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(A) Cin5 H202Hi sequence-set: Cin5 is known to recognize TTAC[A/G]TAA
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(B) Cin5 YPD sequence-set: Cin5 is known to recognize TTAC[A/G]TAA
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(C) Gat1 RAPA sequence-set: Gat1 is known to recognize GATAA
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(D) Gcr1 YPD sequence-set: Gcr1 is known to recognize GGCTTCC[A/T]C
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(E) Hap2 RAPA sequence-set: Hap2 is known to recognize CCAAT
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(F) Mac1 H202Hi sequence-set: Mac1 is known to recognize GAGCAAA
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(G) Mac1 YPD sequence-set: Mac1 is known to recognize GAGCAAA
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(H) Sko1 YPD sequence-set: Sko1 is known to recognize ACGTCA
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(I) Ste12 BUT90 sequence-set: Ste12 is known to recognize ATGAAAC
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Figure S1. Distribution of average SN and SDN scores in nine sequence-sets. (A)–(I)
represent the nine sequence-sets out of the 156 considered, where PRIORITY-DN succeeds while
both PRIORITY-U and PRIORITY-N fail. The scores in this figure are calculated over W -mers
where W is set to the true motif length. Known binding sites are indicated with red dots on the
curve. In almost each sequence-set, the true binding sites fall in a higher percentile when scored
using SDN than SN . If we call W -mers that score higher than the true binding sites ‘distractors’
for motif discovery, we notice that in most cases, the SDN score of the binding site is higher than
the SN score, relative to the respective SDN and SN scores of the distractors. Thus in terms of
both the number of words scoring higher than the binding site (towards the right of the X-axis)
and the relative value of the binding site score with respect to scores of distractors (towards the
top of the Y -axis), SDN is better.

Cases (D) and (I) are of special interest. In the Gcr1 YPD sequence-set, the binding site
GGCTTCCAC scores slightly higher in terms of percentile and a lot higher in terms of the relative
score of distractors when the score is computed using SN . Further investigation showed that
there is only one copy of each “known” binding site in the whole sequence-set of 24 sequences.
Naturally, Gcr1 must bind other 9-mers close to the true motif. We looked at the eight distinct
9-mers (having at least one copy in the sequence-set) with exactly one mismatch with one of
the two binding sites. For all but two of these eight, the SDN score is better, relatively as well
as percentile based. For a motif to be learned, all sites used in the creation of the motif must
generally have a high prior probability. We believe this is the reason PRIORITY-N fails to find
the true motif. We also scored the motif learned by PRIORITY-DN using the N prior to see if
by chance PRIORITY-N was stuck in some local optimum, but found this was not the case.

In case of Ste12 BUT90, where Ste12 is profiled in cells treated with butanol for 90 minutes,
PRIORITY-DN finds a motif matching ATGAAAC. As discussed in the paper, Ste12 forms a complex
with Tec1 and Tec1 binds DNA at CATTCy during filamentaion (which is induced upon butanol
treatment). However, during mating, Ste12 makes DNA contact at ATGAAAC. We notice that the
Tec1 binding sites are also highly enriched in this sequence-set (not shown). In fact, in the 10
runs of the Gibbs sampler from different random initializations, although the top scoring motif
was that of Ste12, the second best motif was that of Tec1. We suspect 90 minutes of butanol
treatment puts the cell in an intermediate state in terms of filamentation. (The results discussed
in paper are in cells treated with butanol for 14 hours, where the sequences are more strongly
enriched for Tec1 binding sites.)


