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Malic enzyme and glucose 6-phosphate dehydrogenase
gene expression increases in rat liver cirrhogenesis

N Sanz, C Diez-Ferncindez, AM Valverde, M Lorenzo, M Benito and M Cascales
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Summary The cirrhogenic ability of thioacetamide has been used to induce a model of chronic generalized liver disease that resembles the
preneoplastic state of human fibrosis. Malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G6PDH) are two cytosolic NADPH-
generating enzymes; their activities significantly increased in liver when macronodular cirrhosis was induced by long-term thioacetamide
administration to rats. The progressive increase in G6PDH and ME activities during the cirrhogenic process is parallel to the induction in gene
expression of both enzymes detected by the increase in their mRNAs. These data indicate that NADPH-consuming mechanisms such as the
microsomal oxidizing system and the maintenance of the cell redox state could be involved. A relationship between the extent of G6PD and
ME gene expression and oxidative stress generated by the oxidative metabolism of thioacetamide is proposed as the hepatic concentration
of malondialdehyde, a metabolite derived from lipid peroxidation, underwent a progressive and significant enhancement during
thioacetamide-induced cirrhogenesis. These results led us to suggest that the enhanced activities of G6PDH and ME might be related to
microsomal mechanisms of detoxification as well as to the maintenance of the cellular redox state. Furthermore, the noticeable increase in
the hepatocyte population involved in DNA replication parallel to G6PDH activity suggests that G6PDH, through ribose-5-phosphate, might
also be involved in the processes of DNA synthesis and repair.
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Long-term administration of thioacetamide to rats induces cirrhosis,
tumours and hepatocarcinoma (Tsukamoto et al, 1990). Attempts
have been made to detect the irreversible stage in the sequence of
events - damage and inflammation -* cholestatic cirrhosis -* hepa-
tocellular carcinoma - as it is well known that cirrhotic livers,
through the emergence of adenomatous hyperplastic nodules, are
considered to be precancerous lesions (Pitot, 1990). Hepatic fibrosis
is related to inflammation of the liver and may eventually constitute
an irreversible process with diffuse parenchymal nodular transforma-
tion, chronic cholestasis and cirrhosis (Desmet, 1992). This model of
hepatic cirrhosis mimics the pathological human hepatic fibrosis and
can be considered as a preneoplastic liver disease (Farber, 1990).

Glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.49) is
a key enzyme that catalyses the first reaction in the pentose phos-
phate pathway, leading to the production of ribose 5-phosphate for
nucleic acid synthesis and reducing power in the form of NADPH
for reductive biosynthesis. Hepatic G6PDH is strongly modulated
in response to external stimuli, such as hormones, growth factors,
nutrients and oxidative stress (Katsurada et al, 1989; Iritani, 1992;
Kletzien and Berdainer, 1993; Tomita et al, 1993). Malic enzyme
(ME) (EC 1.1.1.40), another NADPH-generating enzyme that
catalyses the oxidative decarboxylation of L-malate to yield carbon
dioxide, pyruvate and NADPH, is considered to be a lipogenic
enzyme whose activity correlates with de novo fatty acid synthesis
(Karsurada et al, 1987; Garcia-Jimenez et al, 1994).
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Reducing equivalents generated by the NADP-dependent
systems are involved in three main cellular mechanisms: lipogen-
esis, maintenance of the cell redox state and the microsomal reac-
tions of drug detoxification. The major sources of cytosolic NADPH
are G6PDH and ME (Karsurada et al, 1987; Garcia-Jimenez et al,
1994), and it has been thought that the activities of these two
enzymes are mainly involved in de novo fatty acid synthesis (Iritani,
1992; Tomita et al, 1993). However, the noticeable and progressive
increase in these two enzyme activities in thioacetamide-induced
macronodular cirrhotic liver (Cerdan et al, 1981; Martin-Sanz et al,
1989a; Nozu et al, 1992) was not parallel either to the in vivo lipo-
genesis or to other enzyme activities involved in fatty acid synthesis,
such as ATP citrate lyase, acetyl-CoA carboxylase and fatty acid
synthetase, which decrease significantly during this cirrhogenic
process (Martin-Sanz et al, 1989a). Accordingly, the excess of
NADPH produced by the enhanced activities of G6PDH and ME
could be owing to the requirement of the microsomal mono-oxyge-
nase NADPH-dependent processes (Kletzien et al, 1994) and to the
maintenance of the redox state of the cell.
As the generation of reactive oxygen species and reactive

