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A pectate lyase gene (pelY) from Yersinia pseudotuberculosis was cloned in Escherichia coli DH-So. The gene
was expressed in either orientation in pUC plasmids, indicating that the insert DNA carried a Y. pseudotu-
berculosis promoter which functioned in E. coli. However, when cloned in the orientation which placed the
coding region downstream of the vector lac promoter, expression of pelY was nine times higher than it was in
the opposite orientation and the growth of E. coli cells was inhibited. Nucleotide sequence analysis of the petY
gene disclosed an open reading frame of 1,623 base pairs (PLY). The peptide sequence at the amino-terminal
end of the protein contains a typical signal peptide sequence, consistent with the observation that the mature
PLY protein accumulated largely in the periplasmic space of E. coli. The pl of PLY produced in E. coli cells
was 4.5, and its activity was inhibited 90% or more by EDTA. The enzyme macerated cucumber tissue about
1,000 times less efficiently than did PLe from Erwinia chrysanthemi EC16. The pelY gene has no sequence
similarity to the pel genes thus far sequenced from Erwinia spp.

Pectate lyase (PL) is one of the most important enzymes
involved in the maceration of plant tissues by soft-rotting
Erwinia strains (5, 6, 11). A consistent feature of these
bacteria is the occurrence of multigene families encoding
functionally similar PLs. Several of these pel genes have
been cloned and sequenced from strains of E. chrysanthemi
(2, 9, 12; S. Tamaki, S. Gold, M. Robeson, S. Manulis, and
N. T. Keen, submitted for publication) and E. carotovora
(14, 15), and marker exchange mutagenesis experiments
have shown that several individual pel genes are required for
high pathogenicity (11). Surprisingly, PLs are also produced
by other, nonphytopathogenic enterobacteria, such as mem-
bers of the genera Klebsiella and Yersinia (1, 4, 22). Since it
would be of interest to compare the structure, organization,
and regulation of pel genes in these organisms with those of
Erwinia spp., we undertook the cloning and characterization
of a pel gene(s) from Yersinia pseudotuberculosis (4). We
report here that there is no detectable homology between the
single detected Yersinia pel Y gene and any of the families of
clustered pel genes thus far sequenced from Erwinia spp.

MATERIALS AND METHODS
Bacterial strains and plasmids. The bacterial strains and

the plasmids used and constructed in this work are given in
Table 1.
Media and culture conditions. Bacterial strains were grown

and maintained on Luria medium containing ampicillin at a
concentration of 50 ,ug/ml (broth) or 100 ,ug/ml (solid me-
dium). Y. pseudotuberculosis was grown at 30°C, and Esch-
erichia coli strains were grown at 37°C. Cultures of E. coli
for enzyme assays were grown at 28 to 30°C.
PL assays. PL activity in culture fluids or in periplasmic

fractions was determined by monitoring the A232 as de-
scribed previously (9). The activity of PLY on pectin was
assayed at 235 nm with 1% citrus pectin (P9135; Sigma
Chemical Co.) instead of polygalacturonic acid (P3889;
Sigma). Purified PLe (10) from E. chrysanthemi EC16 was
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used as a control. The effect of Ca2" on PL activity was
determined with reaction mixtures lacking CaC12 or with 3 or
0.5 mM EDTA added instead of CaCl2.
The screening of E. coli clones for PL production was

done on YC agar plates (9) containing 100 ,ug of ampicillin
per ml. The cells were incubated at 30°C for 24 h and were
then lysed by exposing the plates to chloroform vapor for 20
min. The plates were then transferred to 30°C for 2 h.
Positive PL clones were detected by the overlay method of
Ried and Collmer (18) or by flooding the plates with 1 M
CaCl2 (9).

Standard DNA techniques. Restriction enzyme digestions,
ligation conditions, preparation of competent cells, transfor-
mation procedures, and gel electrophoresis are described by
Maniatis et al. (16) or Keen et al. (9). Large-scale isolation of
plasmid DNA was done by the alkaline lysis procedure (16).
Plasmid constructs were checked by miniboil plasmid ex-
tractions and restriction with the appropriate enzymes (7, 9).
For subcloning and plasmid constructions, the desired DNA
fragments were recovered from low-melting-point agarose
gels by the method of Crouse et al. (7) or by electroelution
from ultrapure agarose (Bio-Rad Laboratories) with 0.3 mM
sodium acetate (pH 8.0) at 220 V.
Total-DNA isolation and construction of genomic libraries.

