Molecular Characterization of the Zymomonas mobilis Enolase (eno) Gene

MICHEAL E. BURNETT, JIAN LIU, AND TYRRELL CONWAY*

School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118

Received 10 June 1992/Accepted 2 August 1992

The Zymomonas mobilis gene encoding enolase was cloned by genetic complementation of an Escherichia coli eno mutant. An enzyme assay and sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the overexpression of enolase in E. coli clones carrying the Z. mobilis eno gene. The eno gene is present in a single copy on the Z. mobilis genome. Nucleotide sequence analysis of the eno region revealed an open reading frame of 1,293 bp that encodes a protein of 428 amino acids with a predicted molecular weight of 45,813. Comparison of the sequence of Z. mobilis enolase with primary amino acid sequences for other enolases indicates that the enzyme is highly conserved. Unlike all of the previously studied glycolytic genes from Z. mobilis that possess canonical ribosome binding sites, the eno gene is preceded by a modest Shine-Dalgarno sequence. The transcription initiation site was mapped by primer extension and found to be located within a 115-bp sequence that is 55.7% identical to a highly conserved consensus sequence found within the regulatory regions of highly expressed Z. mobilis genes. Northern RNA blot analysis revealed that eno is encoded on a 1.45-kb transcript. The half-life of the eno mRNA was determined to be 17.7 \pm 1.7 min, indicating that it is unusually stable. The abundance of the eno message is proposed to account for enolase being the most prevalent protein in Z. mobilis.

Zymomonas mobilis is an obligately fermentative, ethanologenic bacterium that uses the Entner-Doudoroff glycolytic pathway exclusively for the catabolism of sucrose, glucose, and fructose, the only carbon sources that support its growth (24, 34). When employed anaerobically, the Entner-Doudoroff pathway is inherently inefficient, yielding only a single mole of ATP per mole of glucose. Z. mobilis must convert over 95% of its substrate to carbon dioxide and ethanol to gain sufficient energy for growth (24). This level of metabolic activity is made possible by high-level expression of the glycolytic and ethanologenic enzymes, which account for approximately 50% of the soluble protein (1). Enolase is the most abundant of the glycolytic enzymes in Z. mobilis, as determined by two-dimensional gel electrophoresis and biochemical assay (2, 25). It has been suggested that enolase plays a role in metabolic flux control (34), since the intracellular concentrations of the triose phosphates and phosphoglycerates are relatively high (1, 5).

Enolase has been studied extensively in eukaryotic organisms but has received less attention in bacteria (36). The purified enzyme from Escherichia coli is dimeric, as in most other organisms, and exhibits kinetic properties similar to those of Saccharomyces cerevisiae enolase (32). The purified Z. mobilis enclase is unusual in being octomeric but is otherwise similar to the S. cerevisiae enzyme (26). Enolasedefective Pseudomonas aeruginosa (21) and E. coli mutants in which the metabolic lesion leads to accumulation of the phosphoglycerates have been described (16, 18). Part of the nucleotide sequence of the E. coli eno gene was determined during a study of the neighboring pyrG gene, but this is the only molecular genetic characterization of enolase in a bacterium to date (35). The present study focuses on the cloning and characterization of the Z. mobilis gene that encodes enolase. Transcriptional analysis indicates that the eno message is remarkably stable, perhaps contributing to the high level of enolase synthesis.

MATERIALS AND METHODS

Bacterial strains and plasmids. Z. mobilis CP4 was grown at 30°C in complex medium containing 100 g of glucose per liter as described previously (25). E. coli strains were routinely grown at 37°C in Luria broth (23) with no added carbohydrate. E. coli DF261 (tonA22 ompF627 eno-2 relA1 pit-10 spoT1) (16) was grown at 37°C in M63 minimal medium supplemented to final concentrations of 0.2% glycerol, 0.2% succinate, 0.2% Casamino Acids, and 0.1 mM histidine (33). Complementation of E. coli DF261 with a Z. mobilis CP4 genomic library (4) was accomplished on minimal medium containing ampicillin (50 mg/ml) and glucose as the sole carbon and energy source (16, 33). One of the enolasepositive clones, pTC144, was selected for study.

DNA manipulations. Transformation, restriction mapping, and subcloning were carried out by standard methods (27, 31). Small-scale plasmid isolations were prepared by the method of Silhavy et al. (31). Restriction enzymes and DNA-modifying enzymes were used according to the recommendations of the manufacturers.

Enzyme assay. E. coli and Z. mobilis cell extracts were prepared for enzyme assay as described by Conway et al. (8). Enolase activity was assayed spectrophotometrically in a reaction coupled with pyruvate kinase and lactate dehydrogenase by measuring the oxidation of NADH (A_{340}) as described by Pawluk et al. (26).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gels were prepared and stained with Coomassie blue as previously described (15).

Southern hybridization analysis. Agarose gels (0.8%) to be used for Southern blotting were electrophoresed and stained with ethidium bromide by standard methods (31). Capillary transfer of DNA to Genescreen Plus hybridization transfer membranes and hybridization were as described previously (10). DNA hybridization probes were prepared by randomprimed DNA labeling with a kit.

DNA sequence analysis. The Z. mobilis eno gene was sequenced by the dideoxy method (28) with a Sequenase kit and double-stranded DNA sequencing (7). The sequence

^{*} Corresponding author.

was derived from a nested deletion series prepared by digestion with exonuclease III and by using specific oligonucleotide primers. Sequence data were compiled by using the University of Wisconsin Genetic Computer Group sequence analysis software package version 6.1 (11).

