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Li et al., Supplementary Material 
 

1) Anatomy 
 
Table showing distribution of axons and dendrites of different neuron types. 
The cord is divided dorso-ventrally into 10% bins. The table then shows the 
probability of axons and dendrites of neurons of each type occupying each of these 
bands.   
 

axons RB dlc aIN cIN dIN mn 

position %       
100 0.10 0.00 0.00 0.00 0.00 0.00 
90 0.23 0.00 0.03 0.00 0.00 0.00 
80 0.29 0.00 0.08 0.00 0.00 0.00 
70 0.27 0.03 0.15 0.03 0.01 0.00 
60 0.07 0.13 0.18 0.11 0.14 0.00 
50 0.00 0.12 0.21 0.17 0.15 0.00 
40 0.00 0.26 0.23 0.22 0.43 0.00 
30 0.00 0.26 0.06 0.22 0.18 0.15 
20 0.00 0.17 0.04 0.17 0.09 0.72 
10 0.00 0.04 0.01 0.08 0.01 0.13 

n = 10 10 10 9 10 11 

dendrites  dlc aIN cIN dIN mn 
position %       

100  0.10 0.00 0.00 0.00 0.00 
90  0.80 0.20 0.00 0.10 0.00 
80  0.90 0.30 0.00 0.20 0.00 
70  0.60 0.40 0.22 0.60 0.09 
60  0.40 0.70 0.67 0.70 0.27 
50  0.10 0.90 0.78 0.70 0.64 
40  0.00 1.00 0.89 0.80 0.91 
30  0.00 0.90 0.56 0.40 1.00 
20  0.00 0.90 0.44 0.20 1.00 
10  0.00 0.80 0.00 0.10 0.82 

n =  14 10 9 10 11 

 

2) Modelling axon growth 
 
A. Introduction 
 
The traditional approach to modelling axon growth is based on the idea that the 
growth cone follows different molecular gradients (Goodhill et al., 2004; Krottje and 
van Ooyen, 2007). Here we do not consider the details of growth cone navigation in 
steep and shallow chemical gradients; instead we build a simple computational 
model reflecting several key attraction and repulsion processes guiding the axon 
development. As specified in the main text, the model is described by a dynamical 
system with a random variable (see equations (1), (2) and (4)) and includes four 
parameters.  
 
In this Appendix we will describe the optimization procedure which allows us to find a 
set of optimal parameter values. As usual optimality means minimising a cost 
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function. Thus, starting from discussion of parameters we will define the cost function 
which measures the similarity between experimental axon measurements and model 
generated axons, describe the optimization procedure which minimises the cost 
function and provides the best similarity of experimental and generated model axons, 
report the optimal parameter values for each neuron type, and demonstrate that 
optimal parameter values allow us to generate model axons which are similar enough 
to the biological axons measured in experiments (testing procedure). 
 
B. Model explanation 
 
Experimental measurements have been made for different tadpoles with different 

spinal cord heights which are about 100 µm. To reflect that in the model, we consider 
axon growth in one side of the spinal cord represented as a rectangle with some 
height H randomly chosen in the range of admissible biological height values (about 

100 µm)  and length W= 1000 µm (this length is the same for all model simulations, 
therefore, when an experimental axon is longer than W , this axon was cut to have 

length exactly W= 1000 µm). Thus, we consider the rectangle H x W and growing 
axons are allocated inside of this field. To start an axon simulation we need to 
choose the initial position of the axon and initial angle, after that a process of axon 
generation is governed by model equations (1), (2), (4) described in the main text.  
 
Developing the model equations, we implicitly assume that chemical gradients 
experienced by the growth cone are exponential, which for a single gradient would 
produce a constant rate of turning independent of the location within the gradient (but 
not independent of the current growth angle). The dependence of axon growth angle 
on dorso-ventral position (note, that dorso-ventral axis corresponds to vertical axis 
(height) of the rectangle and longitudinal location is considered to lie along the 
horizontal axis (length) of the rectangle) that we observe is assumed to be the 
consequence of interaction between at least two gradient-following processes: the 
noise in the axon growth angle and the tendency to grow towards some particular 
location. The noise component describes a random deviation of the current angle 
from deterministic component (see equation (4)). Thus, the noise component is a 

random variable uniformly distributed in the interval (-α, α), where parameter α  
defines the boundary for the angle deviation (Fig. S1). Thus, the noise is modelled by 
a uniformly distributed random variable with mean equal to zero and variance equal 

to 3/2α . 
 

