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Overexpression of the ABC transporter TAP in multidrug-resistant human

cancer cell lines

MA Izquierdo'*, JJ Neefjes’, AEL Mathari', MJ Flens', GL Scheffer! and RJ Scheper!

'Department of Pathology, Free University Hospital, Amsterdam, The Netherlands; *Department of Cellular Biochemistry, The
Netherlands Cancer Institute, Amsterdam, The Netherlands.

Summary Multidrug resistance (MDR) to anti-cancer drugs has been associated with the overexpression of P-
glycoprotein (P-gp) and the multidrug resistance-associated protein (MRP), both being members of the ATP-
binding cassette (ABC) superfamily of transporters. We investigated whether in addition to P-gp and MRP,
another ABC transporter, the transporter associated with antigen processing (TAP), is associated with MDR.
TAP plays a major role in MHC class I-restricted antigen presentation by mediating peptide translocation over
the endoplasmic reticulum membrane. TAP1 and P-gp share a significant degree of homology among their
transmembrane domains, which are thought to be the primary determinants of substrate specificity, and both
can apparently mediate the translocation of peptides. Using immunocytochemistry and Western blot, TAP was
overexpressed in parallel with MHC class I in several MDR human cancer cell lines. TAP was overexpressed
more frequently in MRP-positive MDR cell lines (three out of three) than in P-gp positive MDR cells (two out
of five). Reversal of resistance resulted in a decrease in TAP levels. Transfection of the TAP genes into TAP-
deficient lymphoblastoid T2 cells conferred mild resistance to etoposide, vincristine and doxorubicin (2- to 2.5-
fold). Furthermore, etoposide and vincristine inhibited TAP-dependent peptide translocation to the
endoplasmic reticulum. Collectively, our results suggest that TAP may modestly contribute to the MDR
phenotype, in particular in MRP- overexpressing MDR cells. Further insight into the role of TAP in MDR will
require the study of other transfectants, as well as the investigation of TAP expression in P-gp and MRP-
negative MDR cancer cell lines.
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Through exposure to cytotoxic drugs tumour cells can
acquire the so-called multidrug resistance (MDR) pheno-
type, which is characterised by cross-resistance to structurally
and functionally unrelated compounds (Beck and Danks
1991; Gottesman and Pastan 1993). Evidence is emerging that
the molecular basis of MDR is multifactorial. Until now, two
proteins that cause MDR have been described: the MDRI
gene product P-glycoprotein (P-gp; reviewed in Childs and
Ling, 1994) and the MRP gene product multidrug resistance-
associated protein (MRP) (Cole et al., 1992, 1994). Genetic
transfer of MDRI or MRP cDNAs showed that the
expression of these genes confers resistance to certain
unrelated drugs such as doxorubicin, vincristine and etopo-
side (Childs and Ling, 1994; Cole et al., 1994; Zaman et al.,
1994). P-gp and MRP belong to the ATP-binding cassette
(ABC) superfamily of transmembrane transporters, including
mammalian (TAP, CTFR, SV2, PMP70), yeast (STE6), and
prokaryotic (HlyB) members (Higgins, 1992). ABC transpor-
ters share a structure consisting of two highly conserved
cytoplasmic ATP-binding domains and two hydrophobic
transmembrane domains (Higgins, 1992). Proteins of this
family are involved in the translocation across biological
membranes of a wide range of substrates, ranging in size
from metal ions to large proteins. A particular ABC
transporter is relatively specific for a given substrate, but a
number of these proteins display broad specificity, e.g. P-gp
has been implicated in the transport of natural products,
calcium channel blockers, calmodulin inhibitors, antibiotics,
cations, steroids and chloride (Childs and Ling, 1994;
Higgins, 1992). ABC transporters separated by a wide
evolutionary gap can also share one or more substrates,
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e.g. P-gp and MRP confer a similar MDR phenotype,
suggesting similar drug-substrate specificity (Childs and
Ling, 1994; Cole et al., 1994; Zaman et al., 1994). Only a
limited number of mammalian ABC transporters have been
fully characterised, and further analysis may uncover new
transporter —substrate links and cellular functions. Our
interest was to investigate whether, besides P-gp and MRP,
other(s) ABC transporter(s) may relate to MDR. This
possibility was reinforced by the fact that CFTR over-
expression has also recently been shown to mediate a MDR
phenotype (Wei et al,, 1995). The transporter—associated
with antigen processing (TAP), a heterodimer formed by the
TAPI and TAP2 gene products, plays a major role in MHC
class I (MHCI)-restricted antigen presentation by mediating
peptide translocation over the endoplasmic reticulum (ER)
membrane (Neefjes et al., 1993). TAPl and P-gp share a
significant degree of homology among their transmembrane
domains (Manavalan et al., 1993), which are thought to be
the primary determinants of substrate specificity (Childs and
Ling, 1994; Higgins, 1992). Indeed, P-gp may mediate the
translocation of peptides, such as the tripeptide N-acetyl-
leucyl-leucyl-norleucine, ionophores (e.g. gramicidin), cyclic
peptides (e.g. cyclosporins) and enkephalins (Higgins, 1992;
Sharma et al., 1992; Sarkadi et al., 1994; Eytan et al., 1994).
Based on the analogies between TAP and P-gp, we
investigated the potential association of TAP with MDR.