Y. pseudotuberculosis chromosomal DNA was isolated as
described previously (9). The chromosomal DNA was di-
gested to completion with either EcoRI or BamHI and was
ligated with pUC19 cut with EcoRI or BamHI, respectively.
The ligated DNA was transformed into E. coli DH-Sc, and
transformants were selected on LB-ampicillin plates. From
each library, 3,500 colonies were screened for PL production
on polygalacturonic agar plates (9).

Subcloning. Plasmid DNA from a PL-positive clone
(pPELY11) was further subcloned. The DNA was partially
digested with Sau3A, and 5-kilobase (kb) fragments were
purified from an agarose gel by electroelution. These frag-
ments were ligated into the BamHI site of plasmid pUC119,
which had been dephosphorylated with calf intestine alkaline
phosphatase.
DNA sequence analysis. Exonuclease III deletions were

generated from either end of the insert fragment ofpPELY14
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TABLE 1. Bacterial strains, bacteriophage, and plasmids used

Strain, plasmid, or phage Description Source or reference

E. coli
DH-5Sa F- lacZAM15 endAl recAl hsdRI7 supE44 thi-l gyrA relAl X- Bethesda Research

Laboratories, Inc.
MV1193 A(lac-proAB) thi supE44 A(srl-recA)306: :TnlO (Tetr) (F' traD36 20

proAB lacZAM15)

Y. pseudotuberculosis ICPB 3821 A. Chatterjee (4)

Phage M13K07 20

Plasmids
pUC19 23
pUC119 and pUC118 20
pPELY11 20-kb EcoRI fragment from Y. pseudotuberculosis DNA cloned in This report

pUC19; PL positive
pPELY12 4.5-kb XbaI-SacI fragment from pPELY11 cloned in pUC19; PL This report

positive
pPELY14 3.6-kb fragment from partial Sau3A digest of pPELY11 cloned in This report

pUC119 in the orientation opposite to that of the vector lac
promoter; moderately PL positive

pPELY15 3.6-kb fragment from pPELY14 cloned in pUC118 (downstream of This report
the lac promoter); strongly PL positive

and pPELY15 by the method of Henikoff (8). Deletions from
the 5' and 3' ends of the gene were done in plasmids
pPELY14 and pPELY15, respectively. After religation, the
deletion plasmids were transformed into E. coli DH-Sa.
Appropriate deletions were assayed on YC plates for PL
activity and transformed into E. coli MV1193. These bacte-
ria were transfected with XM13KO7, and templates of single-
stranded plasmid DNA were isolated (20).
The DNA sequences of overlapping deletions were deter-

mined by the dideoxy chain termination method (19). All
data were confirmed by sequencing both strands and were
analyzed by the computer program of Pustell and Kafatos
(17).

Characterization of the PL produced by pPELY15 clone.
The isoelectric point (pl) of the PLY protein was determined
by preparative isoelectric focusing (9). E. coli DH-5a cells
containing pPELY15 were grown in 30 ml of L broth with 50
,ug of ampicillin per ml for 16 h at 28°C. The periplasmic
fraction was prepared as described previously (9). This
fraction was dialyzed against 5 mM Tris hydrochloride (pH
8.0) and purified on an LKB 8100 preparative isoelectric
focusing column with Bio-Rad 3-10 or 3-5 Ampholines. The
runs were done at 650 V for 48 h at 4°C. Fractions (2.5 ml)
were collected from the column and assayed for pH, PL
activity, and protein concentration. Protein was determined
by the method of Bradford (3) with bovine serum albumin as
a standard.

Molecular weight was determined on 10% sodium dodecyl
sulfate (SDS)-polyacrylamide gels by the method of Laemm-
li (13). The electrophoresis was done on whole-cell proteins
of E. coli DH-Sa containing desired plasmids. Cultures were
grown for 16 h at 28°C on 5 ml of L broth with 50 jig of
ampicillin per ml. Isopropyl-,3-D-thiogalactopyranoside
(IPTG) at 1 mM was added at the time of culture initiation.
Portions (1.5 ml) of these cultures were centrifuged, and the
cells (ca. 12 mg) were washed once with 1.5 ml of 0.01 M Tris
hydrochloride (pH 7.5). The pellets were then suspended in
100 ,ud of water, an equal volume of 2 x sample buffer (13)
was added, and the samples were boiled for 5 min. The gels
were run at 160 V for 5 h, with phosphorylase b (97,400
daltons [Da]), bovine serum albumin (66,200 Da), ovalbumin

(42,700 Da), carbonic anhydrase (31,000 Da), and soybean
trypsin inhibitor (21,500 Da) as molecular mass standards
(Bio-Rad). The gels were stained with Coomassie brilliant
blue R250.

