Supplementary Table 3. Temporal patterns of the protein levels

Duotain	Experimental observations	Model results
Protein	(concentration)	(number)*
Cln3	The Cln3 level exhibits moderate	The Cln3 level increases about two
	periodicities in amplitude [1].	fold in G1 phase and decreases
		during S phase.
Cln1,2	The Cln1,2 level and the Cln1,2/Cdc28	The Cln1,2 level is maximal in M
	kinase activity are maximal at START [1].	phase.
Sic1	Sic1 disappears at the G1/S transition and	The Sic1 level is low at the
	does not reappear until cell division [2].	metaphase/anaphase boundary,
		peaks in late G1, and decreases
		during S phase.
Clb5,6	Clb5/Cdc28 kinase activity peaks around	The Clb5,6 and Clb5,6/Cdc28 levels
	S phase [2].	increase during S phase, peak
	Clb5 localizes in the nucleus until shortly	around the metaphase/anaphase
	before the metaphase/anaphase transition,	boundary, and start declining during
	and then it disappears during anaphase	anaphase.
	[3].	
	The phosphorylated Ndd1 level increases	The phosphorylated Ndd1 level
	in the G1/S transition, remains high in G2	increases during S and G2 phases,
Ndd1	phase, and declines in M phase [4].	peaks at the metaphase/anaphase
		boundary, and decreases during
		anaphase.
Clb1,2	The Clb2 level peaks in M phase [5] and	The Clb1,2 level increases during S
	starts declining during anaphase B [6].	phase, peaks at the
		metaphase/anaphase boundary, and
		decreases during anaphase.
G1 20	The Cdc20 level is low in S phase, peaks	The Cdc20 level is low in S phase,
	in M phase, and declines at the M/G1	increases until the
Cdc20	boundary [5].	anaphase/telophase boundary, and
		then decreases.
Pds1	Pds1 disappears shortly before the onset	The Pds1 level is low in G1 phase,
	of anaphase [6, 7].	increases during S and G2 phases,
		and then starts declining in
		metaphase.

Swi5	Prior to anaphase, Swi5 is phosphorylated	The total Swi5 level peaks in M
	and localizes in cytoplasm, but it is	phase. The phosphorylated Swi5
	dephosphorylated and translocated to	level, which is assumed to locate in
	nucleus around the anaphase/telophase	nucleus, sharply peaks at around the
	boundary [8, 9].	anaphase/telophase boundary.
	Most of Swi5 located in the nucleus is	
	degraded by the time of cell separation	
	[9].	

^{*}The protein levels are observed in concentration in experiments but in molecular numbers in the model.

References

- 1. Cross FR, and Blake CM (1993) Mol. Cell Biol. 13: 3266-3271.
- 2. Schwob E, Bohm T, Mendenhall MD, and Nasmyth K (1994) Cell 79: 233-244.
- 3. Shirayama M, Toth A, Galova M, and Nasmyth K (1999) Nature 402: 203-207.
- 4. Darieva Z, Pic-Taylor A, Boros J, Spanos A, Geymonat M, Reece RJ, Sedgwick SG, Sharrocks AD, and Morgan BA (2003) *Curr. Biol.* 13: 1740-1745.
- 5. Prinz S, Hwang ES, Visintin R, and Amon A (1998) Curr. Biol. 8: 750-760.
- 6. Shirayama M, Zachariae W, Ciosk R, and Nasmyth K (1998) EMBO J. 17: 336-1349.
- 7. Jaspersen SL, Charles JF, Tinker-Kulberg RL, and Morgn DO (1998) *Mol. Biol. Cell* 9: 2803-2817.
- 8. Moll T, Tebb G., Surana U, Robitsch H, and Nasmyth K (1991) Cell 66: 743-758.
- 9. Nasmyth K, Adolf G, Lydall D, and Seddon A (1990) Cell 62: 631-647.