Materials and methods
Cell lines

The tumour cell lines and their corresponding drug-selected
MDR sublines used in this study have been described
previously (reviewed in Beck and Danks, 1991). The parental
lymphoblastoid cell line T1 and the mutant T2 cell lines were
described by Salter et al. (1985). T2 cells were derived from
T1 and have a large homozygous deletion of the MHC II
region (Salter et al., 1985) that encompasses the TAPI and
TAP2 genes. Therefore, T2 cells are deficient in antigen
presentation (Momburg e? al., 1992; Neefjes et al., 1993). The
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T2.TAP1+2 cell line was derived from T2 cells transfected
with rat cDNAs encoding TAPI and TAP2 genes (Momburg
et al., 1992). T2.TAP1+2 cells regain a similar capacity for
stabilising and presenting MHC I as T1 cells (Momburg et
al., 1992). T2.TAP1 +2 and T2 cells have been widely used as
a model to investigate the molecular basis of MHC I-
restricted antigen presentation and TAP-mediated specific
translocation of peptides over the ER (Momburg et al., 1992;
Neefjes et al., 1993). The cell lines were cultured in RPMI or
Dulbecco’s modified Eagle medium, as appropriate, supple-
mented with 10% fetal calf serum.

Immunocytochemical expression of TAPI and MHC I

A rabbit antiserum raised against the TAP1 ATP-binding
domain (Cromme et al., 1994) and the monoclonal antibody
W6/32 were used to study TAP1 and MHC 1 expression
respectively. Acetone-fixed (10 min) cytospin preparations
were preincubated with normal goat or normal rabbit serum
for 15min and then incubated with TAPIl antiserum
(1:1000) or W6/32 (1:25) for 1 h. Anti-TAP1 was labelled
with biotin-conjugated antibody goat anti-rabbit (1:150 for
30 min; Zymed, San Francisco, CA, USA) and horseradish
streptavidin (1:500 for 1h, Zymed), whereas W6/32 was

labelled with affinity-purified rabbit anti-mouse IgG con-

jugated to horseradish peroxidase (1:25 for 30 min; Dako,
Copenhagen, Denmark). Amino-ethyl-carbazole (ICN Bio-
chemicals, Aurora, OH, USA) was used as a chromogen.
Slides were counterstained with haematoxylin. Rabbit
immunoglobulin fraction (Dako) and an irrelevant mouse
IgG were used as negative controls. T1 and T2 cells served as
additional controls. The evaluation was done on coded slides
to avoid bias in scoring cell lines. A semiquantitative ‘staining
index’ was calculated as the product of the percentage of
positive cells and the average staining intensity qualitatively
estimated on a scale from 1 (+) to 3 (+ + +). Between two
and four tests for each cell line were used to calculate the
average staining index. The immunocytochemical expression
of P-gp and MRP in T1 and T2 cells was investigated by
using JSB-1 (Scheper et al., 1988) and MRPmé6 (Flens et al.,
1994) monoclonal antibodies (both from our laboratory),
respectively, and an avidin-—biotin detection system.