metabolites by the microsomal oxidizing system is enhanced by
NADPH (Cramer et al, 1993), the relationship between NADPH-
generating systems (G6PDH and ME) and the oxidative stress has
been studied in a macronodular cirrhotic liver induced by chronic
administration of thioacetamide to rats. The induction of G6PDH
activity by agents that induce oxidant stress and lipoperoxidation
(Cascales et al, 1991; Muller et al, 1991; Bautista and Spitzer,
1992) led us to consider that the G6PDH gene responds to the
oxidative attack providing protection in the form of NADPH to
maintain the cellular redox state (Cramer et al, 1993; Kletzien et
al, 1994). G6PDH activity, through the generation of ribose 5-
phosphate, is also involved in nucleic acid synthesis and repair as
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when hepatocyte growth is stimulated, the expression of this
enzyme is also stimulated, favouring NADPH and pentose phos-
phate generation (Yoshimoto et al, 1983; Molero et al, 1994).
NADPH redox systems play an important role in activating and

detoxifying chemical carcinogens (Cramer et al, 1993; Kletzien et
al, 1994), and G6PDH also plays a role in DNA replication and
repair (Yoshimoto et al, 1983; Molero et al, 1994). The purpose of
the present study was to determine G6PDH and ME activities and
gene expression at the mRNA level during the macronodular
hepatic cirrhogenesis induced by long-term thioacetamide admin-
istration to rats. The results obtained in the present investigation
show that the noticeable increases in the activities of both G6PDH
and ME enzymes are due to an enhancement in their respective
gene expression. These values are parallel to the extent of increase
in lipid peroxidation owing to oxidative stress, according to the
hepatic concentration of malondialdehyde and also to the
increased rate of cell proliferation.

MATERIALS AND METHODS

Chemicals

Enzymes were obtained from Boehringer Mannheim (Mannheim,
Germany). Substrates and coenzymes were from Sigma (St Louis,
MO, USA). Standard analytical grade laboratory reagents were

obtained from Merck (Darmstadt, Germany). [x-32P]dCTP (3000 Ci
mmol-') and multiprimer DNA-labelling system kit were purchased
from Amersham. Rat G6PDH cDNA (pKs-G6PDH) and rat ME
cDNA (pME6) were kindly provided by Dr Ho and Dr Nikodem
(Magnuson and Nikodem, 1983; Ho et al, 1988). Cycle-Test DNA
reagent kit was from Becton Dickinson (San Jose, CA, USA).

Animals and treatment

Two-month-old adult male Wistar rats (180-220 g), supplied with
food and water ad libitum and exposed to a 12-h light-dark cycle,
were given intraperitoneally continuous doses, three times every
week, of thioacetamide (2.66 mmol kg-' body weight) freshly
dissolved in 0.9% sodium chloride. To equilibrate the nutritional
intake and the conditions, a parallel group of rats was supplied the
same feeding as that consumed by the thioacetamide-treated rats
on the previous day and were given intraperitoneal injections of
0.5 ml of 0.9% sodium chloride. The nutritional status of the
animals did not essentially change as the daily intake/body weight
ratio remained practically unchanged. Fetuses were obtained from
pregnant albino Wistar rats (300-350 g) by caesarian section in the
morning of the 22nd day of gestation. Gestational state was
checked according to the standard criteria used in previous studies
(Cascales et al, 1992). Each experiment was repeated four times
and followed the international criteria for the use and care of
experimental animals in research. Standards and procedures
outlined in the Guidefor the Care and Use ofLaboratory Animals
prepared by the National Academy of Sciences and published by
the National Institute of Health (NIH publication no. 80-83,
revised 1985) were observed.