RNA isolation and transcriptional analysis. Total RNA was isolated from logarithmic-phase Z. mobilis cultures as described previously (15). Northern RNA blot analysis was carried out as described previously (9) with DNA hybridization probes labeled with a random-primed labeling kit. RNA half-life determinations after rifampin addition were conducted as described previously (15). Primer extension analysis of the transcriptional initiation site was accomplished by previously described methods (8). S1 nuclease protection experiments were as described previously (8). The filters were analyzed with the AMBIS Radioanalytic Imaging System (AMBIS Systems, Inc., San Diego, Calif.).

Enzymes and chemicals. Restriction enzymes, DNA-modifying enzymes, and *E. coli* DH5 α were obtained from Bethesda Research Laboratories, Inc. (Gaithersburg, Md.). The Sequenase and random-primed DNA labeling kits were ordered from U.S. Biochemical Corp. (Madison, Wis.). An Erase-a-Base kit was purchased from Promega, Inc. (Madison, Wis.). Radioactive compounds were purchased from New England Nuclear Corp. (Boston, Mass.). Biochemicals and coupling enzymes were obtained from Sigma Chemical Co. (St. Louis, Mo.).

RESULTS AND DISCUSSION

Cloning and expression of the Z. mobilis enolase gene. The Z. mobilis enolase gene was cloned by genetic complementation of E. coli DF261. The defective enolase locus renders E. coli DF261 incapable of growth on glucose-containing media. A Z. mobilis genomic library of 5-kb fragments in pUC18 (4) was transformed into E. coli DF261 and plated on minimal glucose medium. Glucose-positive clones were obtained at a frequency of approximately 1 in 250 transformants. Plasmid DNA isolated from 12 clones was found to restore the glucose-positive phenotype in E. coli DF261. A biochemical assay was used to confirm that these 12 clones expressed a plasmid-borne enolase gene. Seven of the 12 exhibited greatly (10- to 100-fold) elevated levels of enolase activity relative to the native activity in E. coli DH5 α . Protein extracts from E. coli DH5 α (pTC144), the clone

FIG. 2. Restriction map of the *eno* region. The *eno* structural gene is shown below the line. The direction of transcription is indicated by an arrow below the line. The *Pst*I-to-*Kpn*I restriction fragment that was used as a hybridization probe is shown above the line.

exhibiting the highest enolase activity, were run on a denaturing polyacrylamide gel, revealing a prominent band with an apparent mobility of 48,000 Da (Fig. 1). This corresponds precisely to the location of enolase on one-dimensional gels of Z. mobilis proteins (2). An additional band of approximately 43,000 Da (identity unknown) was also observed on the gel.

A restriction map of the *eno* region was constructed (Fig. 2). Deletions of the Z. mobilis DNA insert in pTC144 that eliminated enolase activity were used to localize the *eno* reading frame. A gene-specific *eno* hybridization probe (Fig. 2) was generated and used for Southern analysis of genomic copy number (Fig. 3). The failure of this probe to hybridize to E. coli DNA confirmed that the *eno* gene on pTC144 originated from Z. mobilis (data not shown). The simple restriction pattern indicated that *eno* is present in a single copy on the Z. mobilis genome. This holds true for all of the glycolytic genes studied in Z. mobilis thus far (8).

Sequence analysis of the Z. mobilis eno region. The nucleotide sequence of a 2,656-bp region of the pTC144 insert was determined, revealing an open reading frame of 1,293 bp capable of encoding a protein of 431 amino acids with a predicted molecular weight of 45,817 (Fig. 4). No additional open reading frames were identified. The deduced primary amino acid sequence of the open reading frame corresponds precisely to the N-terminal sequence of the first 41 amino acids determined for purified enolase (29). The eno ribosome binding site consists of the sequence AGG located 7 bp upstream of the ATG initiation codon. This modestly efficient ribosome binding site is unusual for Z. mobilis glycolytic genes, which, with the exception of eno, all possess canonical ribosome binding sites. In fact, the eno ribosome binding site is more similar to those of the adhB, sacA,

FIG. 1. Cell extracts electrophoresed on a denaturing sodium dodecyl sulfate-polyacrylamide gel stained with Coomassie blue. Lanes: 1, *E. coli* DH5 α ; 2, *E. coli* DH5 α (pTC144); 3, *Z. mobilis* CP4; 4, size markers (kilodaltons). Each lane was loaded with 15 μ g of total cell protein.

FIG. 3. Southern gel analysis of total Z. mobilis genomic DNA with an *eno*-specific DNA hybridization probe. Size markers are in kilobase pairs on the right. DNA was digested with the following (lanes): 1, SalI; 2, PstI; 3, KpnI; 4, HindIII; 5, EcoRV; 6, EcoRI.