Immunocytochemical expression of P-gp and MRP in
lymphoblastoid cell lines

The immunocytochemical expression of P-gp and MRP in
T1, T2, and T2.TAP1+2 cells was investigated using the
monoclonal antibodies MRK-16 (kindly provided by Dr T
Tsuruo, Tokyo, Japan; Hamada and Tsuruo, 1986) and JSB-
1 for P-gp, and MRPrl and MRPmé6 for MRP, and an
avidin—biotin complex method. Appropriate MDR cell lines
overexpressing P-gp or MRP were used as a positive control.

Immunoblotting

Cells were harvested, incubated by lysing buffer [100 nM Tris-
HCI, pH 7.4, 0.5% sodium dodecyl sulphate (SDS), 1 nM
phenylmethylsulphonyl  fluoride, 2 ug ml~' leupeptide,
1 ug ml~' pepstatin and 2 ug ml~' aprotinin] for 20 min at
4°C, and homogenised by ultrasonication. After centrifuga-
tion, proteins were measured by a BioRad protein assay
(BioRad, Richmond, CA, USA). Proteins (25 ug per lane)
were separated by 4-12% gradient SDS-PAGE and
transferred to nitrocellulose by electroblotting. The nitrocel-
lulose sheets were blocked with buffer (phosphate-buffered
saline (PBS), 1% bovine serum albumin (BSA), 1% non-fat
milk and 0.05% Tween-20), pre-incubated with normal goat
serum and incubated with anti-TAP1 antiserum (1:1000)
(Cromme et al., 1994) or anti-human MHC 1 heavy-chain
rabbit anti-serum (1 : 500) (Neefjes and Ploegh, 1988) at room
temperature for 90 min. After washing in Tris-saline buffer,
the sheets were treated with biotinylated goat anti-rabbit
antibody followed by streptavidin—horseradish peroxidase

(Zymed). The sheets were developed using diaminobenzidine
chloronaphtholin.

Cell lysates from T1 and T2 cell lines were also tested for
P-gp and MRP expression using monoclonal antibodies C219
(Centocor, Tongeren, Belgium) and MRPmé6 (Flens et al.,
1994) respectively. Appropriate MDR cell lines overexpres-
sing P-gp or MRP were used as a positive control.

Cytotoxicity assays

Cells in log phase were harvested and plated into 96-well
microtitre plates at 3 x 10° cells per well in 100 ul of fresh
medium. The plates were incubated at 37°C for 2-3 h.
Different concentrations of drugs were then added to a final
volume of 100 ul per well. Each experiment was done in
quadruplicate. Controls consisted of cells in the same total
volume medium (200 ul) without added drug. After 3 days of
incubation, 0.40 uCi of PH]TdR was added to each well and
incubated for 4 h. A scintillation counter was used to measure
the [PH]JTdR incorporation into proliferating cells. The
cytotoxicity was expressed as the percentage of counts
compared with controls. Relative resistance of the cell lines
was calculated by dividing the ICs, value of a drug in the
different cell lines divided by the ICs, in the TAP1/2-deficient
T2 cell line. Data were expressed as means +s.d. Differences
between means were compared using the Student’s paired ¢-test.

Daunorubicin efflux studies

T1 and T2 cells were incubated with 1 or 2 uM daunorubicin
at 37°C for 30 min and then rapidly chilled on ice and
washed twice in ice-cold PBS. After daunorubicin was
removed, cells were incubated in fresh medium at 37°C. At
appropriate times, cells were harvested and kept on ice until
analysis. Fluorescence was measured with a FACStar Plus
(Becton Dickinson Medical Systems).