Processing of the samples

To follow the time course of the changes induced by the long-term
treatment with thioacetamide, samples were obtained at 0, 7, 15,
30, 45, 60, 90, 120, 150 and 180 days. Rats were cervically dislo-
cated and pieces of approximately 500 mg of liver were quickly

freeze clamped in situ using stainless-steel tongs cooled in liquid
nitrogen and then removed and placed in liquid nitrogen until
processed for Northern blot analysis. A 1-g sample of fresh liver
was homogenized in ice cold solution of 0.25 M sucrose with a
loose-fitting Teflon glass Potter-Elvehjem homogenizer to make
a 20% (w/v) homogenate; the homogenate was centrifuged at
105 000 g for 45 min at 4°C, and the supernatant (soluble fraction)
was dialyzed for 2 h (Dfez-Fermandez et al, 1993).

Histopathological study
For histopathological investigations, pieces of liver obtained from
rats at 6 months (180 days) of continuous thioacetamide exposure
were fixed in 10% formaldehyde, embedded in paraffin, sectioned
(5 ,um) and stained with Masson's trichrome (Luna, 1968).

Isolation of hepatocytes and flow cytometry analysis
Hepatocytes were isolated according to the classic collagenase
perfusion method. Fetal hepatocytes were obtained from 22-day
fetuses after digestion of the fetal liver with collagenase (Martin-
Sanz et al, 1989). Cell viability, determined by trypan blue exclu-
sion, was greater than 90%.

For the analysis of DNA content, 1 x 106 viable cells were
stained with propidium iodide following the multistep procedure
of Vindelov et al (1983). The emitted fluorescence of the DNA-
propidium iodide complex was assayed in a FACScan flow
cytometer (Becton-Dickinson). A double discriminator module
was used to distinguish between signals coming from a single
nucleus and those produced by nuclear aggregation. Data were
analysed by evaluating single-nucleus inputs (104 nuclei per assay).

Enzyme activities and metabolite assays

Enzymatic determinations were carried out in the soluble fraction
of liver homogenates in the optimal conditions of pH and temper-
ature and with substrates and cofactors at saturation. Glucose-6-
phosphate dehydrogenase was determined spectrophotometrically
at 340 nm in the presence of glucose-6-phosphate and NADP
(Deutsch, 1987), and malic enzyme activity was assayed in the
same fraction in the presence of malate and NADP by the method
already described (Outlaw and Springer, 1987). Malondialdehyde
was determined in liver extracts by homogenizing the samples in
three volumes of 0.1% trichloroacetic acid and centrifugation at
15 000 g for 10 min. Aliquots of the supernatant were added
to thiobarbituric acid reagent (5% thiobarbituric acid in 20%
trichloroacetic acid) and heated at 90°C for 15 min. Samples were
centrifuged and the absorbance was measured in the supernatant at
535 nm. The results were expressed as nanomoles per gram of
liver as previously described (Niehaus et al, 1969). Proteins were
evaluated by the method of Bradford (1976).

Northern blot analysis

A 50-mg sample of liver was lysed with guanidinium thio-
cyanate-phenol reagent for RNA isolation (Chomezynski and
Sacchi, 1987). Total cellular RNA (20 ,ug) was submitted to
Northern blot analysis, being electrophoresed on 0.9% agarose gels
containing 0.66 M formaldehyde, transferred to GeneScreenTM
membranes (New England Nuclear Research Products, Boston, MA,
USA) using a VacuGene Blotting apparatus (LKB, Pharmacia,
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Figure 1 Histopathological study of rats liver after 180 days of long-term
thioacetamide treatment. Liver slices of 5 gm were obtained from a rat
injected with thioacetamide (2.66 mmol kg-') three times per week for 180
days and stained with Masson's trichrome (Luna, 1968). Fibrous septa of
collagen develops from two close portal terminals with some haemorrhagic
zones. Nodules of different sizes can also be observed, inside which fibrous
septa and proliferative ductular cells can be detected. Hepatocytes inside the
nodule are swollen and with hypertrophic nucleoli (bar = 50 jim)