6550 BURNETT ET AL.

740		-		100	~		~~~	~	100	~	~~~~				~~~	~		~~~	-		100	~		~~~				~~~			***
-/40	GGC	TGG	CAA	ACG	GAT		GCG	CAT	ACG	GAA	GGC	GTG	CTG	CGA	CAC	CAR	CCA	GGC	TGG	CAA	ACG	GAT		GCG	CAT	ACG	GAA	GGC	GTG	CTG	-651
-650	CGA	CYC	CAA	CCG	TCA	CVY	CTG	GGT	TAC	GGC	GGA	TAA	TGC	TAT	GYC	TGC	TTT	TGG	TAA	TGT	CAG	CCA	λTT	TTT	TAT	CTT	TCA	GAG	ATT	TTG	-561
-560	YCY	λtt	TGC	CGA	TAT	GTT	TGG	AAG	CCT	TGT	GCA	TAT	λgt	CTC	CAT	ÅGG	AAC	TTC	CCN	GAT	TTT	CGG	CAA	CCN	λTT	CTG	GCG	GTC	TGG	TCG	-471
-470	ACG	λTT	TGG	CAC	ATT	λTT	AAC	AGC	TTC	GAT	GGC	TTT	GTG	ACG	ACC	TTC	ATC	ACC	ATT	TCA	tga	λTT	TTT	CCN	TGA	λλG	GGA	CTG	tga	TCC	-381
-380	TG A	λλŢ	YYY	TG A	TGC	λgt	TTA	TTT	TCT	TCT	TTT	TTT	λgt	YYY	ATC	TTT	GGC	TTC	GGA	λλG	λtg	CGA	TTT	TGC	TTT	TTC	AGC	CAG	GTG	λgλ	-291
-290	ÅGC	CGT	TTC	CGA	TAT	λtg	CTG	TCC	TAT	ATG	ATG	GCC	TTC	ATG	TTT	TGC	TTC	ATG	λgt	GGC	TTT	TTC	AGC	CTG	ATT	TTC	GGC	GTT	TTT	CTG	-201
-200	CVY	ATC	ATT	GGC	A GC	TGA	TGC	TAC	λtt	CGC	сус	AGT	TTT	GTT	TTC	GGC	CAT	TGT	CTA	TAC	TCC	ÅGT	TAC	TCA	ата	CGT	YYC	λλт	ÅÅT	CAG	-111
-110	TTT	ATC	CTA	ACT	ata	GAA	TCG	CAT	GAG	AAG	CGA	ТАА	CGT	TTC	ACC	λтλ	AGC	AAT	λтλ	TTC	λTT	GCA	YCY	GTG	GAA	TTG	CCT	TAT	GCG	TCA	-21
-20	àgg	алg	GAT	λga	TCA	TTG	ас <u>с</u> +:	GAC 1	TGA	GTT	CAA	***	GAG	ACT	CGT	ста	YYY	GAT	TTT	AAG	¥γγ	ggt	TTC	gat	ATG Net	ACA Thr	GCT Ala	ATT Ile	GTC Val	AGT Ser	70 6
71	ATC	CAT	GGC	CGT	CAG	GTT Val	GTC Val	GAC	AGC	CGC	GGT Glv	AAC	CCG	ACC	GTT Val	GAA Glu	GTT Val	GAT	GTT Val	ACG	CTT	GAA Glu	GAT	GGC Glv	AGC	TTC Phe	GGC	CGC	GCT	GCA Ala	160 36
161	676	cca	TCA	GGT	GCT	TOT	ACC	GGC	GTT	CAT	GAA	GCT	GTT	GAA	CTT	CGT	GAT	GGC	GAC		ACC	CGT	TGG	GGT	GGT		GGC	GTC	ACC	***	250
37	Val	Pro	Ser	Gly	Ala	Ser	Thr	Gly	Val	His	Glu	Ala	Val	Glu	Leu	Arg	λsp	Gly	Asp	Lys	Thr	Arg	Trp	Gly	Gly	Lys	Gly	Val	Thr	Lys	66
251	GCT	GTT Val	CAC	GCT	GTA Val	AAC	AAC	GAA Glu	ATT	GCT	AAC	GCA	ATT	ATT	GGT Glv	CTG Leu	GAA Glu	GCC	GAA Glu	GAT	CAG Gln	GAA Glu	CTG	ATC	GAC	CAG Gln	ACG	ATG Net	ATC	AAG Lvs	340
341	CTC	GAT	GGC	ACC	CCG	AAC	ANG	GGT		TTC	GGT	GCT	AAC	GCT	ATC	CTC	GGT	GTC	AGC	TTG	GCT	GTT	GCT		GCT	GCT	GCT	GAA	GCT	Cec	430
97	Leu	λsp	Gly	Thr	Pro	Asn	Lys	Gly	Lys	Phe	Gly	Ala	λsn	Ala	Ile	Leu	Gly	Val	Ser	Leu	Ala	Val	Ala	Lys	Ala	Ala	Ala	Glu	Ala	Arg	126
431	GGT	CTC	CCG	CTT	TAC	CGT	TAT	GTT Val	GGT	GGT	ACG	GCA	GCT	CAC	GTT Val	CTT	CCG	GTT Val	CCG	ATG	ATG Met	AAC	ATC	GTT Val	AAC	GGT	GGT	ATG Met	CAC	GCT	520 156
521	GAC	220		ATC	-3-	TTC	-3-	GAN	TTC	ATG		GCT	cca	GTT	GGC	acc	AGC	TCC	ATC		G11	GCT	GTC	cac	ATC	GGT	ACC	GAA	GTT	TTC	610
157	λsp	Asn	Pro	Ile	λsp	Phe	Gln	Glu	Phe	Met	Ile	Ala	Pro	Val	Gly	Ala	Ser	Ser	Ile	λsn	Glu	Ala	Val	Arg	Ile	Gly	Thr	Glu	Val	Phe	186