Plant tissue maceration. Maceration was determined by
incubating five thin cucumber mesocarp slices (ca. 0.5 by 1
cm, 0.1 to 1 mm thick) with various dilutions of periplasmic
fractions or purified PL. The assays were done in a total
volume of 1 ml of 0.02 M Tris hydrochloride (pH 8.5) at 30°C
for 1 to 5 h. Loss of tissue cohesiveness was tested with a
spatula. The maceration index was scored on a scale of 0 to
5, where 0 indicated no maceration and 5 denoted complete
tissue softening and disintegration. Controls were enzymes
boiled for 5 min or buffer alone.

RESULTS

Cloning of the pelY gene. Two libraries of Y. pseudotuber-
culosis were constructed in pUC19 and screened in E. coli
DH-Sa. Two PL-positive clones were recovered from the
EcoRI library, but none from the BamHI library. Only one of
the two positive clones gave consistent responses on pectate
agar plates, and it was therefore selected for further study.
When plasmid DNA was isolated and transformed into E.
coli DH-Sa, all of the resultant transformants were pecto-
lytic. Restriction of this plasmid (pPELY11) with EcoRI
showed the presence of plasmid pUC19 and a single insert
fragment of about 20 kb (Fig. 1). A 4.5-kb XbaI-SacI
fragment subcloned in pUC19 (pPELY12) produced about
the same level of PL activity in DH-Sa as did pPELY11. No
activity was detected when the SacI-EcoRI or EcoRI-XbaI
fragment was similarly subcloned (Fig. 1).

Subcloning. pPELY11 was partially digested with Sau3A,
and ca. 5-kb fragments were subcloned into the BamHI site
of pUC119. Of 350 transformants screened, 11 were PL
positive. The purified plasmids isolated from these clones
were restricted with BamHI and HindIlI. All of the PL-
positive plasmids had a common 500-base-pair BamHI-
HindIII fragment (Fig. 1). This data, as well as results from
the construction of pPELY12, indicated that the 20-kb
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FIG. 1. Restriction map of a ca. 20-kb EcoRI fragment of Y.

pseudotuberculosis DNA. The fragment was cloned into the EcoRI
site of pUC19, and the resultant construct was designated
pPELY11. The thick line between the XbaI and Sacl sites repre-
sents the sequence which encodes PL activity.

EcoRI insert of pPELY11 contained only one pel gene. The
PL-positive plasmid with the smallest Sau3A insert was
named pPELY14 and used for further study.
To determine the orientation of the pel gene, pPELY14

was cut with EcoRI and PstI and the insert was subcloned
into pUC118 restricted with the same enzymes. The result-
ant construct was designated pPELY15. All transformants
carrying pPELY15 produced higher levels of PL than did
those with pPELY14 (Table 2). In addition, IPTG increased
expression of the gene only in pPELY15 (Table 2). These
results suggested that the 3.6-kb insert of pPELY15 carries a
Y. pseudotuberculosis promoter sequence which is func-
tional in E. coli and that the pelY coding region in pPELY15
is oriented downstream from the vector lac promoter.

E. coli cells carrying pPELY15 formed smaller colonies
than did cells with pPELY14, suggesting that overproduc-
tion of the Yersinia PL exerted a toxic effect on E. coli cells.
This could also explain the relatively low number of PL-
positive clones recovered from the EcoRI library (2 of 3,500)
since clones in which the pelY gene was oriented down-
stream from the vector lac promoter probably did not grow
well and were missed.

