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The Bayesian Approach. A graphical representation of the quantities in the annual and

seasonal model, the corresponding observation models, and their relationships are given

in Fig. 6. A complete Bayesian model consists of the joint prior distribution for all

unobservables, here (for the annual model) α1, α2, σ, λf, and γf and the unknown states y1,

y2, . . . , yN, and the joint distribution of the observables, here the abundance data (zf,1, zf,2,

. . . , zf,N) and the trapping effort (Tf,1, Tf,2, . . . , Tf,N). Bayesian inference is then based on

the posterior distribution of the unobservables given the data. By conditioning on the

data, the posterior distribution (i.e., the conditional probability of the unobservable

quantities of interest, given the observed data) is calculated [by successive application of

Bayes theorem (1)]. The posterior distribution can usually not be obtained analytically

but can be computed by using Markov Chain Monte Carlo methods, for instance, Gibbs

sampling (2). Bayesian inference is readily applicable through BUGS (Bayesian inference

using Gibbs sampling; www.mrc-bsu.cam.ac.uk/bugs).

To fully specify our model, a prior distribution has to be defined for all

unobservable parameters that are not directly conditioned on other parameters or

observed data (for the annual model these are: α1, α2, σ, and γf). Vague (i.e., essentially

flat) prior distributions were used [α1 ~ N(0,100), α2 ~ N(0,100), γf ~ N(0,100), and 1/σ2

~ Gamma(0.001, 0.001)], meaning that the prior tells us little about the parameters

relative to what is learned from the sample. For both the annual and the bivariate seasonal

model we performed 90 000 iterations of the Gibbs sampler, using WINBUGS 0.6, after a

“burn-in” of 10,000 iterations. This was done for each of the 84 locations for which both

spring and fall data were available.

Convergence. Autocorrelations within the Markov chains seemed to be reasonably low

[indicating that the mixing of the Gibbs sampler is not too slow (3)]. Convergence was

also assessed through the runs of multiple chains and Gelman−Rubin convergence

statistics (4).

The annual model converged for all 84 sites. For the seasonal model, data from 74

of the total of 84 sites were judged to converge appropriately. The seasonal model failed



to converge for 10 sites (assf6, assf7, assf9, assf10, aassf28, assf37, assf59, assf68,

assf74, and assf78) because of excessive auto- and cross-correlations for some of the

Markov chains. Only the remaining 74 of 84 sites were used in analyses of the seasonal

parameters. Including all seasonal estimates in the analyses will, we are convinced, not

change the conclusions of the paper; indeed, including only 74 of the 84 is a conservative

restriction of our total data set. Notice, furthermore, that data from all 84 sites are used in

our main results summarized in Table 1 and depicted in Fig. 1 B and C.

The Parameter Estimates (BUGS estimates). Parameter estimates together with credible

intervals (the Bayesian equivalent to confidence intervals) are given in Tables 3 and 4 for

the annual and seasonal models, respectively (parameters of the corresponding

observation model are not shown).

The Parameter Estimates (Standard Autoregressive Modeling Ignoring Sample

Variance). Parameter estimates for an order-two annual model are given in Table 5.

Deducing the Annual Variance from the Seasonal Variances. We have the following

model:

Rwt = xt −−−− yt-1 = aw1yt-1 + aw2xt-1 + aw3yt-2 + aw4xt-2 + εwt [S1]

Rst = yt −−−− xt = as1xt + as2yt-1 + as3xt-1 + as4yt-2 + εst, [S2]

where εwt is a process noise during the winter (being normally distributed with mean 0

and variance σw
2) and εst is a process noise during the summer (being normally

distributed with mean 0 and variance σs
2). The parameters aw and as define the seasonal

density-dependent structure.

Together Eqs. S1 and S2 define the annual net growth rate, defined for instance as

the fall-to-fall-growth net rate, Rt = yt −−−− yt-1. We can now rewrite Eqs. S1 and S2 as a

model in y only:

Rt = yt −−−− yt-1



 = (aw1 + as1 + aw2 + as2 + aw1as1)yt-1

 + (aw3 + as3 + aw4 + as4 + aw1as3 + as1aw3 −−−− aw2as2)yt-2 + (aw3as3 −−−− aw2as4 −−−− as2aw4)yt-3

 −−−− aw4as4 yt-4 + ηt′, . [S3]

where ηt′ = εst + (1 + as1)εwt −−−− aw2εst-1 + as3εwt-1 −−−− aw4εst-2 is no longer a white noise

process (even though its components are). The covariance structure of ηt′, assuming no

covariation between summer and winter noise, is defined by (5)

c0 = σs
2(1 + aw2

2 + aw4
2) + σw

2[(1 + as1)2 + as3
2] [S4]

c1 = −aw2σs
2 + (1 + as1)as3σw

2 + aw2aw4σs
2 [S5]

c2 = −aw4σs
2, [S6]

where, ci denotes the covariance of ηt′ components having a time-lag difference of i.

More appropriately, the expression for ηt′ may be written as ηt′ = ηt + β1ηt-1 + β2ηt-2

where ηt is normally distributed with N(0, ση
2). The two expressions for ηt′ should have

an equal covariance structure, and as a result, ση
2 may be expressed, implicitly and

assuming no covariation between the variance during the winter and summer, as a

function f(σs
2, σw

2) given as follows:

ση
2 + ση

2c1
2/(ση

2 + c2)2 + c2
2/ση

2 −−−− c0 = 0 [S7]

The solutions for each of the time series are given in Table 6. This has several solutions;

whenever there is ambiguity with respect to solutions, we give all solutions in Table 6.

