is relatively low. This point will also be addressed in the
Discussion.

The behaviour of drug-loaded liposomes in vivo was then exam-
ined using a murine model. Plasma clearance rates of mitoxantrone
and liposomal lipid following intravenous administration of free
drug or mitoxantrone encapsulated in either DSPC/Chol or
DSPC/Chol/DPPE-PEG,,,, liposomes, are shown in Figure 3. In
contrast to the rapid clearance seen for free drug, over 90% of the
administered mitoxantrone remained in the circulation at 1 h when
given in a liposomal carrier (Figure 3A). Comparison of the two
liposome formulations indicates, as expected, that the conventional
systems are cleared from the circulation more rapidly than those
containing DPPE-PEG,,,,.. For both formulations very little drug or
lipid remained in the blood at 72 h (Figure 3A and B). An indica-
tion of mitoxantrone leakage from the carrier can be obtained from
the calculation of drug-to-lipid ratio for those liposomes remaining
in the circulation at various time points. As shown in Figure 3C, up
to 24 h, this ratio remains similar to the initial value, particularly
for the sterically stabilized liposomes, indicating little drug
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Figure 4 Distribution of mitoxantrone and liposomal lipid in mice injected i.v. with DSPC/Chol (55:45 mol mol) liposomal mitoxantrone (®) and
DSPC/Chol/DPPE-PEG,,,, (50:45:5) liposomal mitoxantrone (O) at various times post injection. Plasma (A), liver (B) and spleen (C) drug and lipid levels are
shown. Mice received 10 mg kg-' mitoxantrone and 54 umol kg-' phospholipid. Tissues were prepared and mitoxantrone (['*C] mitoxantrone) and phospholipid
([*H]-CHE) were assayed as described in Materials and methods. Mean + s.e.m. n = 3. Data shown have been corrected for drug or lipid in the blood
compartment of each tissue
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Figure 5 Tissue distribution in lung (A) and kidney (B) of mitoxantrone and liposomal lipid in mice injected i.v. with DSPC/Chol (55:45 mol/mol) liposomal
mitoxantrone (®) and DSPC/Chol/DPPE-PEG,,,, (50:45:5) liposomal mitoxantrone (O) at various times post injection. Mice received 10 mg kg-' mitoxantrone
and 54 umol kg-' phospholipid. Tissues were prepared and mitoxantrone [*C]mitoxantrone) and phospholipid ([*HJCHE) were assayed as described in Materials
and methods. Mean + s.e.m. n = 3. Data shown have been corrected for drug or lipid in the blood compartment of each tissue

leakage. Between 24 and 72 h, however, vesicles remaining in the
circulation appear to lose most of their drug load.

We also examined the tissue distribution of mitoxantrone and
liposomal lipid at the same time points used in the plasma study.
Liver accumulation of the drug and carrier following administra-
tion of DSPC/Chol systems was significantly different from that of
DSPC/Chol/DPPE-PEG,, liposomes only at the 1- and 4-h time
points. Despite the fact that plasma levels at 24 h were fivefold
greater for the DSPC/Chol/DPPE-PEG,,, vesicles compared with
the conventional carriers, no significant differences were seen in
liver levels at either 24 or 48 h. In contrast, spleen accumulation of
lipid and drug was reduced at all time points evaluated for the
sterically stabilized carriers. These clearance data (Figure 4) are
reflected in the mean area under the curve (AUC) analysis shown
in Table 1. Mitoxantrone and liposomal lipid exposure in the liver
was comparable for the two formulations studied, whereas spleen
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exposure was reduced when using the DSPC/Chol/DPPE-PEG,,
formulation. This result suggests that incorporation of PEG-conju-
gated lipids into the liposomal carriers studied here inhibits recog-
nition and clearance within the spleen more effectively than within
the liver. As would be expected, mitoxantrone and liposomal lipid
AUC values in plasma are greater for the sterically stabilized vesi-
cles than conventional liposomes.

Mitoxantrone and liposomal lipid accumulations within the
kidney, lung and muscle (rectus femoris) were also determined for
both liposomal formulations. As shown in Figure 4, drug and lipid
levels in lung and kidney were considerably lower than for liver
and spleen and in the case of muscle were essentially below
detectable limits (<2 p mol g-').

It is clear from the data presented in Figures 4 and 5 that a close
correlation exists between tissue levels of mitoxantrone and lipo-
somal lipid. This observation can be most readily accounted for if
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Table 2 Anti-tumour efficacy of mitoxantrone in conventional and sterically stabilized liposomes against a murine leukemia cell line (L1210) in BDF1 mice. Mice
were inoculated with 10 000 L1210 cells i.v. on day zero and treatment initiated on day 1

Treatment Dose No. of Average weight  No. of survivors Mean survival® Mean survivale  %ILS? L/Fe Mean survival
group (mg kg-') animals change (% day 10) (day 40) Time Time (post-reinoculation)®
Control 0 10 NA 0/10 7.7 NA