A x t ,y(t))( ( ) α

Length

Height (dorso-ventral position)

B x t+1 y t+( ( ), ( 1))

C( ( ), ( ))x t+2 y t+2

 
Fig. S1. The deterministic direction of growth is shown by black line connecting point 
A and the yellow dot. The angle specifies boundaries of random deviation. The red 
line shows the chosen direction of growth for the next time step.   
 

The parameter γ represents the tendency of the axon to turn towards an angle of 0 
degrees – in other words the tendency of the growth cone to orient towards 



 3

longitudinal growth. If γ  is zero (see equation (3) in the main text) then the 
deterministic part of the growth angle is not changed at each time step and random 

deviation applies to this direction. When 0< γ <1, the deterministic component of the 
growth angle will decay to zero.  This part of the model can be justified by 
experimental findings which show that this orienting process towards zero angle is 
dependent on the current deviation from longitudinal growth – the steeper the current 
growth angle, the stronger the tendency to straighten towards horizontal growth. The 

effect of parameter γ can also be interpreted as the consequence of a longitudinal 
gradient-following process, which would be expected to produce the same 
dependence on growth cone angle. 
 
The parameter y  represents the dorsoventral position of an attractor to which axon 

trajectories are drawn with a strength which can be described by parameter µ (see 
equation (4)). Thus, parameters µ and y  characterise the interaction between two 

opposing gradient-following processes. The parameter y  is the dorsoventral position 

at which these processes effectively cancel each other out. The parameter  µ 
represents the strength of the net attraction towards y .  The effects of these 

parameters can be interpreted as a system with two repulsive gradients, one pushing 
from the ventral side to the dorsal direction (we know that there is some drive here at 
least with the commissural neurons) and one pushing from the dorsal side to the 
ventral direction.  The relative sensitivity of the axon to these two gradients would 
determine the value of the parameter y  and the absolute sensitivity of the growth 

cone to ligands would determine the value of the parameter µ. 
 
C. Preparation for optimization 
 
Our goal is to simulate an axon growth process which can generate axons that are 
similar to biological axons which are measured experimentally. Similarities are 
measured using a cost function with two components: 1) similarity of distributions of 
axon projections in the dorso-ventral dimension and 2) similarity of tortuosities. Thus, 
the optimization procedure looks for a set of values of the four model parameters 
which provide the minimum cost function. Below we formulate the optimization 
procedure in detail. 
 
The available experimental data provide measurements of spinal cord axons for each 
neuron type in both descending and ascending directions when both are present. We 
will consider aIN ascending axons as an  example to demonstrate how the 
optimization procedure works. Available experimental data provide measurements of 
10 axons from different tadpoles. The longitudinal dimension in the model was 

always 1000 µm however axons can be shorter or longer than this full length. 
Experimental measurements of dorso-ventral axon position (in micrometers) were 

made every 50 µm. An example of a measured axon is shown in Fig. S2. The 

horizontal red line (y=94.7 µm) shows dorso-ventral height boundary of the spinal 
cord and the vertical red line shows the longitudinal boundary of considered spinal 
cord measurements.  
 
The next step is the projection of axon measurements in the dorso-ventral direction 
and the calculation of the distribution of these projections. Because the dorso-ventral 
height of the rectangles varies for different axons extracted from tadpoles with 
different length of the spinal cord, we normalise axon coordinates before projecting 
them. Thus, we normalise both axes by dividing both vertical and horizontal axon 
coordinates by the dorso-ventral height of the spinal cord (in this example the height 

H=94.7 µm). Division of both coordinates allows us to keep the angle structure 
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unchanged. Of course, after this transformation a step along the horizontal axis will 

be different from 50 µm however the image representation will be the same.  
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Fig. S2. An example of axon measurements 
 
After normalization we project all aIN ascending axon data to the vertical axis and 
repeat this procedure for each axon. The total number of axon measurements is 

)167( =ee nn  and these data represent the dorso-ventral distribution of axon 

measurements in the interval 0-100. We divide this interval into 10 bins, count the 
number of measurements in each bin, and normalize it by the total number m to get a 
probability of finding an axon measurement in the bin. The resulting distribution is 
shown in Fig. S3.  
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Fig. S3. An example of the distribution of measured D-V coordinates for aIN 
ascending axons.   
 
