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ABSTRACT

Microtubule proteins and tubulin have been purified from brain and labeled with

dichlorotriazinyl fluorescein {DTAF). This procedure compromises neither the polymerizability
of the proteins nor their affinities for unlabeled proteins. Within 15 min after microinjection of
either DTAF-microtubule proteins or DTAF-tubulin into cultured gerbil fibroma cells, there
was an evolution of a fluorescent fibrillar pattern with a distribution similar to that of the
microtubular network seen after staining with fluorescent antitubulin. These filaments were
colchicine sensitive and could be seen to elongate with time. DTAF-labeled microtubule
accessory proteins from brain were not incorporated into filaments and appeared to label

autophagic vacuoles.

Within the past decade, numerous components of the cytoske-
leton have been purified and biochemically characterized.
Antibodies have proven to be powerful tools for the study of
their disposition in cells and tissues. The major limitation of
the immunocytologic approach has been the necessity of work-
ing with fixed cells, precluding the possibility of continuous
observation of the dynamic behavior of cytoskeletal elements.
This problem can be circumvented by the introduction of
purified, labeled cytoskeletal components directly into the liv-
ing cell, using either pressure injection through a glass micro-
pipette or fusion-injection with protein-filled vesicles. Microin-
jection of fluorescence-labeled a-actinin (6), actin (10, 14), and
130,000-dalton protein (3) into living fibroblasts has allowed
study of the mobilization of these components into appropriate
cytoskeletal structures (7).

The dynamic changes in microtubule assembly that accom-
pany a variety of cellular processes argue strongly for the use
of this approach with labeled tubulin. In the preparation of
fluorescent tubulin for such studies we have attempted to meet
the following criteria for efficiently self-assembling cytoskeletal
components: (@) Labeled material should assemble with normal
kinetics and should respond to alterations in assembly condi-
tions in the same manner as unlabeled material. (b) Labeling
should be adequately intense to allow direct microscope vis-
ualization of the subunits when incorporated into appropriate
structures. (¢) Labeled material should have the same affinity
for the assembly site in the polymer as the unlabeled material.
Operationally, this means that labeled material at less than the
critical concentration for self-assembly should coassemble pro-
portionately when added to an unlabeled assembly system and
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should retain this proportionality through cycles of assembly
and disassembly. (d) The fluorochrome chosen should have an
excitation wavelength of 450 nm or greater to diminish cellular
damage by exciting radiation and to minimize problems of
cellular autofluorescence.

These criteria are quite similar to those previously proposed
for actin (14). In the experiments described below we will detail
the preparation of microtubules and tubulin meeting these
criteria and the mobilization of this material into the microtu-
bular network of Triton-extracted cells and living fibroblasts.

MATERIALS AND METHODS

Microtubules were prepared from bovine brain by the method of Shelanski et al.
(13). Briefly, brain tissue was minced in 1 ml of reassembly buffer (RB) 0.1 M 2-
(N-morpholino)ethanesulfonic acid [MES]; 10" M GTP; 5 x 107* M MgCl,; 10"
M EGTA at pH 6.8 per gram of tissue and then homogenized in a Waring
blender (Waring Products Div., Dynamics Corp. of America, New Hartford,
Conn.) at 4°C (three pulses of 5 5). The homogenates were centrifuged at 40,000
rpm for 30 min in a Spinco 70 Ti rotor (Beckman Instrument Co., Spinco Div.,
Palo Alto, Calif.). The supernates were pooled, made up to 4 M glycerol by
addition of pure glycerol, and incubated at 37°C for 30 min to assemble
microtubules. The tubules were then pelleted by centrifugation in the 70 Ti rotor
for 30 min at 20°C. After discarding the supernates, we resuspended the pellets
in cold RB, using a Teflon-pestle glass homogenizer and allowed them to
depolymerize for 30 min at 4°C. Particulates were removed by centrifugation at
40,000 rpm for 30 min at 4°C. The supernates were pooled, adjusted to 4 M
glycerol, and assembled at 37°C for 30 min.

Intact microtubules obtained by the procedure described above were labeled
by mixing 0.1 ml of a solution of dichlorotriazinyl amino fluorescein (DTAF) (5
mg/ml) in dimethyl sulfoxide (DMSO) (type [; Sigma Chemical Co., St. Louis,
Mo.) with each milliliter of microtubule suspension (5 mg/ml) for 10 min at
37°C. DTAF is a fluorescein-bearing ligand that tends to label amino groups
more efficiently at low pH than does fluorescein isothiocyanate (FITC) (2).
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Control tubules were obtained in the same manner except that DTAF and
DMSO were omitted.

