Table	1- Comp	oatibility	of the vari	ous mode	els in Fig	gure 10	to accumulated	d experimental data.	
		~							

	Model A	Model B	Model C	Model D	
	$k_{on} = \frac{(\mathbf{H}^+)^2 k_{on(EH_2)} + [\mathbf{H}^+] K_{a_1} k_{on(EH)} + K_{a_1} K_{a_2} k_{on(E)}}{K_{a_1} K_{a_2} + [\mathbf{H}^+] K_{a_1} + [\mathbf{H}^+]^2}$	$k_{on} = \frac{\left[\mathbf{H}^{+}\right]^{2} k_{on(EH_{2})} + \left[\mathbf{H}^{+}\right] K_{a} k_{on(EH)} + \left(K_{a}\right)^{2} k_{on(E)}}{\left(K_{a}\right)^{2} + \left[\mathbf{H}^{+}\right] K_{a} + \left[\mathbf{H}^{+}\right]^{2}}$	$k_{on} = \frac{(K_{a})^{2} k_{on(E)}}{(K_{a})^{2} + [\mathbf{H}^{+}] K_{a} + [\mathbf{H}^{+}]^{2}}$	$k_{\text{on}} = \frac{k_{\text{on}(\text{EH}_3)}[\mathbf{H}^+] + k_{\text{on}(\text{E})}K_{\text{a}}}{K_{\text{a}} + [\mathbf{H}^+]}$	
R ²	0.982	0.957	0.935	0.973	
Stoichiometry of 2H+/ 1 Dimer	Yes	Yes	Yes	No	
pK _a well above 7.0	$pK_{a_1} = 6.80 pK_{a_2} = 8.16$	pK _a =7.70	pK _a =7.28	pK _a =7.72	
Single pK _a	No	Yes	Yes	Yes	
Single exponential binding reaction (No intermediate)	No	No	Yes	Yes	

Model A assumes two different pKa's and three different rates for fully protonanted protein ($k_{on(EH2)}$), protein that released one proton ($k_{on(EH)}$) and deprotonated protein ($k_{on(E)}$). Model B is similar to A, but assumes that the pKa's of the two groups are identical. Model C is similar to B but under the assumption that binding to protonated protein is impossible, therefore $k_{on(EH2)}$ and $k_{on(EH)}$ are both zero. Model D is a model for protonation of a single group, under the assumption that the two protons leave the protein practically at the same time due to high cooperativity. The validity of the models is challenged with four different accumulated experimental results.