Characterization of the PL produced by the clones. The
results presented in Table 2 demonstrate that more than 90%
of the PL activity produced by E. coli cells carrying
pPELY15 was secreted into the periplasm. Electrofocusing
of periplasmic fractions from E. coli cells carrying pPELY11
or pPELY15 (Fig. 2) disclosed only one detectable PL, with
a pl of 4.5. This is consistent with the production of the
protein by Y. pseudotuberculosis (4). SDS-gel electrophore-
sis of whole-cell proteins from E. coli cells carrying
pPELY15 (Fig. 3) showed an intense band at ca. 55,000 Da.
This band was also predominant in the periplasmic fraction
but was absent in cells carrying only pUC118. Since EDTA
completely inhibits the activity of PLs produced by Erwinia
spp. (6), we examined its effect on PLY activity. The

TABLE 2. Production of PL by E. coli DH-5a cells containing
pPELY14 or pPELY15a

PL activity (U/g of cells) in fraction
Plasmid IPTG

Periplasmic Extracellular Intracellularb

pPELY14 - 28 NDC 1.1
+ 23 ND 1.0

pPELY15 - 249 3.6 14.0
+ 388 4.1 19.6

a Cultures were grown for 16 h in 15 ml of L broth with 50 ,ug of ampicillin
per ml. IPTG at 1 mM was added at the time of initiation of growth. The cells
were centrifuged, and the supernatant was dialyzed. The periplasmic fractions
were prepared as described in the text.

b The pelleted spheroplasts were lysed with 5 ml of 0.01 M Tris hydrochlo-
ride (pH 8.0), centrifuged, and assayed for PL activity.

c ND, No activity was detected.
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FIG. 2. Preparative isoelectric focusing of the periplasmic frac-
tion from E. coli DH-5a cells containing pPELY15. The run condi-
tions and PL assays are described in the text.

omission of Ca2+ from the reaction mixture caused a 43%
inhibition of the PL activity. The addition of 0.5 or 3 mM
EDTA further reduced the activity by 90 and 92%, respec-
tively. PLY was 1.9 times more active on pectate than on
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FIG. 3. SDS-gel electrophoresis of DH-5ot cells containing
pUC118 or pPELY15 grown with or without IPTG. The samples
were prepared as described in the text, and 10 ,ul was applied to each
lane. Lanes: 1, standards; 2, pUC118 without IPTG; 3, pPELY15
without IPTG; 4, pUC118 with IPTG; 5, pPELY15 with IPTG; 6,
periplasmic fraction from pPELY15 plus IPTG, concentrated 20x.
The arrow denotes the presumed mature PLY. Some of the standard
protein bands are weakly visible since the photograph was under-
exposed to resolve the mature enzyme. The protein bands in lane 5,
except the PLY band, are weaker than in the other lanes because the
pellet with overexpressed pPELY15 had 30 to 40% less fresh weight.
KD, Kilodaltons.
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pectin, whereas PLe was 3.5 times more active. Thus, PLY
differs considerably from the Erwinia PLs in enzymatic
properties.

Plant tissue maceration. To determine the ability ofPLY to
macerate, 10 U of the enzyme was incubated with cucumber
slices. PLe (0.1 U) from E. chrysanthemi EC16 was used as
a positive control. After 1 h, the maceration indices for PLY
and PLe were 0 and 3, respectively, and after 5 h they were
3 and 5. The results of several experiments with various
concentrations of PLY and PLe indicated that PLY is less
than 0.001 as efficient as the PLe protein in plant maceration.
DNA sequence of the pelY gene. To map the endpoints of

the pelY gene more precisely and to generate templates for
DNA sequence determination, exonuclease III deletions
were generated from either end of the DNA fragment in
pPELY14 and pPELY15. The positions of some of the
relevant deletions are shown in Fig. 4. Deletion 5.2 was
presumed to occur in the 5' noncoding end of the gene since
it had no effect on PL activity. Deletions 5.3 and 5.4 totally
destroyed activity and thus appeared to occur in or near
coding regions. These two deletions were then recloned in
pUC118 (downstream of the lac promoter), and cells were
grown with IPTG. Deletion 5.4 was completely inactive,
whereas deletion 5.3 exhibited low pL activity in the pectate
plate assay and the spectrophotometric assay (4.5 U/g of
cells, compared with ca. 400 U/g for deletion 5.2).