The dye-to-protein ratio was determined by the measurement of the protein-
bound dye by absorption at 495 nm after separation of the DTAF-PC (phospho-
cellulose-column-purified)-tubulin by phosphocellulose chromatography and re-
moval of free dye by dialysis against 8 M urea. Free DTAF (molar extinction
coefficient = 5.4 X 10°) in RB was used as a standard.

Both labeled and unlabeled microtubule proteins were separated into tubulin
and microtubule accessory protein (MAP) fractions by phosphocellulose chro-
matography in RB by the procedure of Weingarten et al. (18). The PC-tubulin
fraction was made up to 2 M glycerol and 10~ M GTP. PC-MAP fractions were
desalted by chromatography on Sephadex G-25 in RB. For kinetic studies,
DTAF-PC-tubulin was recombined with unlabeled MAPs at a 10:1 (wt/wt)
tubulin:MAPs ratio. Controls used unlabeled PC-tubulin and unlabeled PC-
MAPs.

Assembly kinetics were determined by turbidimetry in a Beckman ACTA
MVI spectrophotometer (Beckman Instruments Inc.) at 350 nm, using a ther-
mostated sample changer (8). Supplementary observations on elongation were
made using a Leitz Ortholux epifluorescence microscope and Zeiss 63X plana-
pochromat objective with an RCA 1030H image-intensification television camera.

Labeled PC-tubulin (2-3 mg/ml) in 80 mM PIPES was assembled onto
presumptive microtubule-organizing centers (MTOCsS) of Triton-lysed PtK2 and
3T3 cells as described by Pepper and Brinkley (11).

Pressure microinjection of labeled components with glass micropipettes into
gerbil fibroma cells (CCL146) was carried out as described by Feramisco (6). In
preparation for injection, microtubules were assembled from the desired mixture
of labeled and unlabeled tubulin and MAPs and pelleted in the ultracentrifuge.
The pellet was then disassembled in RB at 4°C without glycerol and adjusted to
a final concentration of ~10 mg/ml. The sample was split into 15-pl aliquots
after depolymerization and frozen by immersion in liquid nitrogen. This material
was used for injection for periods of up to | mo after preparation. Control
injections were done with the concentrated supernate from the microtubule-
labeling step, which is composed of denatured microtubule proteins and free
DTAF. Earlier studies (3) have estimated that between 10" " and 10" liters of
material are injected by this procedure.

Cells were mounted in controlled environment chambers (5) and viewed with
a Zeiss photomicroscope I equipped with phase and epifluorescence optics.
Photographs were taken on Kodak Tri X film as previously described (7). Time-
lapse observations were made with an RCA 1030H camera mounted on the
microscope. Data were recorded by photographing the television monitor.

RESULTS

Labeling of Assembly-competent Tubulin
and MAPs

Analysis of DTAF-labeled microtubule proteins by poly-
acrylamide gel electrophoresis in the presence of SDS revealed
labeling in both tubulin and accessory proteins. The most
intensely fluorescent components are the high molecular weight
MAPs (HMW) followed in order of decreasing intensity by
tubulin and a minor tau component (Fig. 1). Approximately
75% of the total fluorescence as determined by scanning micro-
fluorometry is in the HMW fraction and 25% in the tubulin
fraction. In all cases there is a small amount of fluorochrome
moving at the front of the gel. This material appears to be
released by the SDS gel sample preparation procedure because
free dye is found at the gel front even after extensive dialysis
of DTAF-proteins against 8 M urea and RB. The dye-to-
protein ratio on PC-DTAF-tubulin after dialysis against § M
urea followed by RB is ~0.5 mole of DTAF per tubulin dimer.

When the assembly kinetics of DTAF-labeled microtubule
proteins were compared to those of unlabeled proteins before
phosphocellulose chromatography, almost identical curves
were obtained (Fig. 2). Similarly, the kinetics of DTAF-PC-
tubulin reconstituted with labeled or unlabeled MAPs and of
unlabeled-PC-tubulin with unlabeled MAPs were comparable
(Fig. 2).

DTAF-microtubule proteins in increasing amounts, starting
below the critical concentration (C.) for self-assembly and
extending to the C., were added to decreasing amounts of
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FIGURE 1 Polyacrylamide gel electrophoresis patterns of DTAF-mi-
crotubule proteins (A and D), DTAF-PC-tubulin (B and E), and
DTAF-PC-MAPs (C and F). Fluorescence photographs taken before
Coomassie Blue staining.