Moreover, we would also like the cost function to take into account the extent to 
which the path of the axon is circuitous rather than direct. Results from multiple 
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model simulations suggest that tortuosity (total path length divided by straight line 
distance between start and end points) is an appropriate measure for this purpose. 
Thus, we calculate the tortuosity of each axon using the following formula: 
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where kiyx ii ,...,1,0,),( =  are measured coordinates of the axon, and k is the 

number of measurements for the axon. After that we calculate the average tortuosity 

of experimental axons eT . 
 
Now we would like to describe the process of axon generation. Suppose that values 
of the four parameters of the model are known,  then we can start the process of 
axon generation described by equations (1), (2), and (4) in the main text. For that we 
need to choose initial values for variables of the dynamical system, i.e. coordinates of 

the starting point of the axon ),( 00 yx  and the initial growth angle 0θ . Also, we need to 

fix the length of the generated axon.  
 
For generation of all axons we choose the same initial point in the horizontal axis: 

00 =x . To choose the initial value of the vertical coordinate, we first calculate the 

sample distribution (10 bins for 0-100 interval) of normalised initial vertical 
coordinates of all experimentally measured axons and generate a random number 

ran according to this distribution, thus, rany =0 . After that, to choose the initial 

angle, we consider the bin of distribution where ran is and study initial angles 

qηη ,...,1  of axons which have the vertical coordinate of their starting point in this bin. 

We generate uniformly distributed random angle η  in the interval 

)),...,max(),,...,(min( 11 nn ηηηη  and the initial growth angle ηθ =0 . Similarly, for the 

axon length we build the distribution of experimental axon length and generate the 
random number according to this distribution. Also, we use the same procedure to 
generate dorso-ventral height of the spinal cord: we build the distribution of 
experimentally measured dorso-ventral heights and generate the random number 
(ran_height) according to this distribution; thus, we have chosen the rectangle 
(ran_height x 1000) where all model generated axons will be allocated, i.e. we use 
the same rectangle to generate several axons and allocate them to the same 
rectangle.  
 
After fixing all initial values and axon length we run the system of difference 
equations (1), (2), (4) in the main text and generate an axon. For axon generation we 

use step ∆ = 1 µm. To get generated axon data similar to the experimental 

measurements we sample model axon coordinates every 50 µm and use these 
sampled data for the following procedures:  projection of axons, building D-V 
distribution, calculation of  tortuosity, etc. Fig. S4 shows an example of a generated 
model axon for the optimal parameter values fitted to aIN ascending experimental 

measurements. Green line shows generated model axon with 1 µm step, markers 

show measurements at 50 µm steps along the horizontal axis, the same sampling as 
in experiments. The lower panel of Fig. S4 shows the same generated axon in the 
“correct” scale where vertical and horizontal axes are proportional and angles are not 
distorted.  
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Fig. S4. Example of generated axon for optimal parameter values of aIN ascending 
neuron type. Green line shows generated axon and red line shows approximation 

with 50 µm sampling along the horizontal axis. Lower panel shows the same axon 
with proportional axes. 
 
It is important to note that the procedure for choosing initial values and axon length 
involves generating random numbers. This means that repetition of the same 
procedure will result in the generation of a different axon with different initial values 
and a different length. Thus, we repeat this procedure r times (r =70), generate r 
axons allocated inside the same rectangle, and calculate the dorso-ventral 
distribution (10 bins for 0-100 interval) of all vertical coordinates of all generated 

axons. This distribution we denote by ),...,( 101

mm
yy , and the total number of 

coordinates used for calculation of the distribution is mn  (index m here means relates 

to ‘model’). Also, for each model axon we calculate the tortuosity and find the 

average tortuosity of generated axons mT .  
 
Now we can define the cost function which includes both similarity of distributions 
and similarity of tortuosities. To measure similarities of distributions we use a sum of 
squared differences between experimental and modelled distributions. To make a 
guess about possible values of such a sum, we would like to use normalization which 
is traditionally used in statistics for comparing distributions and representations of 
random variables with chi-square distribution. Thus the first term of the cost function 
is: 
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where
e

iy , 
m

iy  are projection counters for bin i for experimental and model results 

respectively, 10,...,1=i , en and mn  represent the numbers of experimental and model 

results respectively. 
 
