Additional File

Title: Supporting materials for the study.

Sequences used in this study.

Protein	Taxon	Sequence Accession Number
WECE	Seculamonas ecuadoriensis	<u>EC816654; EC816654</u>
	Jakoba bahamiensis	<u>EC686674, EC685007, EC684822</u>
	Sawyeria marylandensis	<u>EC826207</u>
MVIM	Karlodinium micrum	<u>EC160173</u>
	Jakoba bahamiensis	<u>EC687464, EC685628</u>
	Sawyeria marylandensis	<u>EC825128</u>
Epimerase	Phytophthora ramorum	jgi Phyra1_1 73107 fgenesh1_pg.C_scaffold_2000172*
	Thalassiosira pseudonana	jgi Thaps3 35046 e_gw1.6.331.1*
	Giardia lamblia	<u>XP_769114</u> , <u>AAO39053</u>
	Spironucleus barkhanus	<u>ABI15605</u>
CAS -like	Karlodinium micrum	EC156868, EC158513, EC148099, EC160669
	Alexandrium tamarense	<u>CK784871</u>
	Emiliania huxleyi	<u>CF753752</u>
	Isochrysis galbana	<u>EC140831</u>
	Chlamydomonas reinhardtii	jgi Chlre3 127464 estExt_gwp_1H.C_20095*
	Ostreococcus lucimarinus	jgi Ostta4 35883 1200010181*
	Ostreococcus tauri	jgi Ost9901_3 26795 eugene.1200010140*
MQO-DH	Karlodinium micrum	EC161113, EC156079, EC151820
	Alexandrium tamarense	<u>CF948531, CV554334</u>
	Heterocapsa triquetra	<u>DT382779</u>
	Emiliania huxleyi	<u>CX779033</u>
MQO-A	Plasmodium yoelii	<u>EAA17232</u>
	Plasmodium berghei	<u>CAH94470</u>
	Plasmodium chabaudi	<u>XP_742339</u>
	Plasmodium falciparum	<u>CAG25406</u>
	Toxoplasma gondii	<u>ABE76504</u>
	Eimeria tenella	<u>CAK51433</u>
mtMDH	Karlodinium micrum	<u>EC154776</u>
	Alexandrium tamarense	<u>CK784465</u>
	Isochrysis galbana	EC147060, EC147055
cytMDH	Isochrysis galbana	EC143180, EC146073
	Pavlova lutheri	EC176556, EC176389, EC176299
NADP- IDH	Karlodinium micrum	EC155818, EC150415
	Alexandrium tamarense	CK433031, CK784788, CK783806
	Amphidinium carterae	<u>CF065460, CF064816</u>
	Heterocapsa triquetra	<u>DT385947, DT385631</u>

	Lingulodinium polyedrum	<u>BP743001</u> , <u>CD809840</u>
	Phaeodactylum tricornutum	jgi Phatr2 34602 fgenesh1_pg.C_chr_5000402*,
		jgi Phatr2 45017 estExt_fgenesh1_pg.C_chr_50402*
	Thalassiosira pseudonana	jgi Thaps3 1456 fgenesh1_pg.C_chr_1000590*
	Isochrysis galbana	<u>EC138409</u>
FE-ADH	Naegleria grubery	jgi Naegr1 56035 estExt_fgeneshHS_kg.C_70004*
PutA	Karlodinium micrum	<u>EC155616</u>
	Phaeodactylum tricornutum	jgi Phatr2 21068 estExt_gwp_gw1.C_chr_110150*
	Phytophthora ramorum	jgi Phyra1_1 71205 fgenesh1_pm.C_scaffold_8000011*
	Jakoba libera	<u>EC693135</u>
	Seculamonas ecuadoriensis	<u>EC816325</u>
	Physarum polycephalum	<u>EC757810</u>
	Cyanidioschyzon merolae	gnl CMER CMR066C**
	Chlamydomonas reinhardtii	jgi Chlre3 24394 estExt_fgenesh1_pm.C_440003*
	Ostreococcus tauri	jgi Ostta4 28991 estExt_gwp_GeneWisePlus.C_Chr_10.00
		<u>010194</u> *
PBPb	Karlodinium micrum	<u>EC150730</u>
	Alexandrium tamarense	<u>CF948337</u>
	Emiliania huxleyi	<u>EG034291</u>
	Isochrysis galbana	<u>EC139997</u>
	Phaeodactylum tricornutum	jgi Phatr2 34826 fgenesh1_pg.C_chr_6000199*
	Euglena gracilis	<u>EC676369</u>
SIR2	Sawyeria marylandensis	<u>EC825857</u>
	Acanthamoeba castellanii	<u>EC105362</u>
	Phaeodactylum tricornutum	jgi Phatr2 36942 fgenesh1_pg.C_chr_11000295*
	Thalassiosira pseudonana	jgi Thaps3 269475 estExt_thaps1_ua_kg.C_chr_100004*
	Chlamydomonas reinhardtii	jgi Chlre3 113408 e_gwW.4.63.1
AslA	Alexandrium tamarense	<u>CK785860</u>
ATS1	Karlodinium micrum	<u>EC159487, EC155725, EC159597, EC159682, EC158675</u>
	Amphidinium carterae	<u>CF065437</u>
	Lingulodinium polyedrum	<u>BP742850</u>
COG3618	Alexandrium tamarense	<u>EC154481</u>
	Karlodinium micrum	<u>CK431462</u>
COG3022	Alexandrium tamarense	<u>CK785470</u>
	Lingulodinium polyedrum	<u>BP743223</u>
EF2	Karlodinium micrum	<u>EC160362</u> , <u>EC159484</u> , <u>EC152658</u>
	Alexandrium tamarense	<u>CK782463</u>
	Amphidinium carterae	<u>CF065997, CF067005</u>
	Heterocapsa triquetra	<u>DT385971, DT385641</u>
	Lingulodinium polyedrum	<u>BP743144</u>
	Pyrocystis lunula	<u>BU582439</u>
	Paramecium tetraurelia	scaffold_151
	Isochrysis galbana	EC145862, EC143408, EC143130