025

0.20

015

A350

1 1 1
5 10 15

Time (Minutes)

FIGURE 2 Polymerization of labeled and unlabeled microtubule
proteins (1.2 mg/ml) and labeled and unlabeled PC-tubulin (1.6
mg/ml} reconstituted with unlabeled PC-MAPs at 37°C. @, DTAF
microtubule proteins; O, control microtubule proteins; *, DTAF-PC-
tubulin + unlabeled MAPs; ©, control-PC-tubulin + MAPs.

unlabeled microtubule proteins so that total protein concentra-
tions remained constant. After polymerization, the microtu-
bules were pelleted and the pellets were analyzed fluorometri-
cally for their content of labeled microtubule proteins. The
amount of fluorescent microtubule protein pelleted was de-
pendent on the amount of fluorescent protein added in an
approximately linear manner (Fig. 3). The total amounts of
tubulin pelleted at each point were comparable, subject to a
variation of 5%. Mixing experiments in which PC-DTAF-tu-
bulin was added to the assembly mixture in the same manner
also showed quantitative copolymerization.

The fluorescent signal allows observation of polymerization
of DTAF-labeled microtubule proteins by fluorescence mi-
croscopy of tubulin solutions on microscope slides at 4°C and
after warming to 37°C. Data were recorded on videotape in
real time, and measurements were made on playback. Statisti-
cal analysis of the resulting measurements gave a mean rate of
microtubule growth of 0.28 pm/min at 28°C, and —0.45 um/
min at 5°C. Using the reported data on the thermodynamic
behavior of tubulin solutions (8), we may convert these rates,
respectively, t0 9.2 X 107" and —1.5 X 107° mol/min, which
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are lower but within a factor of three of those that can be
derived from the literature (8, 9). Electron microscopy showed
that these preparations are primarily single microtubules.

Polymerization of DTAF-PC-Tubulin onto Lysed

Cell Models

When PtK2 or 3T3 cells were preincubated with colchicine
at 2 X 107° M for 4 h in a modification of the procedure of
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FIGURE 3 Fluorescence in resuspended microtubule pellets as a
function of the concentration of DTAF-PC-tubulin (x) or DTAF-
microtubule proteins (@) in the assembly mixture ([final protein
concentrations labeled and cold: solid trace = 0.5 mg/ml; dashed
trace = 2.0 mg/ml]).

FIGURE 5
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Pepper and Brinkley (11) and then lysed in 0.05% Triton X-
100, few microtubules were detectable within lysed cells. Ad-
dition of DTAF-PC-tubulin to the models under conditions
identical to those of Pepper and Brinkley gave rise to the rapid
evolution of a complex pattern of fibrillar staining as well as
extremely intense fluorescence over the nucleus and in the
perinuclear area (Fig. 4). Controls with FITC-labeled bovine
serum albumin showed no fibrils and a diffuse staining in the

FIGURE 4 Fluorescence micrograph of colchicine-treated, Triton-
lysed Swiss 3T3 fibroblast postincubated with DTAF-PC-tubulin.

x 1,000.

(A and C) Phase-contrast and (B and D) fluorescence micrographs of living gerbil fibroma cells microinjected with
DTAF microtubule proteins. X 650.



nuclear area. Formation of the microtubular network was
blocked by colchicine and cold. DTAF-PC-tubulin was incap-
able of forming microtubules under these conditions in the
absence of the extracted cells.

Microinjection of DTAF-Tubulin into
Living Fibroblasts

Within 10-20 min after microinjection of DTAF-microtu-
bule proteins (cycled, unseparated tubulin and MAPs) into
fully spread fibroblasts, a few fluorescent filaments were seen
near the periphery extending from an area of diffuse fluores-
cence near the nucleus. 1 h after labeling, the filamentous
pattern had become more extensive and networks of fluorescent
fibres were seen encircling the nucleus and swirling away to
the cell borders (Fig. 5). The injected cells also showed wide-
spread dots of fluorescence. This punctate pattern increased

with the time of tubulin storage at 4°C and, most likely, was
the result of accumulation of denatured tubulin and labeled
MAPs (vide infra) in autophagic vacuoles, a process that has
been observed for several other fluorescence-labeled proteins
microinjected in a denatured form (6, 16).