611	CAT	ACC	CTG	AAA 1.178		GAA	CTG	TCT	GCT	AAA L.v.e	GGC	ATG	AAC	ACC	AAC	GTC Val	GGT	GAC	GAA Glu	GGT	GGT	TTC Phe	GCT	CCT	AGC	CTT	GAC	AGT	GCT	TCT	700
701	TCT			arc		100	GTC	GAT	700	-10	TCC			667	TAC	116	CCG		GNA	GAT	676	TTC	ATC	GCT	CTC	GAT	GCA	GCT	TCC	TCC	790
217	Ser	Ala	Leu	Asp	Phe	Ile	Val	λsp	Ser	Ile	Ser	Lys	Ala	Gly	Tyr	Lys	Pro	Gly	Glu	Asp	Val	Phe	Ile	Ala	Leu	λsp	Ala	Ala	Ser	Ser	246
791	GAG Glu	TTC Phe	TAC	AAC	XXX Live	GAT	CAG	AAC	ATC	TAC	GAT	CTT	AAG Lve	GGT	GAA Glu	GGC	CGT	AAA L.v.e	CTG	ACC	TCC	GCT	CAG Gln	CTC	GTT Val	GAT	TAC	TAT	GTC Val	GAA	880 276
881	CTC	TGC	-1-		TAT	CCG	ATC	TAT	TCC	ATC	GN	GAT		ecc	GAA	GAT	GAC	TTC	GAA	TTC	TGG	ANG	ATC	CTT	ACC	GAA	-3-	CTC	GGT	GAC	970
277	Leu	Cys	Gly	Lys	Tyr	Pro	Ile	Tyr	Ser	Ile	Glu	λsp	Leu	Ala	Glu	λар	λsp	Phe	Glu	Phe	Trp	Lys	Ile	Leu	Thr	Glu	Lys	Leu	Gly	Asp	306
971 207	XXX	GTT	CAG	TTG	GTC	GGT	GAC	GAT	CTG	TTC Phe	GTG Val	ACC	AAC	GTG Val	λλG Lve	CGT	CTT	TCT	GAT	GGT	ATC	GAA Glu	CGC	GGT	ATC	GCC	AAC	TCG	CTG	CTC	1060
1061	CBC	Val		Deu MG	CNG	ang	can	web.			GN	100	CTC	GCA	- <u>-</u>	ann	220	1001	com		GAC	GCT		TAC	ACG		GTT	186		ChC	1150
337	Val	Lys	Phe	Asn	Gln	Ile	Gly	Ser	Leu	Ser	Glu	Thr	Leu	Ala	Ala	Val	λsn	Met	Ala	Asn	Asp	Ala	Ser	Tyr	Thr	Pro	Val	Het	Ser	His	366
1151	CGT	TCC	GTG	GAA	ACC	GAA	GAC	ACC	ACG	ATT	GCT	GAC	CTC	GCT	GTT	GCC	ACC	AAC	TGC	GGT	CAG	ATC	λλG Lure	ACC	GGT	AGC	CTT	TGC	CGT	TCC	1240
307	ALA	Ser	Val	ord				101		110		780		<i>a</i> 14	741			RCG	cys cys	acr					com	mca	GRE	cys.	161		1220
397	Glu	Arg	Ile	Ala	Lys	Tyr	λsn	Gln	Leu	Met	Arg	Ile	Glu	Glu	Glu	Leu	Gly	Ser	Val	Ala	Lys	Tyr	Ala	Gly	Arg	Ser	Val	Leu	λrg	Lys	426
1331	GCC	***	ТАА	GAA	TCA	CAG	CTA	GAA	CCG	GTT	TTT	ллл	CCG	CTC	таа	CTG	алт	GGG	GAC	ATT	GAG	сст	TGA	TTT	ATC	GCT	таа	λgg	CGG	TAA	1420
42/	AIA	Lys	Ena												-				-	~~~			~								1510
1421	TTA	TAG	GCT	CCA	TGT		TGA	TTC	GTT	CAR	AGA	ACA	GTC	TTT	TCC	GTG	CTG		TAG			CTT	GAT	GGT	TGT	TGT	CTT		GGT	CTT	1510
1511	CGT	CGG	TAA	TGC	CCT	TTT	GGG	CGA	AAT	GGT	TTA	CTG	GCA	CTC	GAT	GGT	TAC	CGC	CAR	-	ATG	GCC	GTT	AGA	***	GCG	GAA	TIG	906	GUT	1000
1601	TTG	GAA	CAC	CAG	CGA	GAC	CAA	TTG	GCG	AAC	AGC	ATC	GCC	CTT	CTT	AAT		AAG	CCA	CTG	ATC	CTT	GAT	TAT	CCG	AAG	AAT	TGG	TGC	GTA	1030
1691	AAG	***	CGG	GAA	ATT	CGG	CCG	GAT	GAA	GTG	ATT	GAT	CTC	GAC	AGC	CAG	AAT	***	TTC	AAC	TTT	TGG	AAT	GGA	TCA	CCA	TGA	TCT	AAC	GAG	1780
1781	GAC	ТАХ	CAG	CCT	TGT	TGA	TTA	TGG	GTA	***	GCT	TCT	ATT	CTA	GGC	TGA	TCG	CCG	CGA	TTG	YCY	GTT	TCT	CTT	TGA	λλg	CGT	GTC	ATT	ACT	1870
1871	CYY	ТАТ	TCA	ÅGG	TCA	AAT	CTG	TCT	TGA	TGA	ÅGC	TTC	λGλ	GTG	ACT	T															1916