	Pavlova lutheri	<u>EC177146, EC177552, EC176343</u>
	Phytophthora ramorum	jgi Phyra1_1 71206 fgenesh1_pm.C_scaffold_8000012*
	Phytophthora sojae	jgi Physo1_1 109259 estExt_fgenesh1_pm.C_810006*
	Thalassiosira pseudonana	jgi Thaps3 269148 estExt_thaps1_ua_kg.C_chr_60290*
	Jakoba libera	EC692709, EC692770, EC690987
	Cyanophora paradoxa	EC660009, EG946313, EG944985, EG946356
	Glaucocystis	<u>EC124674</u>
	nostochinearum	

Note: All sequences except for the sequences labeled with "*" and "**" are available from the GenBank nonredundant data base and dbEST (<u>http://www.ncbi.nlm.nih.gov/</u>). Sequences labeled with "*"are available from the DOE Joint Genome Institute (JGI) (<u>http://www.jgi.doe.gov/</u>); "**" – from the *Cyanidioschyzon merolae* Genome Project database (<u>http://merolae.biol.s.u-</u> <u>tokyo.ac.jp/</u>

Origins of iron-containing alcohol dehydrogenase (Fe-ADH) and NAD-dependent aldehyde dehydrogenase (PutA) in eukaryotes by multiple HGTs

A. ML tree of Fe-ADH. **B.** ML tree of PutA. The numbers above and below the branches are the results of ML and NJ bootstrap analyses, respectively. Only bootstrap values $\geq 60\%$ are shown. The thick branches indicate ≥ 0.96 posterior probability from Bayesian inference. Branch lengths are proportional to the number of substitutions per site (see scale bars). CH and brawn color indicate a supergroup Chromalveolata; EX and blue color indicate a supergroup Excavata. Red color indicates Opisthokonta, pink – Amoebozoa, green – Plantae.

A. PBPb

Origins of substrate-bound periplasmic binding protein (PBPb) and silent information regulator 2 (SIR2) in protists

A. ML tree of PBPb. **B.** ML tree of SIR2. The numbers above and below the branches are the results of ML and NJ bootstrap analyses, respectively. Only bootstrap values $\geq 60\%$ are shown. The thick branches indicate ≥ 0.96 posterior probability from Bayesian inference. Branch lengths are proportional to the number of substitutions per site (see scale bars). Short abbreviations and the color scheme are as above.

Horizontal gene transfer from bacteria to dinoflagellates

ML trees of: **A.** Arylsulfatase A (AslA). **B.** COG3129-like protein. **C.** Alpha-tubulin suppressor protein (ATS1). **D.** Pyridoxal phosphate biosynthetic protein PdxA. **E.** COG3618-like protein. **F.** COG3022-like protein. The numbers above the branches are the results of ML bootstrap analyses. Only bootstrap values $\geq 60\%$ are shown. Branch lengths are proportional to the number of substitutions per site (see scale bars). Short abbreviations and the color scheme are as above.