To determine whether the fibrillar labeling was attributable
to tubulin or to MAPs, we injected DTAF-PC-tubulin recon-
stituted with unlabeled MAPs, DTAF-PC-MAPs reconstituted
with unlabeled tubulin, and DTAF-PC-MAPs alone into cells
in separate experiments. Within 25 min of the introduction of
DTAF-PC-tubulin, a well-established pattern of fibrillar fluo-
rescence was apparent. These filaments were concentrated in
the perinuclear area with numerous bundles of filaments ex-
tending to the cell border (Fig. 6a and b). 1 h after injection,
an extensive fluorescent microtubular network extended
throughout the cell and out into cell processes (Fig. 6 ¢ and d).
A late anaphase cell observed 4 h after injection revealed an

FIGURE 6 Phase-contrast and fluorescence micrographs of living gerbil fibroma cells injected with DTAF-PC-tubulin. (A and B) 20
min after injection; (C and D) 1 h after injection; £ and F) late anaphase cell 4 h after injection. X 700.
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extremely bright signal in the midbody fanning out toward the
daughter-cell nuclei (Fig. 6 e and f). The rounded phenotype
of the cell made the resolution of individual fibers impossible.

Injection of DTAF-PC-MAPs, whether or not they were
reconstituted with unlabeled PC-tubulin, failed to give rise to
a fibrillar pattern of fluorescence even after 2 h. These samples
did, however, give rise to punctate fluorescent structures very
similar to those seen underlying the fluorescent filaments in
cells injected with DTAF-microtubular proteins (Fig. 74 and
b). Injection of DTAF (0.5 mg/ml) and a mixture of DTAF-
labeled assembly-incompetent microtubule proteins resulted in
a diffuse fluorescence over the entire cell as well as punctate
labeling but no labeling of linear structures (Fig. 7 ¢ and d).

The fluorescent filamentous pattern showed the expected
response of microtubules to Colcemid. After exposure of cells
to Colcemid (1 ug/ml), there was a rapid loss of the filamentous
arrays and a transition to a diffuse, nonfibrillar pattern (Fig.
8). Many of the Colcemid-treated cells showed accumulation
of fluorescence into phase-dense areas near their edges.

The utility of this procedure for studying microtubule dy-
namics was tested over a brief time period, using intermittent
illumination and video image intensification to minimize
bleaching of the fluorochrome. A series of observations over a
span of 12 min, 4 h after injection of a fully spread fibroblast
with DTAF-microtubule proteins, showed peripheral extension
of labeled filaments (Fig. 9, arrows) into cell processes. Mea-
surement of the lengths of these extensions as a function of
time gave a rate of growth of 1 um/min at 37°C.

DISCUSSION

A number of cellular events including mitosis, certain types of
prey-catching, and a variety of movements are thought to be

associated with microtubules and with their polymerization
and depolymerization. Although immunohistological and elec-
tron microscope studies have provided much valuable infor-
mation on microtubule-related functions, there is a need for
methods that allow the direct observation of these organelles
in living cells. To accomplish this, methods for (a) labeling
microtubule proteins and (b) introducing these proteins into
cells in a manner that permits their mobilization into the
cytoskeleton must be defined.

Fluorescence-labeled microtubules have been prepared pre-
viously (1), using FITC conjugation at elevated pH. We have
been able to repeat these experiments, and we find that,
although this material will form microtubules in vitro, it is not
incorporated into the polymer in detectable amounts when
mixed with unlabeled microtubule proteins under assembly
conditions. It would, therefore, appear to be a weak candidate
for microinjection experiments in which the exogenous tubulin
will be diluted by tubulin in the endogenous pool. Tubulin has
also been labeled using fluorescamine and reported to self-
assemble (15). The utility of this procedure may be limited by
the short excitation wavelength of fluorescamine and the rapid
degradation of fluorescamine-protein conjugates. The use of
DTAF, as described here, avoids the pitfalls of the earlier
procedures and yields labeled microtubule proteins that are
indistinguishable from unlabeled protein in all tested assembly
parameters.

The data show clearly that individual labeled proteins of the
microtubules (tubulin and MAPs), when reconstituted with
appropriate unlabeled components, assemble with kinetics that
do not differ significantly from those of unlabeled controls
(Fig. 2). The linearity of incorporation of DTAF-tubulin into
microtubules as a function of concentration, at and below the
critical concentration for self-assembly, when mixed with an

FIGURE 7
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(A and B) Fluorescence and phase micrographs of living gerbil fibroma cells 2 h after injection of DTAF-PC-MAPs and
(C and D) 2 h after injection of denatured DTAF-microtubule proteins and free DTAF. X 650.