It is known in statistics that the upper boundary of 95% confidence interval for 
hypothesis testing about similarity of two distributions is 3.9. Thus, this value can 
serve as guidance for understanding the scale of cost function values and judging the 
quality of the optimization process.  
 
The second term of the cost function is the squared difference between average 

experimental tortuosity eT and average model tortuosity mT . The two terms of the 
cost function have very different scales and to balance them we consider a weight 
coefficient w  which makes these terms consistent and with values in the same 

interval. Thus, the final expression for the cost function is: 
 

2

cos )( me

chit TTwff −+= ,  

where 
510=w .  

 
It is worth noting that the cost function includes a stochastic component, therefore, 
repeated calculation for the same parameter values will always result in different 
values of the cost function. Thus, gradient based methods are not appropriate for 
optimization because they usually require the cost function to be smooth which it is 
not in our case. We use the Nelder-Mead simplex method which can deal with cost 
functions that are non-smooth, even if they include a stochastic component.  
 

D. Numerical algorithm for optimization: The Nelder-Mead simplex 
method 
 
To solve the optimization problem and find parameter values which provide a 
minimum cost function, we use the MATLAB procedure “fminsearch” which is based 
on the Nelder-Mead simplex method (Lagarias et al., 1998).  
 
Let us formulate the idea of the simplex method. For two variables the simplex is a 
triangle, and the method is a pattern search that compares function values at the 
three vertices of a triangle. The worst vertex, when the function value is largest, is 
rejected and replaced with a new vertex. A new triangle is formed and the search is 
continued. The process generates a sequence of triangles (for which the function 
values at the vertices get smaller and smaller). The size of the triangles is reduced 
and the coordinates of the minimum point are found. The algorithm is stated using 
the term simplex (a generalised triangle in N dimensions) and will find the minimum 
of the function of N variables. It is effective and computationally compact. 
 
The description of the algorithm 

 
Let ),( yxf  be the function that is to be minimised.  

To start we are given 3 vertices of a triangle .3,2,1),,( =kyx kk  The function values 

321),,( zzzyxfz kkk ≤≤= .  

Best vertex     ),( 11 yxB = . 

Good vertex   ),( 22 yxG = . 

Worst vertex   ),( 33 yxW = . 
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E. Results of optimization and testing the optimization quality 
 
It is important to note that the result of the optimization procedure is a random 
variable. This means that if we have found a set of optimal parameter values and use 
them to calculate the cost function several times, we will get different cost function 
values, because the random number generator will start from different initial values 
resulting in generation of different axons. Thus, we would like to test the result of 
optimization studying the distribution of the cost function values generated for the set 
of optimal parameter values. 
 
The optimization procedure was run for each cell type and separately for their 
descending and ascending axons. The best values of model parameters and quality 
of optimization are summarised in the Table 1. To characterise quantitatively the 
quality of optimization we define the measure Q in the following way. One trial of the 
testing procedure includes the generation of 300 axons for the optimal parameter 
values and calculation of the cost function. We repeat this procedure 100 times, 
generate 100 values of the cost function, and build a histogram which we call the 
testing histogram (examples are given in Section 6). We denote by Q a value of the 
cost function such that the interval (0,Q) corresponds to 90% of the area of the 
histogram. We consider the optimisation procedure to be: very good quality if Q is 
less than 4; good quality if 4<Q<8.5;and poor quality if Q>8.5. The last two columns 
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of Table 1 show the quantitative and qualitative characteristics of the optimization 
procedure for each cell type.   
 