FIG. 4. Nucleotide sequence of the Z. mobilis enolase gene and flanking regions. The sequence is numbered with respect to the transcriptional initiation site (+1). The ribosome binding site is underlined. The stop codon is indicated (End).

phoC, trpA, and trpB genes, all of which exhibit low-level expression in Z. mobilis (8). It has been suggested that all of the Z. mobilis glycolytic genes possess excellent ribosome binding sites as an underlying factor contributing to highlevel expression (8). If it is true that *eno* is not translated as efficiently as the other glycolytic genes are, some other factor, such as a high mRNA level, must account for the observed level of enolase.

The deduced amino acid sequence of Z. mobilis enolase revealed several close matches when used as a query to the GenBank data base (Fig. 5). Table 1 summarizes the results of the comparisons. Enolase appears to be highly conserved among all organisms studied, with 148 (32.7%) of 453 residues conserved in all species. The Z. mobilis enzyme most closely resembles the E. coli enolase, with 95 of the first 132 residues conserved. Interestingly, the Z. mobilis enzyme more closely resembles enolase from the higher eukaryotes than those from S. cerevisiae. The Z. mobilis enolase is the most divergent of the sequences studied. Nevertheless, the three ligands of the conformational cation within the active site region and four additional residues in the active site region are all conserved in the Z. mobilis enzyme (20). Several deletions were observed by comparison with S. cerevisiae enolase, including a six-residue deletion at position 295; two-residue deletions at positions 2, 88, and 214; and one-residue deletions at positions 311 and 372 (Fig. 5). These deletions were fitted to the three-dimensional structure of S. cerevisiae enolase derived from the coordinates of Lebioda et al. (20) by molecular modeling with an Iris 4D/320DGX system; no conformational perturbations of the active-site region were predicted by the computer.

Transcriptional analysis of eno. The 5' end of the eno

Zymomonas E. coli Yeast	1 MTAIVSIH MSKIVKII MAVSK.VY.A	GRQVVDSRGN GREIIDSRGN .RSVYDSRGN	PTVEVDVTLE PTVEAEVHLE PTVEVELTTE	DGSFGRAAVP GGFVGMAAAP KGVF.RSIVP	SGASTGVHEA SGASTGSREA SGASTGVHEA	VELRDGDKTR LELRDGDKSR LEMRDEDKSK	WGGKGVTKAV FLGKGVTKAV WMGKGVMNAV	HAVNNEIANA AAVNGPIAQA NNVNNVIAAA	IIGLEAED LIGKDAKD FVKANLDVKD	100 QELIDQTMIK QAGIDKIMID OKAVDDFLLS
Maize Insect Amphibian Avian	MAVTITWVKA MTIKAIKA MSIKNIRA	.RQIFDSRGN .RQIYDSRGN .REIFDSRGN	PTVEVDVGLS PTVEVDLTTE PTVEVDLYTC PTVEVDLYTN	DGSYARGAVP LGLF.RAAVP KGLF.RAAVP	SGASTGIYEA SGASTGVHEA SGASTGIYEA SGASTGIYEA	LELRDGGSDY LELRDNDKAN LELRDNDKTR	L.GKGVLKAV YHGKSVLKAV YLGKGVGRAV YMGKGVSKAV	SNVNNIIGPA GHVNDTLGPE KYVNEFLGPA EHINKTIAPA	IVGKDPTEQV LIKANLDVVD LCTQNLNVVE	EIDNFMVQQL QASIDNFMIK QEKIDKLMIE
Human Consensus	MSILKIHA M	-RDSRGN	PTVEVDLFTS PTVE	KGLF.RAAVP -GP	SGASTGIYEA SGASTGEA	LELRONDKTR -E-RD	YMGKGVSKAV GK-VAV	EHINKTIAPA	LVSKKLNVTE	QEKIDKIMIE
Zymomonas E. coli Yeast	101 LDGTPNKG LDGTEKKS LDGTANKS	KFGANAIL KFGANAIL KLGANAIL	gvslavakaa avslanakaa gvsmaaaraa	AEARGLPLYR A AAEKNVPLYQ	YVGGTAAH	VLPVPMM SPYVLPVPFL	N IVNGGMHAD NVLNGGSHAG	np i dfqefmi Galalqefmi	APVGASSINE APTGAKTFAE	200 AVRIGTEVFH AMRIGSEVYH
Maize Insect Amphibian Avian	DGTSNEWGWC LDGTENKS MDGTENKS MDGSENKS	KQKLGANAIL KFGANAIL KFGANALL KFGANAIL	AVSLAVCKAG GVSLAVAKAG GVSLAVCKAG GVSLAVCKAG	AMVKKIPLYQ AAKKGVPLYK AAEKGVPLYR AAEKGVPLYR	HIANLAGNKT HIADLAGNKE HIADLAGNPE HIADLAGNPE	LVLPVPAF IILPVPAF VILPVPAF VILPVPAF	NVINGGSHAG NVINGGSHAG NVINGGSHAG NVINGGSHAG	NKLAMQEFMI NKLAMQEFMI NKLAMQEFMI NKLAMQEFMI	LPTGASSFKE LPTGATSFTE LPVGADSFKE PPCGADSFKE	AMKMGVEVYH AMKMGSEVYH AMRIGAEVYH AMRIGAEVYH
Human Consensus	MDGTENKS	KFGANAIL K-GANA-L	GVSLAVCKAG -VS-AA-	AVEKGVPLYR APLY-	HIADLAGNSE	VILPVPAF LPVP	NVINGGSHAG NNGG-HA-	NKLAMQEFMI QEFMI	LPVGAANFRE -P-GAE	AMRIGAEVYH AG-EV-H
Zymomonas E. coli	TLKKELSAKG	MNTNVGDE	GGFAPSLDSA	SSALDFIVDS	ISKAGYKPGE	DVFIALDAAS	SEFYNKDQNI	YDLKGEGRKL	TSAQLVDYYV	ELCGK
Yeast Maize Insect Amphibian Avian Human	NLKSLTKKRY NLKSIIKKKY HLKNVIKAKF NLKNVIKEKY NLKNVIKEKY NLKNVIKEKY	GASAGNVGDE GQDATNVGDE GLDATAVGDE GKDATNVGDE GKDATNVGDE GKDATNVGDE	GGVAPNIQTA GGFAPNIQEN GGFAPNIQSN GGFAPNILEN GGFAPNILEN GGFAPNILEN	EEALDLIVDA KEGLELLKAA KEALNLISDA KEALELLKTA KEALELLKTA	IKAAGHDGKV IEKAGYTGKV IAKAGYTGKI INKAGYPDKI IGKAGYSDKV IGKAGYTDKV	KIGLDCAS VIGMDVAA EIGMDVAA VIGMDVAA VIGMDVAA VIGMDVAA	SEFFKDGKYD SEFFGEKDKT SEFYKDGQYD SEFYRDGKYD SEFYRDGKYD SEFFRSGKYD	LDFKNPES YDLNFKEENN LDFKNEKS LDFKSPDD LDFKSPDD LDFKSPDD	DKSKWLTGVE DGSNKISGDS DKSQWLPADK PSRYISP.DK PSRYISP.DQ PSRYISP.DQ	LADMYHSLMK LKDLYKSFVS LANLYKEFIK LAELYMSFVK LADLYKGFVK LADLYKSFIK
Consensus	-LK	NVGDE	GG-AP	L	IAG	D-A-	SEF	-D		
Zymomonas	.YPIYSIEDL	.AEDDFEFWK	ILTEKLGDKV	QLVGDDLFVT	NVKRLSDGIE	RGIANSLLVK	FNQIGSLSET	L.AAVNMAND	ASYTPVMSHR	400 SVETEDTTIA
E. Coll Yeast Maize Insect Amphibian Avian Human Consensus	RYPIVSIEDP EYPIESIEDP DFPIVSIEDP NYPVVSIEDP NYPVVSIEDP PSIED-	FAEDDWEAWS FDQDDWSTYA FDQDHWEAWS FDQDHWEAWT FDQDDWGAWK FDQDDWGAWQ D	HFFKTAGI. KLITDEIGQKV NLTGCTDI. KFTAASGI. KFTGSVGI. KFTASAGI.	QIVADDLTVT QIVGDDLLVT QVVGDDLTVT QVVGDDLTVT QVVGDDLTVT QVVGDDLTVT Q-V-DDL-VT	NPARIATAIE NPTRVAKAIN NPKRIATAVE NPKRIAKAVE NPKRIAKAVE NPKRIAKAVN NR	KKAADALLLK EKTCNALLLK KKACNCILLK EKACNCILLK EKACNCILLK EKSCNCILLK	VNQIGTLSES VNQIGSVTES VNQIGTVTES VNQIGTVTES VNQIGSVTES -NQIGE-	IKAAQDSFAA IEAVRMSKRA IAAHLLAKKN LEACKLAQSN LQACKLAQSN LQACKLAQAN	NWGVMV.SHR GWGVMA.SHR GWGTMV.SHR GWGVMV.SHR GWGVMV.SHR GWGVMV.SHR SHR	SGETEDTFIA SGETEDTFIA SGETEDSFIG SGETEDTFIA SGETEDTFIA S-ETEDT-I-
Zymomonas	401 DLAVATNCGQ	IKTGSLCRSE	RIAKYNQLMR	IEEELGSVAK	YAGRSVLRKA	453 K*.				
E. coli Yeast Maize Insect Amphibian	DLVVGLRTGO DLSVGLSTGO DLVVGLSTGO DLVVGLSTGO	IKTGAPARSE IKTGAPCRSE IKTGAPCRSE IKTGAPCRSE	RLAKLNQLLR RLAKYNQLLR RLAKYNQILR RLAKYNQILR	IEEELGDKAV IEEELGDAAV IEEEIGAGVK IEEELGSKAP	YAGENFHHGD YAGAKFRAPV FAGKSFGKPQ FAGKNFRFPU	KL* EPY * FN*				
Avian Human Consensus	DLVVGLCTGQ DLVVGLCTGQ DL-VGQ	IKTGAPCRSE IKTGAPCRSE IKTGRSE	RLAKYNQLLR RLAKYNQLLR R-AK-NQL-R	IEEELGSKAR IEEELGSKAR IEEE-G	FAGRNFRNPR FAGRNFRNPL -AG	IN* AK*				