Deletions which defined the 3' end of the pelY gene
included 3.2 and 3.3 (Fig. 4), which totally destroyed activ-
ity. Deletion 3.1 and all other deletions which mapped to the
right of it had no effect on activity.
The DNA sequence presented in Fig. 4 revealed a single

long open reading frame between nucleotides 369 and 1991.
This is consistent with the deletion analysis, and the open
reading frame is therefore believed to encode the PLY
preprotein. The ATG designated as the presumptive start of
the open reading frame is preceded by a purine-rich se-
quence which should function as a ribosome-binding site.
This is the only in-frame ATG in the region defined by
deletions 5.3 and 5.4 that is preceded by a purine-rich
sequence. Furthermore, the peptide sequence at the amino-
terminal end of the putative preprotein strongly resembles a
signal peptide sequence (21) and explains the fact that the
PLY protein is efficiently secreted to the periplasm of E. coli
cells. The deduced cleavage point of the putative signal
peptide is between two alanines (amino acids 23 and 24), but
this has not been confirmed by N-terminal amino acid
sequencing of the mature PLY protein. The translated pre-
protein has 541 amino acids, and the calculated molecular
mass is 60,716 Da. By subtracting the mass of the putative
signal peptide sequence, the mass of the mature enzyme was
calculated to be 58,228 Da. This agrees closely with the
value of 55,000 Da estimated by SDS-gel electrophoresis
(Fig. 3). Deletion 3.6 at the 3' end of the gene (Fig. 4) did not
lead to an active PL, but E. coli cells carrying this DNA
yielded an intense band at 43,000 Da, which corresponded
well with the calculated molecular mass (44,550 Da) of the
truncated protein (data not shown). Possible transcriptional
initiation signals were found between deletions 5.2 (PL
positive) and 5.3 (PL negative). These sequences are posi-
tioned at bases 238 to 243 and 257 to 261 (Fig. 4). No
sequence which could function as a catabolite activator
protein-binding site was found. This is consistent with the
study of Chatterjee et al. (4), in which repression of PLY
production was not observed in Y. pseudotuberculosis. In
the 3' end downstream of the translational stop of pelY
(positions 2028 and 2044) there are sequences which may

form stem-loop structures and thus may function as termi-
nators of transcription.

DISCUSSION

The soft-rot erwinias produce four or more PL isozymes
which are encoded by a corresponding number of clustered
pel genes (6, 11). Although we cannot rule out the possibility
of other pel genes that were not cloned, we were able to
select clones from Y. pseudotuberculosis which contained
only the pelY gene. Deletion analyses of the insert DNA in
pPELY11 suggested that only one pel gene was present in
this clone, unlike results with E. chrysanthemi (11). One or
possibly two PLs have also been reported for Yersinia
enterocolitica and Klebsiella oxytoca (1). It appears, there-
fore, that the pel gene organization is less complex in these
organisms than in Erwinia spp.
Most PL activity occurred in the periplasmic fraction

when the cloned pelY gene was expressed in E. coli (Table
2). This is consistent with the occurrence of a putative signal
peptide sequence in the gene product (Fig. 4) and agrees with
the previous results of Chatterjee et al. (4).
The Yersinia PL exhibited several differences from the

Erwinia PLs. The molecular mass of the mature PLY was
58,228 Da, which is considerably higher than the ca. 39-kDa
mass observed for the mature PLs of Erwinia spp. (6, 11).
Our data for the Yersinia PL are in agreement with the value
of 55 kDa previously reported for the PL of Y. enterocolitica
(1). Another difference from the Erwinia PLs is that the
Yersinia enzyme was 1.9 times less active on pectin than on
pectate, whereas the E. chrysanthemi PLe was 3.5 times less
active. Similar to the Erwinia PLs, the Yersinia enzyme is
calcium dependent. However, whereas EDTA completely
abolishes activity of the Erwinia enzymes, a maximum
inhibition of ca. 90% was observed with the Yersinia en-
zyme. Our results also conflict with those of Bagley et al. (1),
who reported that PLs from K. oxytoca and Y. enterocolitica
do not require divalent cations for activity.
The acidic pI value for PLY is similar to those reported for

the PLs of K. oxytoca and Y. enterocolitica (1). All of these
enzymes are inefficient macerators of plant tissue, similar to
PLa from E. chrysanthemi, which also has a low isoelectric
point (2). Although it is possible that the low pI values of
these PLs are solely responsible for their low maceration
efficiency, other factors may also be involved, since efficient
macerating enzymes with low pl values have been described
for other organisms (6).
Computer searching disclosed no homology between the

