
Supplementary Material: Network Entropy

Here we briefly review the concept of network entropy and the fluctuation
theorem, which had been introduced by Demetrius et al. [1], and applied to
the characterisation of biological networks and their elements in [2].

The key ingredient in this formalism is a fluctation theorem which states
that changes in the robustness of a network are positively correlated to
changes in another macroscopic variable, network entropy. While robustness
is defined as the resilience of the network against changes in the underlying
network parameters, network entropy characterizes its pathway diversity.
Importantly, network entropy can be specified in microscopic terms.

We start from a representation of the network in terms of its adjacency
matrix, A = (aij), where the matrix elements are all non-negative to denote
the interaction strength between nodes i and j in the network. Notice that
for the special case of undirected and unweighted networks the adjacency
matrix is Boolean and symmetric.

The largest (dominant) eigenvalue is a topological invariant of the adja-
cency matrix, and it is known to satisfy a variational principle [3]

log λ = sup
P

−∑
i,j

πipij log pij +
∑
i,j

πipij log aij

 , (1)

where the supremum is taken over all stochastic matrices P = (pij), that
are compatible with the adjacency matrix A. Here compatible means that
pij = 0 ⇔ aij = 0, and a stochastic matrix satisfies

∑
j pij = 1. The above

formula also invokes the stationary distribution, π, which characterizes the
long-time invariant behaviour of the Markov process described by the matrix
P .

πP = π . (2)

If P is ergodic, then the components πi satisfy πi > 0 and denote the relative
frequency with which the random walk on the network visits node i.

It has been shown [3] that, for strongly connected networks, the supre-
mum is attained for a unique matrix P̂ = (p̂ij), where

p̂ij =
aijvj

λvi
. (3)

With this choice of the matrix P , Eq. 1 becomes

log λ = −
∑
i,j

πip̂ij log p̂ij +
∑
i,j

πip̂ij log aij . (4)
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The first term on the right side is nothing but the network entropy,

H(P̂ ) = −
∑
i,j

πip̂ij log p̂ij =
∑

i

πiHi , (5)

where Hi is the standard Shannon entropy defined for each node i and πi

are the components of the stationary distribution as defined by Eq.2.
The fluctuation theorem derived in [1] introduces the probability Pε(t)

that time averages along trajectories differ by more than ε from ensemble
averages over all trajectories. The ergodic theorem states that Pε(t) con-
verges to zero for large enough times. Hence one can define a fluctuation
decay rate R as

R = lim
t→∞

[
−1

t
log Pε(t)

]
. (6)

Large values of R entail small deviations of macroscopic observables from
the ensemble average, and small values of R correspond to large fluctuations
around its mean value. Thus, R characterizes the robustness of a macro-
scopic observable in the face of changes in the underlying parameters. The
fluctuation theorem, [1], asserts that changes in R are positively correlated
with changes in network entropy:

∆H∆R > 0 . (7)

The fluctuation theorem implies that an increase in entropy entails a greater
insensitivity of macroscopic observables.

References

[1] L Demetrius, VM Gundlach, and G Ochs. Complexity and demographic
stability in population models. Theor Popul Biol, 65(3):211–25, 2004.

[2] T Manke, L Demetrius, and M Vingron. An entropic characterization of
protein interaction networks and cellular robustness. J R Soc Interface,
3(11):843–50, 2006.

[3] L Arnold, V Gundlach, and L Demetrius. Evolutionary formalism for
products of positive random matrices. Annals of Probab., 4(3):859–901,
1994.

2