FIG. 5. Comparison of the Z. mobilis enclase amino acid sequence with those of E. coli (35), S. cerevisiae (17), maize (Zea mays [19]), an insect (Drosophila melanogaster [6]), an amphibian (Xenopus laevis [30]), an avian (Anas platyrhynchos, Peking duck [36]), and human neuron-specific enclase-1 (14). Dots denote gaps introduced to maximize identities. Numbering is with respect to the consensus line.

mRNA was determined by primer extension analysis (Fig. 6). This result was confirmed by S1 nuclease protection analysis (data not shown). Transcriptional initiation proceeds from a guanine residue located 53 bp upstream of the *eno* start codon. A comparison of the sequence immediately upstream of the mapped transcriptional initiation site with the previously described consensus derived for highly expressed Z. *mobilis* glycolytic genes (3) revealed a significant

TABLE 1. Enclase amino acid compa	arisons
-----------------------------------	---------

	% Identity of enolases											
Species	Z. mobilis	E. coliª	S. cerevisiae	Maize	Insect	Am- phibian	Avian					
Z. mobilis												
E. coli	72.5											
S. cerevisiae	49.9	53.8										
Maize	48.6	45.5	56.5									
Insect	52.8	57.6	63.8	61.6								
Amphibian	53.4	59.8	61.6	64.2	67.5							
Avian	54.3	60.6	62.5	64.7	77.0	91.3						
Human	54.1	68.7	69.5	69.5	76.4	90.0	93.4					

^a Only the first 132 amino acids were available for this protein.

FIG. 6. Localization of the *eno* promoter by primer extension analysis. Sequencing lanes are labeled G, A, T, and C. The sequence of the region is shown on the right for clarity (arrow). The +1 denotes the start of the *eno* promoter sequence. Lane 1 carries the primer extension product.