Upsala, Sweden) and cross-linked to the membranes by UV light.
Hybridization was in 0.25 mm sodium phosphate pH 7.2, 0.25 M
sodium chloride, 100 ,ug ml' denatured salmon sperm DNA, 7%
sodium dodecyl sulphate (SDS) and 50% deionized formamide,
containing denatured 32P-labelled cDNA (106 c.p.m. ml-') for 40 h at
420C as described previously (Amasino, 1986). cDNA labelling was
carried out with [a-32P]dCTP to a specific activity of 109 c.p.m. jg-I
of DNA by using a multiprimer DNA-labelling system kit
(Amersham, Buckinghamshire, UK). For serial hybridization with
different probes, the blots were stripped and rehybridized sequen-
tially as needed in each case. The resulting membranes were
subjected to autoradiography for 1-3 days. Relative densities of the
hybridization signals were determined by densitometric scanning of
the autoradiograms in a laser densitometer (Molecular Dynamics,
Sunnyvale, CA, USA). Finally, the filters were hybridized with a
18S rRNA probe for RNA normalization. The analysis of the
Northern blot was performed in duplicate from two livers. The vari-
ability in the measurement of mRNA, after quantification by scan-
ning densitometry from the filters, was not greater than 15%.

Statistical analysis

Student's t-test was performed for statistical evaluations. The
statistical significance has been considered as P<0.001.

RESULTS

Hypertrophic cirrhosis is characterized by the appearance of nodules
surrounded by fibrous septa of collagen. In our experiments,
macronodular cirrhosis was induced by long-term thioacetamide
administration, and the histopathological analysis was performed in
liver from a rat after 6 months' (180 days) treatment. Figure 1 shows
the morphology of a liver slice stained with Masson's trichrome.
Fibrous septa of collagen appear between every two adjacent portal
terminals surrounding the hepatic parenchyma. Some haemorrhagic
zones can be observed. Nodules of different sizes are responsible for
the liver appearance and the hepatocytes inside show hypertrophic
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Figure 2 Time course of the levels of malondialdehyde in rat liver extracts
during the long-term thioacetamide intoxication. The values are expressed
as nmol g liver' and are the mean ± s.d. of four experimental observations.
* 0, control; A - -- A, thioacetamide. *P < 0.001 vs control

nucleoli. These characteristics, typical of the macronodular hyper-
trophic cirrhosis, resemble human cirrhosis and are included in the
process of preneoplastic liver disease. According to Becker (1983)
and Tsukamoto et al (1990), following thioacetamide treatment for 6
months the liver shows advanced septal fibrosis and ductal prolifer-
ation giving rise to the histological appearance of cirrhosis. The
ductal proliferation is one of the first signs of cholangiofibromas
and cholangiocarcinomas.

In order to detect whether the hepatic metabolism of thio-
acetamide, in our experimental conditions, produces oxidative stress
and lipid peroxidation, malondialdehyde (MDA) concentration was
determined in liver during the cirrhogenic process. Figure 2 shows
the concentration ofMDA in liver extracts obtained from rats during
the long-term thioacetamide treatment. MDA increases progres-
sively, reaching at day 45 of the treatment 2.5 ± 0.2 times (P<0.001 )
the value of the time-matched controls. From this point until the end
of the experiment, hepatic concentration of MDA was maintained
between 2.5 and 2.8 times above the control. Samples obtained from
control rats did not show significant variations with time.

Because the coordinated cellular response to oxidant stress
involves a higher requirement of the cell reducing power, the
systems that generate reducing equivalents are expected to be
enhanced. Accordingly, the time course of G6PDH and ME activi-
ties was assayed in the soluble fraction of liver homogenates
obtained from rats during long-term thioacetamide treatment.
These results are summarized in Figure 3, which shows that the
activities of both enzymes, G6PDH and ME, rose progressively
and statistically significantly, reaching at the end of the treatment
values of 389 ± 29% (P<0.001) and 230 ± 20% (P<0.001),
compared with the chronological controls, respectively. These
values show that the increase in G6PDH activity is noticeably
higher than that of ME. G6PDH and ME activities in controls
showed no significant changes, and no age effects throughout the 6
months of the treatment could be detected. Fetal G6PDH and ME
activities were assayed in the soluble fraction of liver homogenates.
Fetal G6PDH activity was 64 ± 5.1 nmol min-' mg protein-', which
exceeds by 2.5 fold the value for an adult (266 ± 29%, P<0.00l).
However, fetal ME activity was undetectable as this activity is
induced in the suckling-weaning transition (Molero et al, 1994).
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Figure 3 Time course of G6PDH and ME enzyme activities in the soluble
fraction of rat liver during the cirrhogenesis induced by thioacetamide. The
results are expressed as m-units (nmol min-') mg protein-' and are means
+ s.d. of four experimental observations. 0 0, control; A --- A,
thioacetamide. *P < 0.001 vs control