Free 5 5 0.5 0/5 12.6 13 63

Free 10 5 -12.2 0/5 17.6 15 88

DSPC 5 5 39 0/5 11.0 1 38 0.85

DSPC 10 10 -1.1 0/10 14.2 14.5 81 0.97

DSPC 20 10 -123 410 30.7 235 194 8
DSPC 30 10 -21.4 1/10 19.8 15 88 8
DSPC-PEG 10 5 -0.9 0/5 12.8 13 63 0.87

DSPC-PEG 20 5 -7.0 1/5 25.4 23 188

aTo calculate mean and medial survival time, survivors after 40 days were assigned survival times of 40 days. "Values for percentage increase in life span
(%ILS) and liposomal/free (L/F) were calculated using median survival data. °Reinoculation of survivors was on day 63 with 10 000 L1210 cells i.v. per survivor.

tissue mitoxantrone content reflects deposition of drug-loaded
liposomes. Further, this observation would imply that, once accu-
mulated within a tissue, only slow drug release occurs from the
liposomal carrier.

The anti-cancer efficacies of free mitoxantrone and mitox-
antrone encapsulated in DSPC/Chol or DSPC/Chol/DPPE-PEG,,
liposomes were then compared in a murine tumour model. As
shown in Table 2, administration of free drug at 5 or 10 mg kg-!
produces a dose-dependent increase in survival time relative to the
untreated control group. Higher doses of free drug (15 or 20 mg
kg™') were found to be toxic, resulting in mortality at earlier time
points than seen for control animals. When mitoxantrone is admin-
istered within liposomes, however, its toxicity is significantly
ameliorated (Table 2). Whereas free drug at 10 mg kg~' produces
a weight loss of about 12% at the nadir (day 10), an equivalent
dose of mitoxantrone in DSPC/Chol or DSPC/Chol/DPPE-PEG,,,,
vesicles results in no significant weight change. Even at 20 mg
kg the liposomal formulations produce a mean percentage weight
loss of less than 5%. Further escalation in liposomal drug dose to
30 mg kg-!, however, does elicit drug-related deaths.

A comparison of the percentage increase in lifespan (%ILS)
produced by 5 or 10 mg kg-' free or liposomal mitoxantrone indi-
cates that at equivalent doses the liposomal drug exhibits similar or
slightly lower efficacy. This is illustrated by the liposome — free
ratio of 0.85 (5 mg kg') and 1.00 (10 mg kg'). The lower toxici-
ties of the liposomal formulations, however, allow treatment at
higher doses and at 20 mg kg-! mitoxantrone, in either DSPC/Chol
or DSPC/Chol/DPPE-PEG,,,,, vesicles, %ILS values are signifi-
cantly greater than seen for free drug at the MTD. Interestingly,
there does not appear to be an improvement in efficacy for the ster-
ically stabilized vesicles compared with conventional liposomes.
At 30 mg kg-' mitoxantrone in DSPC/Chol liposomes the %ILS is
lower than for the same formulation administered at 20 mg kg'.
This reflects drug-induced toxicity as indicated by animal weight
loss data.

In addition to the improvement in %ILS relative to free drug at
the MTD, survivors were obtained in the groups treated with lipo-
somal mitoxantrone at 20 mg kg-' and 30 mg kg-'. To confirm that
these survivors were not the result of an immunological response
to the tumour cell line, animals were reinoculated with the same
L1210 tumour line and not subsequently treated. As shown in

© Cancer Research Campaign 1997

Table 2, these survivors succumbed over the same time frame as
control animals.

We strongly believe that this anti-tumour activity results from
the antiproliferative activity of mitoxantrone rather than inhibition
of tumour cell seeding. This interpretation is based on the
following considerations. The L1210 cell line exhibits a doubling
time of approximately 12 h in vitro and it is likely therefore that
the cells are well established in the tissue 24 h after intravenous
injection, at which time therapy is initiated. Histological studies of
livers obtained from animals 3 days after L1210 inoculation
confirm that there is diffuse infiltration of tumour cells throughout
the tissue. Further, when animals were administered DSPC/Chol
liposomes (no mitoxantrone) at a dose of 100 mg ml-' 1 day after
i.v. administration of L1210 cells, no difference in survival was
seen compared with untreated controls.