Peptide translocation assays

Peptide translocation was performed as described by Neefjes
et al. (1993). Briefly, 1-1.5x10° T2.TAP1+2 cells were
washed once with incubation buffer. The plasma membrane
of the cells was permeabilised by incubation with 2.5 IU ml~'
streptolysin O (Wellcome) for 10 min at 37°C. Routinely,
60—-80% of the cells were permeabilised as measured by
trypan blue uptake. For each assay, 10 ul of radioiodinated
model peptide 417, the competing cytotoxic drugs in 50 ul of
incubation buffer and 10 ul of 100 mmM ATP pH 7.0
(Boeringer) were added to permeabilised cells in a final
volume of 100 ul. Peptide translocation was performed at
37°C over a period of 5 min in order to follow inhibition
during the increasing phase of TAP-dependent translocation
of the model peptide (Neefjes et al., 1993). Peptide
translocation was stopped by addition of 1 ml of Triton X-
100 lysis fluid. Model peptide 417 (sequence: TVNKTERAY)
contains an N-linked glycosylation site. After translocation
by TAP, the addition of the N-linked glycan takes place in
the ER. The glycosylated 417 peptide can then be isolated by
concanavalin A —Sepharose (Con A —Sepharose) and quanti-
tated by gamma counting (Neefjes et al., 1993).

Results
Expression of TAP1 and MHC I in MDR cell lines

We observed immunocytochemical parallel overexpression of
TAP1 and MHC I in a number of MDR cell lines compared
with their parental cells (Table I), and confirmed this finding
by Western blotting (Figure 1). In HL60/ADR cells only,
TAP overexpression was not associated with increased levels
of MHC 1. The expression of major bands of ~77 and
~46 kDa paralleled TAP1 and W6/32 staining respectively.
The ~77 kDa band was present in T1 cells but not in mutant
T2 cells, and corresponds to TAP1. The bands immediately



above the TAPI band are most likely non-specific bands. The
fact that these bands have similar intensity in the different
lanes within each group of cell lines serves as an internal
control, further supporting the differences in TAP 1
expression. Differential TAPI staining is illustrated in the
SW1573 series (Figure 2). Remarkably, in SW/2R120 cells,

Table I Immunocytochemical expression of TAP1 and MHCI in

MDR human cancer cell lines
MDR sublines

Staining index”

Parental MRP P-gp
cell lines positive positive TAPI MHCI
NSCLC®¢
SW-1573 0.85 0.80
2R120 1.70 1.60
2R120 Rev? 0.65 0.75
2R160 0.70 0.80
SCLC®
GLC4 0.60 0.60
GLC4/ADR 1.40 1.55
Leukaemia
HL-60 0.70
HL60/ADR 1.60
Myeloma
8226 0.80 1.65
Dox 4 1.60 1.90
Dox 40 2.40 2.60
Squamous
KB-3-1 1.50
KB-8-5 1.50
Ovarian cancer
A2780 0.00 0.00
A2780AD 0.00 0.00

“A staining index was calculated as the product of the percentage of
positive cells and the average staining intensity qualitatively estimated
on a scale from 1(+) to 3(+ + +). °NSCLC, non-small-cell lung
cancer; SCLC, small-cell lung cancer. “The staining index for MRP
using the monoclonal antibody MRPm6 (adapted from Flens et al.,
1994) in the SW-1573 series was as follows: SW-1573, 0.40; 2R 120,
1.90; 2R120Rev, 0.50; and 2R 160, 0.45. The coefficient of correlation
(r*) between the staining index for TAP and MRP in this series was
0.94. “2R120Rev was obtained after culturing the 2R120 cell line
without drug for more than 1year. 2R120 Rev cells show decreased
drug resistance to parental levels.
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reversal of resistance paralleled TAP decrease, as observed in
SW/2R120Rev cells (2R120 cells cultured without drug for
more than 1 year). Increased TAPI levels were seen in the
three MRP-positive MDR cell lines tested (SW/2R120,
GLC4/ADR and HL60/Adr) and in two of five P-gp-
positive MDR cell lines (both 8226 sublines).

Expression of P-gp and MRP in lymphoblastoid cell lines

No P-gp or MRP expression was detected in T1, T2 and
T2.TAP1+2 cells using immunocytochemistry and immuno-
blotting even after overexposing Western blots (data not
shown).