FIGURE 8 (A) Phase-contrast and (B) fluorescence micrographs of
cells microinjected with DTAF-microtubule proteins and posttreated
with Colcemid. X 620.

unlabeled microtubule assembly system provides convincing
evidence for copolymerization and a lack of alteration in
assembly affinity.

Furthermore, the behavior of DTAF-PC-tubulin in the
lysed-cell model system is identical to that predicted by Pepper
and Brinkley (11). This demonstrates the ability of DTAF-PC-
tubulin to assemble into microtubules in a model of the cellular
environment. As reported, assembly occurs in this system with-
out the need for accessory proteins and stops when the tubules
reach a defined length, which appears to coincide with the
limits of the “cytoskeleton” of the extracted cell. These results
are consistent with the idea that positional information and
assembly-promoting activity are embedded in the cellular
ground substance, perhaps as part of the microtrabecular sys-
tem (4, 12). The results of these kinetic and cell model studies
demonstrate that DTAF-tubulin meets the criteria outlined in
the introduction and that the labeling is adequate to allow
direct visualization in the microscope.

The injection of DTAF-labeled tubulin into living fibroblasts
results in the time-dependent appearance of a network of
fluorescent fibrils. Neither DTAF alone nor DTAF-labeled
denatured microtubule protein gives rise to a similar pattern.
The labeling occurs only with assembly-competent tubulin or
microtubule proteins, is sensitive to colchicine, and is strikingly
similar in appearance to the arrays of microtubules seen by
immunofluorescence techniques (17). We have, therefore, con-
cluded that the fluorescent filamentous pattern is the result of
incorporation of exogenous DTAF-tubulin into cytoplasmic
microtubules.

Exploitation of this approach in the elucidation of cellular

FIGURE 9 Time-course fluorescence micrographs of living gerbil
fibroma cells microinjected with DTAF-tubulin. X 520.
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processes requires the ability to make sequential observations
over appropriate timespans. Unfortunately, the rapid bleaching
of fluorescein with intense exciting illumination imposes limits
on such studies with even the most sensitive photographic
emulsions. These problems can be minimized by the use of a
silicon image intensification video camera and intermittent
illumination controlled by a shutter in the light path of the
fluorescence illuminator. The high sensitivity of the camera
allows the use of reduced excitation levels, while exposures can
be limited to %5 of a second, the time required for two complete
scans of the video raster. In this manner, 900 discrete images
can be taken during 1 min total of exposure to exciting radia-
tion. Preliminary studies in our laboratory indicate that up to
3 min of total low-level illumination can be used before bleach-
ing becomes a significant problem in data acquisition. At an
exposure rate of 1 frame/min, this would allow 45 h of record-
ing. In the experiments shown in Fig. 9, the high resolution
video monitor was photographed with a conventional 35-mm
camera. Although there is loss of detail compared with direct
photomicrography (Fig. 5), the microtubular network is readily
resolved. Use of a conventional %-inch video time-lapse tape
recorder results in a further loss of resolution but still might be
useful in some cases.

The apparent coincidence of the fluorescent fibrils and the
phase-dense structures is consistent with the concept of micro-
tubule organization along paths determined by other cytoske-
letal elements (18). The initial diffusion of label after injection
and the rapidity of labeling over wide regions of the cell within
a short time is consistent with the idea that the proteins first
enter a water phase in which they are freely diffusible and,
later, are mobilized into the more structured cytoskeletal com-
partment of the cell (12).

Injection of DTAF-MAPs has failed to reveal labeling of
fibrillar organelles in the fibroblasts. These studies have been
carried out with DTAF-MAPs alone and with DTAF-MAPs
reconstituted with cold PC-tubulin. In both cases, the fluores-
cence was initially diffuse and then confined to bright dots in
the cytoplasm, presumably autophagic vacuoles. These data
suggest that the gerbil fibroma cell is incapable of utilizing
exogenous microinjected bovine brain MAPs. Whether this is
attributable to a specificity of this cell type for different acces-
sory proteins or whether microinjection is not a suitable mode
of administration for the MAPs is not answered by these
experiments.

In summary, these experiments show the utility of DTAF-
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labeled tubulin for direct visualization of microtubular arrays
in cell models and in living cells. Application of the methods
presented here, together with immunocytochemistry and elec-
tron microscopy, promises to extend our knowledge of mitosis
and other events associated with microtubules.
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