Additional Methodological Aspects. Simulated data were used to investigate the bias

observed in the one-to-one line of Fig. 3B. Data were simulated from the seasonal

bivariate model (Eqs. S1 and S2) by using the parameter estimates obtained from

previous fitting of this model to data from site assf12 or assf36 (two typical populations

of group 2). The simulated data represent true abundance values and therefore the

sampling process was ignored. Each of 30 data sets (15 data sets were simulated for each



of the two sets with estimates) was then fitted to the seasonal bivariate model (Eqs. S1

and S2) and the annual second-order model (Eq. 3) by using BUGS. The annual density-

dependent coefficients predicted from the seasonal model were compared with the

corresponding coefficients directly estimated from the annual model (Fig. 7). As can be

seen, there are deviations from the one-to-one expectations. A similar pattern was found

when using an annual model of order four instead of order two when estimating the first

and second coefficients (although the bias for the first coefficient no longer became

significant; results not shown). Our results suggest that the similar bias observed when

using real data (Fig. 3B) was not due to methodological aspects, such as state-space

modeling (the incorporation of a sampling process), ignoring the predicted order four in

the annual model or the noise term in the bivariate seasonal model not being white.

Estimating the Relative Length of Winter. Earlier, Stenseth et al. (6) used a proxy for

the length of the breeding season, τ, assumed to be directly related to the warmth index,

WI, given as Σ(T − 5), where the sum is taken over months for which the average

monthly temperature, T, is equal to or above 5°C (7, 8). By so doing, Stenseth et al.

demonstrated that τ is closely related to the geographic scores. This relation is further

improved when we assume that the winter length (τw; τw = 1 − τ) is related to the WI

through a logit function: τw = blogit(cWI). WI may furthermore be approximated (and

estimated) by using geographic coordinates [i.e., position in the south−north and

west−east direction (denoted gsn and gwe, respectively), and altitude above sea level

(denoted H)]. (The latter approximation is necessary, because the meteorological stations

where the WI is measured do not correspond to the sampling stations for the voles.

However, all sampling stations have geographical coordinates and altitude.) The

geographic coordinates gwe and gsn are ordinary longitude and latitude, respectively, given

in minutes [defining 139°00' E and 41°00' N as the origin (0,0)]. However, because 1 min

of latitude does not correspond to the same geographic distance as 1 min of longitude, the

values of gwe have to be standardized. In Hokkaido, 60 min of longitude corresponds to

80.75 km, whereas 60 min of latitude is 112.2 km. Thus, the original values of gwe are

multiplied by 1.389. When regressing WI on geographic coordinates and altitude (h =

loge(H + 1)), using Akaike’s Information Criterion (AIC) as a selection criterion, we



obtain the following model: ŴI = 80.0479 −−−− 0.0887gwe −−−− 0.0914gsn −−−− 3.0481h +

0.0003gwegsn + 0.0183gsnh.

We assume that the winter length (τw) is related to the warmth index through the

relation τw = blogit(cWI), where the parameters b and c are determined by assuming the

relative length of the winter to be 7/12 where the WI is the lowest and 4/12 where the WI

is the highest. Furthermore, we assume that WI is appropriately modeled by using

geographic coordinates [i.e., position in the south−north and west−east direction (denoted

gsn and gwe respectively), and altitude above sea level (denoted H)]. The relationship

between WI and gsn, gwe, and h [where h = loge(H)] is determined by linear regression;

the best model obtained, using AIC (9), starting with the most general model WI = d0 +

d1gwe + d2gsn + d3h + d4gwegsn + d5gsnh + d6gweh. On this basis, we arrive at the following

expression for the relative length of winter: τw = blogit(p0 + p1gwe + p2gsn + p3h + p4gwegsn

+ p5gsnh) + error, where pi = cdi. We obtained the following model τw =

3.63logit(−3.201916 + 0.003548gwe + 0.003656gsn + 0.121924h −−−− 0.000012gwegsn −−−−

0.000732gsnh) (see ref. 10 for further information). We have performed robustness testing

by varying the assumed length of the winters (7/12 and 4/12, respectively); as can be

seen, our results are robust against this variation.

To estimate the values of b and c in τw = blogit(cŴI), we assume that the longest

summer is 8 months and is found at sea level in the southwestern part of Hokkaido, and

that the shortest one is 5 months and found in the northeastern part of Hokkaido (10-12).

Two meteorological stations are selected in each part of the island (Fig. 8), all having WI

values relatively well predicted by the model described above [for selected stations:

(residual)2 < 12; overall mean (residual)2 = 24]. Combining both selected stations in the

southwest with both stations in the northeast produces four sets of equations: τwSWi =

blogit(cWISWi) and τwNEi = blogit(cWINEi), where i = 1, 2. The values of b and c are then

determined by using the function uniroot in S-PLUS 2000 (13) (we obtain the estimates b =

3.63 and c = −0.04). The model for ŴI is subsequently entered into the resulting

expression, producing the following model of the relative length of winter τw:



τw = 3.63logit(−3.201916 + 0.003548gwe + 0.003656gsn + 0.121924h −−−− 0.000012gwegsn −−−−

0.000732gsnh) + error

Fig. 9A shows the curvilinear relation between the predicted τw and the predicted ŴI. Fig.

9B shows the relation between the predicted τw and the predicted ŴI, using observed WI

values to calculate τw.

Fig. 10 summarizes sensitivity analyses varying the maximum and minimum

winter lengths. The panel shown in the main paper is highlighted in the frame. As can be

seen, the overall pattern is rather robust to deviations form our assumed maximum and

minimum length of the winter.

Estimating the Annual Model on the Basis of the Spring-to-Spring Dynamics. Fig.

11 show the pattern depicted in Fig. 1C (also see Table 1). As can be seen, the overall

same pattern emerges suggesting that our results in that respect are robust.
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