0 3 6 9 12 15 18 21 24 27

FIG. 7. (A) Transcript stability determined by Northern blot analysis of the Z. mobilis eno transcript with a gene-specific hybridization probe (Fig. 2). Total RNA was harvested from logphase cultures after inhibition of transcription at the times indicated (in minutes) below the gel. Gels were loaded with 2.5 μ g of RNA per lane. Size markers (in kilobases) are provided at the right. (B) The data shown in panel A were quantitated by radioanalytic scanning of the filters and are shown on a semilogarithmic plot. The decay rate was determined by measuring the slope of the line. The half-life of the eno mRNA was 17.7 \pm 1.7 min.

match (55.7% identity). The strong identity of the *eno* promoter region with the Z. *mobilis* consensus implies efficient transcription initiation. It should be noted that enolase has been shown to be synthesized at a rate greater than that of the bulk of cell protein (25).

Northern blot analysis showed that *eno* is transcribed on a 1.45-kb transcript, indicating that *eno* is monocistronic (Fig. 7A). The *eno* message appears to be highly abundant, requiring just 30 min of exposure to X-ray film for 2.5 μ g of total RNA. Also, the *eno* message is present well into the stationary phase (data not shown). The prevalence of the *eno* transcript could be the result of rapid transcription and/or an unusually slow degradation rate. To consider this latter possibility, the decay rate of the *eno* message was determined (Fig. 7B). The measured decay rate is 17.7 ± 1.7 min, which indicates that *eno* is more stable than other *Z. mobilis* transcripts, including two transcripts of the *gap-pgk* operon (9), *gap* at 16 min (12), *gap-pgk* at 7 min (12), *pgi* at 6.0 min (15), *glf-zwf-edd-glk* at 12 min (3), and *frk* at 6.2 min (37).

Factors contributing to high enolase activity. The relative abundance of the enolase enzyme in Z. mobilis might be due to high levels of eno mRNA, a high rate of translation of the eno message, or resistance of the enzyme to proteolysis. The structure of the eno ribosome binding site does not appear to be conducive to efficient translational initiation. Resistance of the glycolytic enzymes to proteolysis appears to be a general property, since high levels of most of the enzymes remain well into the stationary phase, so this factor alone would not be expected to account for the high enolase activity (2, 25). Therefore, it seems likely that the high level of enolase results from an abundant eno message, perhaps due to a combination of rapid transcription and significant mRNA stability. Stability of the eno message might be imparted by the substantial stem-loop structures located both upstream and downstream of the eno structural gene (Fig. 8), as has been suggested for other Z. mobilis genes (22). Computer analysis (University of Wisconsin Genetics Computer Group TERMINATOR program) did not predict a

FIG. 8. (A) The 5' end of the *eno* message is predicted to form a stem-loop in which the ultimate 5' end is base paired within the stem. (B) The 3' end of the *eno* message is predicted to form these two adjacent stem-loop structures.

strong transcriptional terminator downstream of the gene. However, two prominent stem-loop structures were predicted in the region 100 bases downstream of the stop codon (Fig. 8B). The first stem-loop structure, spanning bases 1346 to 1378, has an upstream stem of 14 bases, a loop of 6 bases, and a downstream stem of 13 bases with a total of 11 paired bases (University of Wisconsin Genetics Computer Group FOLD program). The second stem-loop structure, spanning bases 1383 to 1438, has a stem of 26 bases with 21 bases paired and a loop of 6 bases (FOLD program). The measured length of the 1.45-kb mRNA is in keeping with the length that would be predicted based on the mapped location of the transcriptional initiation site (Fig. 6) and possible termination immediately downstream of the larger of the two stemloop structures. It is also possible that termination actually occurs at a site further downstream and that the major stem-loop structure serves to stabilize the 3' end of the eno message by blocking further 3'-to-5' exonuclease degradation, as has been suggested for other Z. mobilis mRNAs (22). Moreover, the 5' end of the eno message (Fig. 8A) is predicted by computer (FOLD program) to be paired in a simple stem-loop structure, a feature of the 5' region of E. coli mRNAs that has been shown to impart significant stability (13). Interestingly, other stable Z. mobilis mRNAs, including the processed monocistronic glf and glk transcripts, also possess upstream stem-loop structures in which the ultimate 5' ends of the messages are paired (22). The relative contributions of transcription rate and degradation rate to high eno mRNA levels, and hence high enolase activity, are being investigated.

ACKNOWLEDGMENTS

Computer time was provided courtesy of the University of Nebraska, Lincoln, Computer Resources Center. This work was supported by grants from the U.S. Department of Energy (DE-FG02-90ER20002) and the Nebraska Energy Office (UNR-11).

We thank B. Bachmann for providing strains and J. Stezowski and P. Goebel for assisting with three-dimensional enzyme structure analysis.

REFERENCES

 Algar, E. M., and R. Scopes. 1985. Studies on cell-free metabolism: ethanol production by extracts of *Zymomonas mobilis*. J. Biotechnol. 2:275-287.