Table 1 Parameters for model axon generation and quality of optimization 

  alpha gamma mu ybar quality Q  

aIN 
des 0.10370925019052 0.11917600682222 0.01181789936320 0.55117617500812 good 8 
aiN 
as 0.23732586251142 0.08813752706822 0.02673982589197 0.69775906459744 good 8 

cIN 
des 0.05375985714918 0.06152852069920 0.01391706049223 0.73589974835070 good 6 
cIN 
as 0.05905177737630 0.08263326038516 0.01091760433793 0.71105411267945 good 4.5 

dIN 
des 0.12185512189028 0.09565323676794 0.02108649340963 0.38062246228996 poor 21 
RB 
des 0.11645497350869 0.04533838635712 0.05581374613877 0.69817607934022 poor 18 

RB 
as 0.12235692069202 0.04323400746809 0.04999578629642 0.79172680584209 good 6 
dlc 
des 0.14191302051465 0.09199435732217 0.04112664456976 0.41155539040449 good 6 

dlc 
as 0.11357299174507 0.11448935909590 0.01791283546036 0.65003923169086 poor 17 

MN 0.10475413875442 0.41730415071674 0.02818952435167 0.17638544195660 
very 
good 1.5 

 
Sensitivity of optimal parameter values to parameter variation 
 
Following the optimization process, we tested the sensitivity of the optimal parameter 
values to small variations. We consider 3 levels of variation: 5%, 10% and 20% 
(accordingly, the fractions of variation are Fr=0.05, Fr=0.1; Fr=0.2) and for each 
level, (e.g. 5%), we consider three cases for each of the four parameters: 1) the 
parameter value decreases by 5% (index= -1); 2) the parameter value is not 
disturbed (index=0); 3) the parameter value increases by 5% (index=+1). The 
following formulas show how we calculate variations of the optimal parameter values 
for testing: 
 

},2.0,1.0,05.0{};1,0,1{

;4,3,2,1,**

∈+−∈

=+=

Frindex

koparFrindexoparvpar

k

kkkk
 

here 11, oparvpar  correspond to perturbed and optimal values of the model 

parameter α respectively; 22 , oparvpar  correspond to perturbed and optimal values 

of the model parameter γ respectively; 33 , oparvpar  correspond to perturbed and 

optimal values of the model parameter µ respectively; 44 , oparvpar  correspond to 

perturbed and optimal values of the model parameter y  respectively; the value of 

kindex  can be taken from the designated set }1,0,1{ +− and Fr can also take any of 

three possible values }2.0,1.0,05.0{ indicating different degrees of variation. Table 2 

shows the performance of the model for different degrees of parameter variation in 
terms of the measure Q (described above), for the case of cIN ascending axons. The 
first column of the table shows the sequential number of the test case (1-81), the 

following 4 columns show the values of  index  for each parameter. For example, the 
first row shows that the values of all four parameters have been decreased, the 
second row shows the test case when the values of  µγα ,,   have been decreased 

but the value of y  has not been changed, etc. The last three columns show the 

quality of optimization Q for different levels of variation (5%,10%,20%). 
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This table indicates that for 75% of these cases at the 5% variation level, the value of 
Q remains below 8.5, which is our criterion for good quality results. At the 10% 
variation level, 42% of cases produce good quality results, and even at the 20% 
variation level, about 21% of cases give good quality results. In this particular case of 
the cIN ascending axons considered here, the poorest results occur when y  is 

reduced (made more ventral), especially when µ is decreased at the same time, as 

in these cases the axons do not reach a sufficiently dorsal position to adequately 
match the experimental data set (see Fig. S4.3 below which shows the dorso-ventral 
distribution of these axons). 
 