DISCUSSION

Earlier studies demonstrating that liposomes can selectively accu-
mulate at sites of infection, inflammation and neoplastic disease
provided both a rationale for their use as drug carriers and an
explanation for any observed changes in drug toxicity or efficacy
(Morgan, et al, 1985; Ogihara et al, 1986). Particularly in the case
of highly cytotoxic antineoplastic agents, the ability to enhance
tumour drug levels while reducing exposure to healthy tissues and
organs would be expected to significantly improve the agent’s
therapeutic index. This expectation has been confirmed by animal
studies showing that the toxicities of doxorubicin, vincristine and
other anti-cancer drugs, including mitoxantrone, can be signifi-
cantly reduced by administration within a liposomal carrier
(Gabizon et al, 1982; Olson et al, 1982; Mayer et al, 1989; Mayer
et al, 1990a; Schwendener et al, 1991). Similar benefits have been
reported in human clinical trials, most notably a marked reduction
in cardiotoxicity for liposomal doxorubicin (Batist et al, 1992;
Northfield et al, 1993). The present results are consistent with this
earlier research and confirm that liposomal incorporation of mitox-
antrone results in a marked reduction in drug toxicity. In turn, this
allows administration of larger and more efficacious drug doses.
In addition to the benefits resulting from reduced toxicity, lipo-
somal encapsulation has been shown to enhance drug delivery to
solid or ascitic tumours and this can result in improved efficacy
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(Gabizon and Papahadjopoulos, 1988; Mayer et al, 1990b;
Gabizon, 1992; Huang et al, 1992; Bally et al, 1994). This selec-
tive accumulation is believed to reflect extravasation of the lipo-
somal carrier via leaky, immature capillary endothelium formed as
the result of rapid angiogenesis within the growing tumour (Bally
et al, 1994). A number of factors would be expected to influence
the extent of this tumour localization, including liposome size,
composition and circulation half-life. Given that conventional
liposomes are cleared from the blood fairly rapidly by phagocytic
cells of the reticuloendothelial system (RES), considerable
research has been directed towards the development of systems
that avoid recognition and uptake by the RES. This has been
achieved by incorporating into the liposomal membrane lipids
possessing relatively bulky polar headgroups, such as G,,, or phos-
phatidylinositol (Gabizon and Papahadjopoulos, 1988; Gabizon et
al, 1989), or phospholipids conjugated to a hydrophilic polymer
such as poly(ethylene glycol) (Klibanov et al, 1990; Allen et al,
1991). Such sterically stabilized liposomes exhibit longer circula-
tion half-lives than equivalent conventional systems and this has
been shown to result in greater accumulation at tumour sites
(Papahadjopoulos et al, 1991; Huang et al, 1992; Vaage et al,
1992; Maruyama et al, 1994).

Previous studies on liposomal mitoxantrone have employed
systems in which the cationic drug is associated with liposomes
containing an acidic phospholipid, phosphatidic acid, via predom-
inantly electrostatic interactions (Schwendener et al, 1991).
Following intravenous administration of these systems, mitox-
antrone is rapidly cleared from the blood with an initial elimina-
tion half-life of less than 30 min. This may reflect either rapid drug
loss from the carrier or recognition and clearance of the negatively
charged liposomes by the RES. More recently this same group has
reported the pharmacokinetics of mitoxantrone encapsulated in
sterically stabilized liposomes composed of soy phosphatidyl-
choline (SPC) and cholesterol (Schwendener et al, 1994).
Surprisingly, despite the use of a pH gradient for drug loading,
fairly rapid loss of mitoxantrone from the carrier was observed
with approximately 95% of the injected dose cleared from the
circulation within 2 h. In the present research, therefore, we have
encapsulated mitoxantrone within neutral liposomes composed of
a saturated phosphatidylcholine (DSPC) and cholesterol. These
systems show extended blood residency times. In the case of steri-
cally stabilized liposomes containing a PEG - lipid conjugate, for
example, more than 80% of the lipid and drug are present in the
blood 4 h after injection and, even at 24 h, more than 30% remain
in the circulation.

Whereas enhanced circulation lifetimes may result in greater
tumour sequestration of liposomal drugs (Allen, 1994), this does
not necessarily result in a corresponding increase in drug efficacy.
Sterically stabilized liposomes containing mitoxantrone exhibit
much longer circulation lifetimes than similar systems without a
PEG - lipid conjugate but show no improvement in anti-cancer
efficacy. As discussed recently (Mayer et al, 1994) this observa-
tion illustrates the fact that several factors influence the activity of
liposomal drugs in vivo. Following localization at the tumour site,
for example, it appears unlikely that the drug carrier is directly
internalized by tumour cells. Instead it is believed that drug release
occurs via passive diffusion across the liposomal bilayer or as the
result of carrier processing by macrophages. Free drug would then
be taken up into tumour cells via normal transport mechanisms
(Allen, 1994). The mitoxantrone-loaded liposomes used in the
present study, however, appear to be exceptionally stable.
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Following pH-driven encapsulation at 55°C, no drug release was
observed over 24 h at 37°C and, even when the pH gradient was
collapsed by the addition of nigericin, only low levels of mitox-
antrone leakage occurred over a subsequent 96-h period. While
these in vitro data cannot be directly related to the behaviour of
these liposomal systems in vivo, taken together with the slow rate
of drug release observed from liposomes in the blood and the
strong correlation between mitoxantrone and liposomal lipid
biodistribution, it suggests that, following accumulation within
tumour sites, mitoxantrone release from the carrier may represent
the limiting factor in determining drug efficacy.

In conclusion, we have shown that liposomal encapsulation
significantly reduces mitoxantrone toxicity. This, in turn, allows
administration of higher drug doses, resulting in improved effi-
cacy. In addition, we have demonstrated that sterically stabilized
liposomes containing mitoxantrone exhibit extended blood resi-
dency times compared with conventional systems but that this
does not confer additional benefit with respect to drug efficacy.
This latter observation may reflect a slow or incomplete release of
entrapped mitoxantrone and we are, therefore, presently devel-
oping liposomal systems that will ensure full drug bioavailability
following carrier deposition within the tumour.
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