Correlation between TAP expression and drug-resistance
parameters in lymphoblastoid T cells

T1 cells showed a significant increase in resistance to
etoposide (=~ 2.5-fold) and, to a lesser degree, to vincristine
and doxorubicin (= 2-fold) compared with T2 cells (lacking
TAPI and TAP2 genes) (Table II). T2.TAP1+2 cells (T2
cells transfected with the rat TAPI and TAP2 cDNAs)
exhibited restored levels of resistance to these drugs,
supporting the theory that the TAP genes are responsible
for the differences in drug resistance between TI1 or
T2.TAP1+2 and T2 cell lines. The addition of up to 16 uM
verapamil, a known modulator agent of P-gp, had no effect
on etoposide resistance in either T1 or T2 cell lines (=32 um
verapamil alone was cytotoxic for T1 and T2 cells) (Table II).
Active daunorubicin efflux was not observed in T1 and T2
cells (data not shown), which would be consistent with
resistance mediated by an intracellular protein.

Inhibition by drugs of TAP-dependent peptide translocation

The plasma membrane of T2.TAP1+2 cells was permeabi-
lised by streptolysin O, and translocation of the radio-
iodinated model peptide 417 was followed in the presence of
different concentrations of the non-radioiodinated 417
peptide and of the competitor drugs. As this assay uses
permeabilised cells, the system used to test TAP-mediated
translocation of peptides requires the presence of the TAP
protein, ATP and intact glycosylation machinery within the
ER, but not cytosolic factors. Therefore, any observed
inhibitory effect of peptide translocation is most likely
specific via direct interaction with TAP (Neefjes er al.,

GLC4/Adr
HL60/S
HL60/Adr

T2
T1

=ATAP

— HLA-1

Western blot analysis of lysates from several cancer cell lines and their corresponding MDR sublines. The arrows indicate

the position of the TAPI protein (~77kDa), which is absent in TAP1/2-deficient T2 cells but present in T1 cells used as controls,
and MHC I (x45kDa). TAP1 and MHC I were overexpressed in the three MRP-positive MDR sublines tested: 2R120, GLC4/
ADR and HL60/ADR. TAP1 and MHC I were also overexpressed in the P-gp-positive MDR sublines from the myeloma 8226
series (data not shown; see Table I). A low TAPI level was present in the 2R120Rev cell line.
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Figure 2 Cytocentrifuge preparations of the non-small-cell lung cancer cell line SW1573 (a), the P-gp-negative subline 2R120 (b),
the 2R120Rev cell line (¢) and the P-gp-positive subline 2R160 (d) stained with anti-TAPI antiserum (magnification x 63). The
intensity of the staining was higher in 2R120 cells than in parental SW1573 cells, revertant 2R120Rev cells and P-gp-positive 2R160

cells.

Table II Relative resistance of lymphoblastoid cell lines*

Etoposide Vincristine Doxorubicin
T2 1® 1 1
Tl 2.3340.33 (10)>°  1.7+0.10 4)¢ 1.65+0.07 (2)¢

T2.TAP1+2 24+083 (4° 1.5, 2.0° 1.89, 1.80

4Growth inhibition experiments were performed by an [PH]TdR
incorporation assay. ®Verapamil (up to 16um) had no effect on
etoposide resistance. “Data are the mean+s.d. of a number of
experiments (in parentheses), each in quadruplicate. Relative
resistance is ICs, value of a drug in the different cell lines divided by
IC 50 in the TAP1/2-deficient T2 cell line. Tests were run in parallel.
4°Means were significantly different (“p <0.05 and °P <0.01; Student’s
paired r-test). "Results of two experiments.

1993). As shown in Figure 3, etoposide and vincristine inhibit
TAP-dependent transport of model peptide 417. The ICs,
values (the concentration of drug at which 50% inhibition of
translocation of peptide 417 is reached) were 400 uM for
etoposide, ~2.5mM for vincristine and =0.7 uM for
unlabelled 417 peptide. These results correspond to our
cytotoxicity data showing preferential resistance to etoposide
in Tl and T2.TAP1+2 cells. In another experiment,
T2.TAP1 +2 cells were incubated with increasing concentra-
tions of radioiodinated 417 peptide in the presence or absence
of a concentration of etoposide (400 uM) that inhibited
peptide translocation by half (see Figure 3). As shown in
Figure 4, increasing amounts of input peptide indeed results
in a higher recovery of translocated peptide. The inhibitory
effect of etoposide was similar at the different concentrations
of radiolabelled input peptide. These results indicate that the
inhibition of TAP-mediated transport of peptides by drugs is
most likely due to specific interaction with TAP.
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Figure 3 Etoposide, vincristine and doxorubicin were tested for
their ability to compete for translocation of the radiolabelled
model peptide 417 in streptolysin O-permeabilised T2.TAP1+2
transfectants. Translocation was followed for S5min at 37°C in
the presence of ATP. The cells were lysed, and the radiolabelled
417 was recovered with Con-A —Sepharose and quantitated by
gamma counting. Fifty per cent inhibition was observed with
etoposide (=x400uM), vincristine (=~2.5mM) and non-radiola-
belled 417 (~0.7 um). Similar results were obtained in multiple
independent experiments.