The increased activities of G6PDH and ME during the thioac-
etamide-induced cirrhogenesis process described above led us to

study the expression of G6PD and ME genes. Figure 4 illustrates
the Northern blot analysis of the mRNA content of G6PD and ME.
Two isoforms of the malic enzyme mRNA (4.5 kb and 2.7 kb)
were found in liver (Dozin et al, 1985). The relative levels of the
mRNA were 1:4 respectively. A single form of 2.3 kb was found
for G6PD mRNA. Gene expression of these enzymes increases
remarkably with time in the cirrhogenic model, the elevation of
G6PD being about twice that of ME.

Considering the enhanced activities of G6PDH and its involve-
ment, through the generation of pentose phosphates, in de novo

nucleic acid synthesis and cell growth, we studied the extent of
DNA replication by means of flow cytometry in isolated hepato-
cytes obtained during cirrhogenesis. The yield in hepatocytes from
thioacetamide-treated liver was approximately 40-60% that of the
control liver. Table 1 shows the time course of the hepatocyte
population in S-phase of the cell cycle. The values are expressed
as the percentage of the cells in the proliferative state. Most of the
hepatocytes in normal liver are in a quiescent state, and only about
1% undergo DNA replication. However, when an aggressive
attack occurs and cells die, the remaining cells dedifferentiate and
divide. These events have been recently studied in acute thioac-
etamide intoxication (Diez-Fernandez et al, 1993), in which cell
necrosis is followed by cell proliferation. In the present investiga-
tion, in chronic macronodular cirrhosis, replication of DNA
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Figure 4 Northern blot analysis of G6PD and ME mRNA in liver of rats
during long-term thioacetamide treatment. (A) A representative Northern blot
with a 1 8S rRNA probe for RNA normalization (N). RNA were isolated from
livers from control and TAM-treated rats at 7 (1 and 8), 30 (2 and 9), 60 (3
and 10), 90 (4 and 11), 120 (5 and 12), 150 (6 and 13) and 180 (7 and 14)
days respectively. The relative sizes are shown on the right. (B)
Quantification of the G6PD and ME mRNAs, after correction with 18S rRNA;
each TAM value is expressed with respect to its control from two independent
experiments. *, G6PD; FZ, ME. The data are means and standard deviation.
*P<0.001 vs control

Table 1 Quantitative analysis of hepatocyte population in S-phase (Si + S2)
of the cell cycle

Phase S
Treatment (days) (Si + S2)

Control Thioacetamide

Fetala 7.3±1.0
Ob 1.1±0.1 -
7 1.5+0.2 1.9+0.2
30 1.6+0.2 6.2+1.0*
60 1.3±0.1 4.8+0.5*
90 1.3±0.1 3.7+0.4*
120 1.3±0.1 3.9±0.4*
150 1.4+0.1 3.8+0.4*
180 1.6±0.2 3.2+0.4*

The values are expressed as the hepatocyte population (%) in Si + S2
phases that corresponds to cells synthesizing DNA from Gi to G2 (2N - 4N)
and (4N -- 8N). Results are the mean + s.d. of four experimental
observations. *P <0.001. aFetal liver cells were obtained from fetuses after 22
days of gestation. bTime 0 refers to untreated 2-months-old rats (180-200 g).
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increased markedly. The extent of hepatocyte population involved
in DNA synthesis was significantly enhanced from 30 days; partic-
ularly remarkable were the values obtained at 30 days, in which
the population of hepatocytes that underwent DNA synthesis was
increased almost fourfold. These peaks of DNA replication coin-
cide with peaks of necrosis described in previous studies (Sanz et
al, 1995). The population in the S-phase in samples obtained from
controls showed a slight increase which may be due to the stress
produced by the intraperitoneal injection three times per week of
0.9% sodium chloride.