J. BACTERIOL.

- An, H., R. K. Scopes, M. Rodriguez, K. F. Mackenzie, and L. O. Ingram. 1991. Gel electrophoretic analysis of *Zymomonas mobilis* glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173:5975-5982.
- Barnell, W. O., J. Liu, T. L. Hesman, M. C. O'Neill, and T. Conway. 1992. The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region. J. Bacteriol. 174:2816–2823.
- Barnell, W. O., K. C. Yi, and T. Conway. 1990. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J. Bacteriol. 172:7227-7240.
- Barrow, K. D., J. G. Collins, R. S. Norton, P. L. Rogers, and G. M. Smith. 1984. ³¹P nuclear magnetic resonance studies of the fermentation of glucose to ethanol by Z. mobilis. J. Biol. Chem. 259:5711-5716.
- Bishop, J. G., and V. G. Corces. 1990. The nucleotide sequence of a *Drosophila melanogaster* enolase gene. Nucleic Acids Res. 18:191–199.
- Conway, T., M. O.-K. Byun, and L. O. Ingram. 1987. Expression vector for *Zymomonas mobilis*. Appl. Environ. Microbiol. 53:235-241.
- Conway, T., R. Fliege, D. Jones-Kilpatrick, J. Liu, W. O. Barnell, and S. E. Egan. 1991. Cloning and characterization of the *Zymomonas mobilis eda* gene that encodes 2-keto-3-deoxy-6-phosphogluconate aldolase of the Entner-Doudoroff pathway. Mol. Microbiol. 5:2901-2911.
- Conway, T., and L. O. Ingram. 1989. Phosphoglycerate kinase gene for Zymomonas mobilis: cloning, sequencing, and localization within the gap operon. J. Bacteriol. 170:1926–1933.
- Conway, T., and L. O. Ingram. 1989. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. J. Bacteriol. 171:3754–3759.
- 11. Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis tools for the VAX. Nucleic Acids Res. 12:287-395.
- Eddy, C. K., J. P. Mejia, T. Conway, and L. O. Ingram. 1989. Differential expression of gap and pgk genes within the gap operon of Zymomonas mobilis. J. Bacteriol. 173:6549-6554.
- 13. Emory, S. A., P. Bouvet, and J. G. Belasco. 1992. A 5'-terminal stem-loop structure can stabilize mRNA in *Escherichia coli*. Genes Dev. 6:135–148.
- Giallongo, A., S. Feo, R. Moore, C. M. Croce, and L. C. Showe. 1986. Molecular cloning and nucleotide sequence of a full length cDNA for human alpha enolase. Proc. Natl. Acad. Sci. USA 83:6741-6745.
- Hesman, T. L., W. O. Barnell, and T. Conway. 1991. Cloning, characterization, and nucleotide sequence analysis of a Zymomonas mobilis phosphoglucose isomerase gene that is subject to carbon source-dependent regulation. J. Bacteriol. 173: 3215-3223.
- Hillman, J. D., and D. G. Fraenkel. 1975. Glyceraldehyde 3-phosphate dehydrogenase mutants of *Escherichia coli*. J. Bacteriol. 122:1175-1179.
- Holland, M. J., J. P. Holland, G. P. Thill, and K. A. Jackson. 1981. The primary structure of two yeast enolase genes: homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 256:1385-1395.

- Irani, M. H., and P. K. Maitra. 1977. Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J. Bacteriol. 132:398-410.
- Lal, S. K., S. Johnson, T. Conway, and P. M. Kelly. 1991. Characterization of a maize cDNA that complements an enolase-deficient mutant of *Escherichia coli*. Plant Mol. Biol. 16: 787-795.
- Lebioda, L., B. Stec, and J. M. Brewer. 1989. The structure of yeast enolase at 2.25-Angstrom resolution. J. Biol. Chem. 264:3685-3693.
- Lessie, T. G., and P. V. Phibbs. 1984. Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol. 38:359–387.
- Liu, J., W. O. Barnell, and T. Conway. 1992. The polycistronic mRNA of the Zymomonas mobilis glf-zwf-edd-glk operon is subject to complex transcript processing. J. Bacteriol. 174: 2824–2833.
- 23. Luria, S. E., and M. Delbruck. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491-511.
- Montenecourt, B. S. 1985. Zymomonas, a unique genus of bacteria, p. 261-289. In A. L. Demain and N. A. Solomon (ed.), Biology of industrial microorganisms. Benjamin Cummings Inc., Menlo Park, Calif.
- Osman, Y. A., T. Conway, S. J. Bonetti, and L. O. Ingram. 1987. Glycolytic flux in *Zymomonas mobilis*: enzyme and metabolite levels during batch fermentation. J. Bacteriol. 169:3726–3736.
- Pawluk, A., K. Scopes, and K. Griffiths-Smith. 1986. Isolation and properties of the glycolytic enzymes from Zymomonas mobilis. J. Biochem. 238:275-281.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- 29. Scopes, R. K. (La Trobe University, Bundoora, Australia). Personal communication.
- Segil, N., A. Shrutkowski, M. B. Dworkin, and E. Dworkin-Rasti. 1988. Enolase isoenzymes in adult and developing *Xenopus laevis* and characterization of a cloned enolase sequence. Biochem. J. 251:31-39.
- 31. Silhavy, T. J., M. L. Berman, and L. W. Enquist. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Spring, T. G., and F. Wold. 1971. The purification and characterization of *Escherichia coli* enolase. J. Biol. Chem. 246:6797– 6802.
- 33. Thomson, J., P. D. Gerstenberger, D. E. Goldberg, E. Gociar, A. O. deSilva, and D. G. Fraenkel. 1979. ColE1 hybrid plasmids for *Escherichia coli* genes of glycolysis and the hexose monophosphate shunt. J. Bacteriol. 137:502-506.
- 34. Viikari, L. 1988. Carbohydrate metabolism in Zymomonas mobilis. Crit. Rev. Biotechnol. 7:237-261.
- Weng, M., C. A. Makaroff, and H. Zalkin. 1986. Nucleotide sequence from *E. coli pyrG* gene encoding CTP synthetase. J. Biol. Chem. 261:5568-5574.
- 36. Wold, F. 1971. Enolase, p. 499-538. In P. D. Boyer (ed.), The enzymes, vol. 5, 3rd ed. Academic Press, Inc., New York.
- 37. Zembruski, B., P. Chilco, S. L. Liu, J. Liu, T. Conway, and R. K. Scopes. 1991. The fructokinase gene from Zymomonas mobilis: cloning, sequencing, expression and standard comparison with other hexose kinases. J. Bacteriol. 174:3455-3460.