Table 2. Performance of the model for different degrees of parameter variation 
 

case value of index quality of optimization 

# alpha gamma mu ybar Q(5%) Q(10%) Q(20%) 

1 -1 -1 -1 -1 8.76 22.05 91.55 

2 -1 -1 -1 0 4.31 4.07 4.22 

3 -1 -1 -1 1 5.77 9.55 21.39 

4 -1 -1 0 -1 5.59 10.02 39.90 

5 -1 -1 0 0 4.08 5.73 11.32 

6 -1 -1 0 1 7.34 15.99 44.83 

7 -1 -1 1 -1 4.65 5.25 16.77 

8 -1 -1 1 0 5.47 9.82 25.12 

9 -1 -1 1 1 10.00 24.63 70.43 

10 -1 0 -1 -1 13.49 53.28 288.08 

11 -1 0 -1 0 5.83 9.38 32.76 

12 -1 0 -1 1 4.44 4.83 5.91 

13 -1 0 0 -1 10.02 27.67 198.88 

14 -1 0 0 0 4.51 4.63 5.63 

15 -1 0 0 1 5.61 8.70 19.88 

16 -1 0 1 -1 6.48 15.23 129.85 

17 -1 0 1 0 4.07 5.02 8.45 

18 -1 0 1 1 7.28 14.55 38.73 

19 -1 1 -1 -1 23.36 121.69 577.93 

20 -1 1 -1 0 10.12 26.09 155.43 

21 -1 1 -1 1 4.69 5.91 11.38 

22 -1 1 0 -1 18.13 78.40 354.82 

23 -1 1 0 0 5.91 12.17 46.41 

24 -1 1 0 1 4.32 4.54 6.71 

25 -1 1 1 -1 11.36 37.27 249.86 

26 -1 1 1 0 4.81 5.04 10.61 

27 -1 1 1 1 5.01 8.40 19.29 

28 0 -1 -1 -1 7.26 16.27 50.14 

29 0 -1 -1 0 4.38 4.64 5.65 

30 0 -1 -1 1 5.84 10.10 22.15 

31 0 -1 0 -1 4.98 8.09 17.15 

32 0 -1 0 0 4.46 6.25 12.36 

33 0 -1 0 1 7.52 16.93 44.34 

34 0 -1 1 -1 4.34 3.86 6.11 

35 0 -1 1 0 5.62 9.90 25.84 

36 0 -1 1 1 9.89 24.07 68.00 

37 0 0 -1 -1 12.48 35.72 205.52 
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case value of index quality of optimization 

# alpha gamma mu ybar Q(5%) Q(10%) Q(20%) 

38 0 0 -1 0 5.75 8.08 19.18 

39 0 0 -1 1 4.58 5.65 7.76 

40 0 0 0 -1 9.62 21.85 103.94 

41 0 0 0 0 4.20 4.32 4.18 

42 0 0 0 1 5.50 9.26 20.19 

43 0 0 1 -1 5.91 10.70 59.80 

44 0 0 1 0 4.16 4.84 8.40 

45 0 0 1 1 7.09 14.68 38.82 

46 0 1 -1 -1 20.80 80.36 380.80 

47 0 1 -1 0 9.76 18.97 103.05 

48 0 1 -1 1 4.65 5.27 8.91 

49 0 1 0 -1 12.68 43.65 274.92 

50 0 1 0 0 6.10 8.44 24.03 

51 0 1 0 1 4.32 5.12 7.74 

52 0 1 1 -1 9.19 29.89 184.43 

53 0 1 1 0 4.35 4.46 4.94 

54 0 1 1 1 5.21 8.84 19.37 

55 1 -1 -1 -1 7.36 13.29 30.91 

56 1 -1 -1 0 4.46 5.74 8.57 

57 1 -1 -1 1 6.07 11.30 23.76 

58 1 -1 0 -1 5.37 6.55 12.55 

59 1 -1 0 0 5.02 6.99 13.67 

60 1 -1 0 1 8.13 16.88 43.92 

61 1 -1 1 -1 4.34 4.03 5.01 

62 1 -1 1 0 6.11 10.57 26.03 

63 1 -1 1 1 10.36 24.55 67.62 

64 1 0 -1 -1 11.24 32.00 111.02 

65 1 0 -1 0 5.54 7.94 15.76 

66 1 0 -1 1 4.96 6.35 9.56 

67 1 0 0 -1 7.66 16.04 56.80 

68 1 0 0 0 4.15 4.78 5.52 

69 1 0 0 1 5.68 9.63 22.18 

70 1 0 1 -1 5.38 8.91 26.40 

71 1 0 1 0 4.43 5.48 9.67 

72 1 0 1 1 7.31 15.35 37.81 

73 1 1 -1 -1 16.99 59.76 291.09 

74 1 1 -1 0 8.30 17.50 58.05 

75 1 1 -1 1 4.78 5.98 9.35 

76 1 1 0 -1 12.30 35.43 180.90 

77 1 1 0 0 5.49 7.48 14.64 

78 1 1 0 1 4.69 5.56 8.48 

79 1 1 1 -1 8.56 19.83 112.91 

80 1 1 1 0 4.26 4.48 4.64 

81 1 1 1 1 5.57 9.28 20.45 
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F. Optimization results for each neuron type and examples of generated model 
axons compared with measured axons 
 