DISCUSSION

Chronic liver disease due to cirrhosis is usually accompanied by
metabolic alterations affecting energy homeostasis (Nozu et al,
1992). Thioacetamide chronic administration to rats induced the
expression of G6PD and ME in the liver throughout the 6 months'
treatment. Parallel increases in both specific activity and mRNA of
ME and G6PDH were observed. The higher expression of G6PD
mRNA in comparison to that of ME may be a consequence of the
dual role played by G6PDH in providing both reducing equiva-
lents for detoxifying microsomal oxidation and pentose phosphate
for DNA synthesis and repair.
The continuous treatment with thioacetamide produced an

imbalance in the redox state of the cell (Tsukamoto et al, 1990),
which induced lipid peroxidation. Our data demonstrate that the
concentration of hepatic MDA, a metabolite generated in lipoper-
oxide degradation, was significantly enhanced. Therefore, a close
alliance can be observed between the extent of intracellular MDA
level and the induction of G6PDH and ME enzyme activities.
The lack of parallelism between the in vivo lipogenesis (Martin-

Sanz et al, 1989a) and the remarkable induction of ME gene
expression in liver from our chronic experimental model of thioac-
etamide-induced cirrhosis suggests that ME activity is involved in
cellular processes other than lipogenesis. It has been shown
(Yoshimoto et al, 1983) that ME gene expression in primary
cultures of adult hepatocytes does not respond to the mitogenic
effects of growth factors (EGF), which seems to indicate that ME
activity is not involved in the mechanisms responsible for DNA
replication. Thus, the progressive increase in ME mRNA found in
our experiments may be due to an involvement of this enzyme in
the microsomal biotransformation of drugs and the induction of its
expression may be, therefore, a consequence of the cell require-
ment of reducing power against the oxidative stress. The increased
expression of mRNA ME may also be relevant in producing pyru-
vate, which can be required in chronic diseases and in tumour cells
(Loeber et al, 1994).

There are several reports (Lorenzo et al., 1989; Iritani, 1992;
Tomita et al, 1993; Garcia-Jinenez et al, 1994) demonstrating that
ME acts mostly in lipogenesis, whereas G6PDH functions both in
cell growth and in lipogenesis (Yoshimoto et al, 1983). Under
proliferative conditions, both in fetal hepatocytes (Molero et al,
1994) and in primary cultures of mature liver cells, it has been
shown that the expression of G6PD is markedly induced without
changes in ME expression (Stanton et al, 1991). These data,
together with those obtained in the present study, suggest that the
glucose channelled into fatty acid and pyruvate synthesis
decreased in rat liver during the development of liver cirrhosis,
while the glucose channelled to pentose phosphates and reducing
equivalents increased to favour DNA synthesis and repair and
detoxification reactions. Thus, it is proposed that increases in

DNA synthesis in liver of rats with hypertrophic macronodular
cirrhosis induced experimentally are parallel to a channelling of
glucose towards NADPH and pentose phosphate generation and
depend on the expression of G6PD. Increases in G6PDH have
been reported in preneoplastic and experimental lesions in rat liver
induced experimentally. An increased use of NADPH decreases
the NADPH/NADP ratio, accelerating carbon flow through the
pentose phosphate pathway (Kletzien et al, 1994).
We can conclude from our experiments that the quantitative

differential increase in the activity of these two enzymes could be
a consequence of the dual role played by G6PDH either providing
NADPH for microsomal detoxifying mechanisms or providing
ribose 5-phosphate for DNA synthesis and repair, while ME is
mainly involved in detoxification. Furthermore, our results show
that the oxidant stress due to the oxidative biotransformation of
thioacetamide and detected by the levels ofMDA are in agreement
with the increased expression both ofG6PD and ME. The response
of each of these two enzymes to the oxidative stress is parallel to
their relative rates of gene expression as there is a close relation-
ship between the elevation in the enzyme activities and the amount
of mRNA of each enzyme.

In summary, the present results suggest the involvement of
G6PDH and ME in the mechanisms of hepatic detoxification. The
extent of the contribution of these enzymes to xenobiotic bio-
transformation is as yet unknown, but our results provide further
information regarding NADPH-generating systems which seem
to display a gene adaptative response to the oxidative stress in
the liver.
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