Discussion

In this study, we show that, besides P-gp, MRP and CFTR,
another ABC transporter, TAP, is overexpressed in some
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Figure 4 Kinetics of the translocation of the model peptide 417
in T2.TAP1+2 cells in the absence or presence of 400um
etoposide. Cells were permeabilised with streptolysin O. Radio-
iodinated 417 peptide was added at increasing concentrations, and
the cells were incubated for Smin at 37°C in the presence or
absence of 400uM etoposide. Cells were lysed, and the
glycosylated peptide was isolated and quantitated. Inhibition of
TAP-mediated peptide translocation with 400 uM etoposide does
not saturate peptide translocation.

MDR cancer cell lines. TAP overexpression is, in general,
paralleled by an increase in MHC I expression, indicating
that the functional TAP1—-TAP2 heterodimer is up-regulated
in these MDR cells. Increased TAP and MHC I expression in
MDR cell lines may be related to exposure to drugs.

There is in vitro and in vivo evidence that down-regulation
of TAP, and therefore of peptide transport and MHC I
expression, may be a mechanism by which tumours escape
immune surveillance (Cromme et al., 1994; Restifo et al.,
1993). We show that in some cancer cell lines TAP is
coordinately up-regulated with MHC 1 in response to
cytotoxic drug selection. Further studies on the TAP-
mediated effect of cytotoxic drug treatment for augmenting
MHC 1 expression may result in novel approaches to
facilitate cytotoxic T-cell mediated immunotherapies.

In the present study, we have further investigated the
relation between TAP overexpression and MDR. TAP may
be overexpressed in MDR cancer cells to protect the cells
from the cytotoxic effects of drugs, like the other ABC
transporters, P-gp and MRP. Taken together, our results
support this possibility. Reversal of resistance in 2R120Rev
cells resulted in a parallel TAP decrease, stressing the close
association of TAP with drug resistance in these cells.
Furthermore, T1 cells and T2.TAP1+2 cells (T2 cells
transfected with the TAPI/2 genes) show a ~2-fold increase
in resistance to etoposide and vincristine/doxorubicin,
respectively, compared with T2 cells (mutant T1 cells lacking
TAPI/2 genes). It is unlikely that these differences are a result
of experimental variation as they were confirmed in two
different cell lines, T1 and T2.TAPI + 2, and because multiple
experiments, each performed in quadruplicate, were carried
out with reproducible results. The increased resistance is not
due to P-gp or MRP overexpression because T1, T2 and
T2.TAP1 +2 cells had no detectable levels of these proteins
and in the case that very low levels of P-gp or MRP were
present, they should be equal in T1, T2 and T2.TAP1+2
cells. Notably, Tl and T2.TAP1+2 cells have not been
previously selected with chemotherapeutic agents (Momburg
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et al., 1992; Neefijes et al., 1993; Salter et al., 1985).
Commonly, resistance for MDRI or MRP transfectants has
been measured after the transfectants were selected on
chemotherapeutic drugs. Levels of resistance for true
MDRI, MRP or CFTR cDNA transfectants (non-chemother-
apeutic drug-selected transfectants) and infectants range
typically from 2- to 10-fold (Grant et al., 1994; Guild et
al., 1988; Wei et al., 1995; Zaman et al., 1994). Non-drug
selected murine MDRI retroviral-mediated infectants were
found to be <2.7-fold resistant to doxorubicin (mean 1.3-
fold), vinblastine (mean 1.7-fold) and colchicine (mean 1.4-
fold) (Guild et al., 1988). Recently, overexpression of another
ABC transporter, the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene, has been shown to be
associated with a MDR phenotype (Stutts ez al., 1993; Wei et
al., 1995). Transfection of the CFTR cDNA into NIH3T3
cells resulted in increased levels of resistance to doxorubicin
and vincristine that were similar to those that we measured
here for T1 and T2.TAPI1 +2 cells (Stutts et al., 1993; Wei et
al., 1995).