amino acid sequence of PLY and those of the protein
products of sequenced Erwinia pel genes. Thus, these genes
appear to have evolved from different lineages. Since three
distinct families of pel genes have thus far been recovered
from Erwinia spp. (11; Tamaki et al., submitted; D. and
N. T. Keen, Trollinger, unpublished data), at least three
families of pel genes exist in the family Enterobacteriaceae.
It is not clear why such catalytically similar proteins evolved
independently. Perhaps this reflects different functions in
nature. For instance, it has been speculated (1, 4) that the
PLs of Yersinia and Klebsiella spp. might be advantageous
to their survival as saprophytes. Chatterjee et al. (4) also
suggested that the PLs of Yersinia and Klebsiella spp. might
have strictly catabolic functions related to bacterial nutri-
tion, whereas the Erwinia enzymes might also have cytolytic
and other specific functions in plant hosts. This possibility is
supported by our findings that pelY is structurally distinct
from the Erwinia pel genes, does not occur as a multigene
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Am TYr Dr lea Pro Arg LAp Gly Tyr TYr Gly Ly4 Lys Gly SW %l Le Ly Po Tyr

1570 1510 1390 1600 1610 3.6 1620
AAG WI;ACCLW W TI? Ic *11W a? WI TW Yr W IC WYT MaT WI WCI
Lys Ala GI' AinCRu Lea Ib h Tyr Ala Arg Ala Tyr Ala V.1 LAp Am Lsp Pro

1630 1640 1650 160 1670EcoRV 166
~~*5.-, 0

TMA WC A1ALC WW CWI AWA*WI Ia? WI GM TM WI W C W AM
Lea le Tip Ly Vo1 Ala LAg Gly In Ala hrLsp Gin Gly Lea Gly Lsp In Gly Sh

1690 1700 1710 1770 1730 1740

ax;~ ~ aax.a.-R UCCv C=M a Ga acccWICIA WIMA WIG AT LWG WI AMA WITIA?CWI WI AtW CAT WI=AWI WIG
Ala Pr Gly Lys Glu Not Lys V.1 4L Lea LAp Dr Dr Amn w LAp Po Tyr Ala LeA

1750 1760 1m 5 160 1m 1

. .TtYW1W IWCAC DMWWWW Y IC IV1 W
Ru Ala Lea Lia Amp lea Tyr LAm Ala hr Gin V.1 Ala Gin Tyr LAg hr Leau Ala Gin

1610 1 3.4 MIu 1 6W 1650 1660
AAA ?CATIA?LWnW Al MA WI WYT* Am WI WY 1Wc TI? AmlW TAW
Lys Val Ala Ap Am 11. Ile Lys Dr LAg Tyr II* LAp Gly Ru Ru Not Ala hr Pro

O 160 1690 33 1910 1970
*t * + *

CA? WI CMLT WI IA?WI WYWYT WI WI WY= WY 1W 1WTCIA 1G CMA CIA
LAp LAg Gln Tyr Ala LAp V.l Lsp Al KIn Gin Po Tyr AlsLe lau Ala Ie Clu Ala

1930 1940 1950 1032 1970 1930
iA 1W aWY MA CIA CMWa C1 TW cWY 1W cI MTWaIWYG YTI WOC GCM
hr Leau LArt Am Lys Pro Gin Ala Val Ala Pro Ru Lea Am Gly Ala GMy Ru Dr Gin

1990 700O 2010 0210 2030 20

crc~ ~ .aa a

x z x r o o ox sf a;TWICITW IA 1W WI WIG W WIW CM 7TI CTA WI W WAWIG WIA 1T
V.1 Le Dr -

7050 7060 7070 2 790 2100

IC WAWI WGWrA=WY A1CWIc AIG WI EcL MT WIC CWCWI WACWA

2stXI 2120 130 2140 2150 2160

WIO 1WC TM LWG1WWCWAYYW WICT WI TEL WIDI

2170 2160 2190 2700 2210 2270

ACT TIT W WIW TEL WICaW AT MAL cW CaT WIG MAAM A CM

2230 22W 2250 2260 5 2270

AT TEL AW W 1W CIA CIa W Wc TI? I=Y CIA WI WY T

FIG. 4. Nucleotide sequence determined for the pelY gene. The predicted amino acid sequence of the preprotein is shown, and selected
restriction sites are noted. The positions of selected exonuclease III deletions referred to in the text are indicated with arrows and numbers.
For deletions at the 5' end of the sequence, DNA to the left of the arrow was deleted. For deletions at the 3' end, DNA to the right of the
arrow was deleted. The presumed leader peptide is underlined, and the possible cleavage site is indicated by an arrow. The putative
ribosome-binding site and other possible signal sequences discussed in the text are underlined.

1829



1830 MANULIS ET AL.

family, and encodes a PL which inefficiently macerates plant
tissue.
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