The following 10 pages contain three figures for each neuron type. The first figure 
shows the test histograms and the caption of this figure indicates the quality of the 
optimization. The second figure shows model axons (upper panel) and experimental 
axons (lower panel); the caption gives both experimental and model axon 
tortuosities. The third figure shows distributions of dorso-ventral coordinates of 
experimental and generated axons. 
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1. Test results for aIN descending 
 
 

Fig. S1.1 Test of optimization quality:  
GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons.  
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 
 

Fig. S1.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.002. Experimental tortuosity: 1.005 
 
 
 

Fig. S1.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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2. Test results for aIN ascending 
  
 

Fig. S2.1 Test of optimization quality: 
GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 
 

Fig. S2.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.02. Experimental tortuosity: 1.009 
 
 
 

Fig. S2.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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3. Test results for cIN descending 
 
 

 
Fig. S3.1 Test of optimization quality: 
GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S3.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.001. Experimental tortuosity: 1.006 
 

 
 
Fig. S3.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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4. Test results for cIN ascending 
 
 

 
Fig. S4.1 Test of optimization quality: 
GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons. 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S4.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.001. Experimental tortuosity: 1.004 
 

 
 
Fig. S4.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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5. Test results for dIN descending 
 
 

 
Fig. S5.1 Test of optimization quality: 
POOR.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons. 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S5.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.004. Experimental tortuosity: 1.003 
 

 
 
Fig. S5.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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6. Test results for RB descending 
 
 

 
Fig. S6.1 Test of optimization quality: 
POOR.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons. 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S6.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.009. Experimental tortuosity: 1.009 
 

 
 
Fig. S6.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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7. Test results for RB ascending 
 
 

 
Fig. S7.1 Test of optimization quality: 
GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S7.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.01. Experimental tortuosity: 1.009 
 

 
 
Fig. S7.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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8. Test results for dlc descending 
 
 

 
Fig. S8.1 Test of optimization quality: 
GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons. 
Horizontal axis shows cost function 
value allocated in bins of the histogram 
and vertical axis shows percentage for 
the bin. 
 
 
 

 
Fig. S8.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.002. Experimental tortuosity: 1.005 
 
 

 
Fig. S8.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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9. Test results for dlc ascending 
   
 

 
Fig. S9.1 Test of optimization quality: 
POOR.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons. 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S9.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.003. Experimental tortuosity: 1.006 
 

 
 
Fig. S9.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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10. Testing results for mn descending 
 
 

 
Fig. S10.1 Test of optimization quality: 
VERY GOOD.  
Distribution of averaged cost function 
values in 100 trials. Each trial includes 
generation of 300 axons. 
Horizontal axis shows cost function value 
allocated in bins of the histogram and 
vertical axis shows percentage for the 
bin. 
 
 
 

 

Fig. S10.2 An example of axons generated by model (upper panel in red) and 
experimentally measured axons (lower panel in blue).  
Model tortuosity: 1.0001. Experimental tortuosity: 1.001 
 

 
 
Fig. S10.3 Comparing the dorso-ventral 
distributions of model axons (blue) and 
experimental axons (red).  
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3) Network modelling 
 
Table of maximum conductances (in nS) for synapses in network model.  
 

    probability model 

source target AMPA NMDA 

RB dlc 7,03 0,14 

  dla 3,40 0,16 

 aIN 0,23 0,11 

 cIN 0,23 0,11 

 dIN 0,16 0,08 

 MN 0,30 0,14 

dlc CPG 2,16 1,32 

 aIN 1,76 1,39 

 cIN 1,44 2,74 

 dIN 4,00 0,81 

 MN 1,43 0,34 

dla CPG 2,07 1,36 

 aIN 3,87 1,35 

 cIN 1,03 2,31 

 dIN 2,25 1,47 

 MN 1,13 0,31 

dIN aIN 1,94 0,67 

  cIN 8,41 2,79 

  dIN 4,00 6,66 

  MN 4,47 1,27 

    Inhibition 

cIN aIN 2,93  

  cIN 1,98  

  dIN 7,29  

  MN 3,67  

aIN cIN 0,78  

  dIN 1,26  

  MN 1,22  

  dlc 4,79  

  dla 4,38  
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