The drug inhibition of TAP-mediated transport of
peptides adds further support to the theory of interaction
between certain drugs and the TAP protein. The drugs we
tested interact with TAP with much lower affinity than the
model peptide 417, which is known to be translocated very
efficiently by TAP, and in that sense is a biased strong
competitor (Neefjes et al., 1993). Peptides with 50 to 100-fold
lower affinity are also translocated and presented within
MHC 1, indicating that they are functional (Neisag et al.,
1995). Therefore, the concentrations of drugs (e.g. etoposide)
necessary to interact with TAP in living cells might be
substantially lower than the concentrations inhibiting
translocation of the particular 417 peptide. Indeed, this level
of interaction appears to be sufficient to increase drug
resistance in T1 and T2.TAP1+2 cells. Etoposide is the
most efficient inhibitor, in agreement with the preferential
resistance to this drug in T1 and T2.TAP1+2 cells. This
consistent TAP-etoposide preferential association in both
cytotoxic and peptide translocation assays supports the
connection between these two processes. The precise
mechanisms of increased resistance in TAP-expressing cell
lines and of TAP-drug interaction remain to be established.
It is tempting to speculate that TAP may mediate the
translocation of certain drugs into the ER, causing altered
intracellular drug distribution. Drug redistribution has been
demonstrated in the TAP-overexpressing MDR cancer cells
2R120 and HL60/ADR (Schuurhuis et al., 1991; Marquardt
and Center, 1992). We did not find obvious differences in the
intracellular distribution of fluorescent daunorubicin between
T1 or T2.TAP1+2 cells and T2 cells (data not shown), but
this analysis was largely complicated by the small size and
reduced cytoplasmic area of these lymphoblastoid cells.

TAP was up-regulated in all three MRP-overexpressing
MDR cell lines that we tested, but only in two (both 8226
sublines) of five P-gp-positive MDR cell lines. We have
previously reported a similar pattern of MRP overexpression
in TAP-overexpressing MDR cell lines (Flens ez al., 1994). In
the SW-1573 series, TAP and MRP expression are closely
parallel, showing up-regulation in the 2R120 cells and down-
regulation to parental levels in 2R120 Rev and 2R160 cells
(Flens et al., 1994). In this series, we calculated the staining
index for MRP, as described in Materials and methods, using
the monoclonal antibody MRPm6 (see footnote to Table I).
The staining index for TAP and MRP were strongly
correlated (coefficient of correlation, r»=0.94), suggesting
that they are not only qualitatively but also quantitatively co-
regulated. This sort of frequent co-regulation of two
mammalian ABC transporters, such as TAP and MRP, in
response to a single cellular insult is without precedent
among other members of this superfamily (Higgins, 1992). A
plausible explanation for this close association is that both
MRP and TAP contribute to the high levels of MDR
observed in drug-selected MDR cells. Thus, it has been
shown that MRP overexpression or changes in topoisomerase
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IT activity cannot account for the MDR phenotype observed
in the P-gp-negative 2R120 and GLC4/ADR cells, in which
the role of an additional mechanism(s) has been proposed
(Kuiper et al., 1990; Zijlstra et al., 1987). TAP seems to be a
good candidate. Why TAP appears to be less frequently up-
regulated in P-gp-positive MDR cell lines remains unclear.
Another possibility for the joing up-regulation of TAP and
MRP, and less frequently of TAP and P-gp, is that different
ABC transporters share similar transcription machinery (i.e.
similar transcription factors or promoter regions). This
possibility could be further investigated by measuring
mRNA levels and/or rates of transcription in nuclear run-
on experiments.

In conclusion, we have shown TAP overexpression in
cancer cell lines selected in the laboratory for MDR
phenotype, and have provided additional data supporting
the capacity of TAP to confer drug resistance. Further
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