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SUPPORTING INFORMATION

Strong-interaction limit

Here we define, for the case of no diffusion, what we mean
by the strong-interaction limit, but the limit is equally valid
when diffusion is present. We make the critical assumption
that at any cellular position the decay of the minority species
is dominated by coupled degradation; by rescaling Eq. 2 of
the main text, this condition amounts to

max

{

kαm(x)/βm

βµ

,
kαµ(x)/βµ

βm

}

≫ 1, for all x. (S1)

In the absence of diffusion, Eq. 2 boils down to a quadratic
equation for the steady-state mRNA levelm, and one can im-
mediately write the solution

m =
1

2βm

[

αm − αµ(1 + ǫ) +
√

[αm + αµ(1 + ǫ)]2 − 4αmαµ

]

(S2)
whereǫ ≡ βmβµ/(kαµ), which is assumed in (S1) to be
small. To zeroth order inǫ, this expression simplifies to

m ≈
[αm − αµ]+

βm

, (S3)

where[x]+ = max{0, x}, as depicted in Fig. 1B.

Analytical Approximation

To understand the origin of the length scalesλ andℓ, and
their relation to the tissue lengthL when the interface is sharp,
consider first the region of space where miRNA are in the
majority. In this region, wherekµ ≫ βm, we neglect the
idependent-degradation term in (2a), yieldingαm = kmµ and
thus

0 = αµ − αm − βµµ + Dµ′′ . (S4)

Hence miRNA are produced at an effective rateαµ − αm and
diffuse over distances of order

λ =

√

D

βµ

, (S5)

which, as we have argued in the main text, should be com-
parable to the tissue length,λ ∼ L. On the other hand, in
the mRNA-rich zonekm ≫ βµ and so the only length scale
available to the miRNA is

ℓ =

√

D

kα∗

m/βm

, (S6)

whereα∗

m is a typical value ofαm(x) in the mRNA-rich zone.
For the mRNA this is the only length scale that competes with
the spatial layout provided by the transcription profile andso

it must determine the interface width up to a constant prefac-
tor p. Hence the second condition for a sharp interface is that
pℓ ≪ L. In agreement with the expression in Eq. S6, de-
rived on heuristic grounds, our numerical solutions show that
the interface becomes broader when the co-degradation ratek
is decreased (Fig. 1G) or when the diffusion constantD is in-
creased (Fig. 1H). We note that the limitpℓ ≪ L is equivalent
to

kα∗

m/βm ≫ D/L2. (S7)

In other words, a sharp interface arises when the co-
degradation rate of miRNA and target dominates the rate of
diffusion over macroscopic distances. Since we are neglect-
ing diffusion of miRNA in the mRNA-rich region, the mRNA
profile there is given again by (S3).

Microscopically, miRNA in the miRNA-rich zone diffuse
in a landscape dominated by independent degradation, lead-
ing to the decay lengthλ in (S5). Upon entering the mRNA-
rich region, co-degradation suddenly overwhelms indepen-
dent degradation of miRNA (km ≫ βµ), and the miRNA are
faced with an effective absorbing boundary. We therefore ex-
pect the miRNA concentration to vanish as one approaches the
interface from the right. In addition, our picture asserts that
the miRNA concentration is vanishingly small everywhere on
the left of the interface. Taken together, these two properties
impose zero miRNA concentration and zero miRNA diffusive
flux at the interface. These two boundary conditions on the
miRNA dynamics at the interface between mRNA-rich and
miRNA-rich regions, together with the zero-flux condition at
x = L, allow us to determine the positionxt of the interface.
Furthermore, the interface must lie in the region defined by
αm > αµ because co-degradation can dominate independent
degradation of miRNA only if there is a reservoir of mRNA
to co-degrade with.

Armed with this insight into the miRNA profile we
may now solve (S4), subject to the boundary conditions
−Dµ′(xt) = −Dµ′(L) = 0 andµ(xt) = 0, in terms of a
Green’s function. Making use of the zero-flux boundary con-
ditions, the Green’s function of (S4) is

g(x, s) =

{

G(x, s) if x < s
G(s, x) if x > s

, (S8)

where

λG(x, s) =
cosh

(

x−xt

λ

)

cosh
(

L−s
λ

)

sinh
(

L−xt

λ

) . (S9)

The miRNA profile is then a weighted spatial average of the
net transcriptional flux of miRNA to the right of the interface

βµµ(x) =

∫ L

xt

[αµ(s) − αm(s)]g(x, s) ds. (S10)
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Employing the zero-concentration boundary condition
µ(xt) = 0, we arrive at the following implicit equation forxt

∫ L

xt

[αµ(s) − αm(s)] g(xt, s) ds = 0. (S11)

As mentioned in the text, this equation takes a simple form in
the limit βµ → 0, whereg(x, s) becomes a constant, and one
has

∫ L

xt

αµ(s)ds =

∫ L

xt

αm(s)ds. (S12)

In either case, solving forxt requires knowledge only of the
transcription profiles. Moreover, one immediately sees that
xt can tolerate fluctuations in the transcription profiles which
preserve the integral. This should be contrasted with the non-
diffusive case in whichxt reduces to the crossing point of the
transcription profiles,αm(xt) = αµ(xt), which is less robust
to small-number fluctuations.

In Fig. S1 we compare the analytical expressions in Eqs. S3,
S10 and S11 with the exact numerical solution of (2). As ex-
pected the agreement is good because co-degradation domi-
nates both independent degradation (Eq. S1) and loss due to
diffusion (Eq. S7).

Diffusion of mRNA

To address mRNA mobility, we generalize our model by
replacing Eq. 2a with

0 = αm − βmm − kmµ + Dmm′′ , (S13)

whereDm is the mRNA diffusion constant. In Fig S2 we
compare numerical solutions for the generalized model for
Dm = 0, D/100 andDm = D/1000, whereD is (as be-
fore) the diffusion constant of the miRNA species. At finite
but small mRNA diffusion constant a sharp interface is still
observed.

Sharpening of gene expression profile can also occur via
the mechanism described in the main text, provided that the
distance traveled by the mRNA is short compared with other
length scales, in particular the interface widthw. The typi-
cal distance traveled by mRNAs in the absence of miRNAs is
given byℓm =

√

Dm/βm. This distance can be made suffi-
ciently small,ℓm . w, either by having a small diffusion con-
stantDm, or by mRNAs which are inherently unstable (large
βm). Note that reducingβm compromises two other condi-
tions, Eqs. S1 and S7. However, this can be compensated by a
stronger miRNA-mRNA interaction (largek). To demonstrate
this effect, we multipliedDm, βm andk by 10 with respect
to the values used for the magenta curve. Plottingβmm for
the two sets of parameters then yielded two indistinguishable
curves.

Stochastic Simulations

We used the Gillespie algorithm to stochastically simulate
the reaction and diffusion events on a one-dimensional gridof
cells.In this algorithm the next event, as well as the time tothe
next event, are chosen randomly. A simulation using 100 cells
(the approximate anterior-posterior length of theDrosophila
embryo during cycle 14) is compared with the corresponding
deterministic solution in Fig. S3. Surprisingly, the determinis-
tic solution is a good approximation for mRNA anterior abun-
dances as low as 20 molecules per cell. As expected, in cases
where the predicted interface is of the order of a single cell
we find that the solution to our mean-field model underesti-
mates the width of the interface. This, for example, is the case
when the developing tissue becomes as small as 10 cells—the
approximate size of the leaf-organ primordium during plant
development.

Stripe Boundaries

We denote the left-most boundary of the stripe byxt1 and
the right-most byxt2. The location of these interfaces is de-
termined analytically by solving (S4) with zero-flux bound-
ary conditions in the interval[0, xt1] (and then enforcing
µ(xt1) = 0) and in the interval[xt2, L] (and then enforcing
µ(xt2) = 0). In the region between the interfaces the mRNA
profile is approximately given bym = [αm − αµ]/βm; in
the portion of the developing tissue complementary to this the
mRNA profile is negligible. The analytic profiles forµ andm
are compared with the exact numerical solutions in Fig. S4.

Experimental Prediction

The nonlocal effect predicted when the miRNA is overex-
pressed in a small patch of cells can be understood with the
aid of (S4). First, integrate this equation from the interface to
L, both with(x̂t) and without(xt) the patch. Then, neglecting
the change in the miRNA concentration induced by the patch,
one can show that

αcw ≈

∫ xt

x̂t

αm. (S14)

In other words miRNAs from the patch diffuse across the tis-
sue towards the region[x̂t, xt] and annihilate all mRNAs that
would otherwise have maintained the interface atxt.

As mentioned in the main text, we can make a quantitative
testable prediction when there are a number of independent
patches. To see this recall that Eq. S14 is an integral relation-
ship. In the corresponding equation for multiple patches, the
left-hand side is proportional to the number of patches, pro-
vided we make the reasonable assumption that the patches are
uniform in size and transcription rate. Similarly, the right-
hand side is proportional to the interface shift,xt − x̂t, pro-
vided the mRNA transcription profile is sufficiently flat in the



interval[x̂t, xt]. Hence the interface position̂xt decreases lin-
early with the number of patches. This prediction can readily
be tested using an ensemble of embryos with varying numbers
of patches. Simulated experimental results that would verify
this prediction are shown in Fig. 4 in the main text.


