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ABSTRACT We describe a new method for subcellular fractionation of human neutrophils. 
Neutrophils were disrupted by nitrogen cavitation and the nuclei removed by centrifugation. 
The postnuclear supernatant was applied on top of a discontinuous Percoll density gradient. 
Centrifugation for 15 rain at 48,000 g resulted in complete separation of plasma membranes, 
azurophil granules, and specific granules. As determined by ultrastructure and the distribution 
of biochemical markers of these organelles, ~90% of the b-cytochrome in unstimulated cells 
was recovered from the band containing the specific granules and was shown to be in or 
tightly associated with the membrane. During stimulation of intact neutrophils with phorbol 
myristate acetate or the ionophore A23187, we observed translocation of 40-75% of the b- 
cytochrome to the plasma membrane. The extent of this translocation closely paralleled 
release of the specific granule marker, vitamin B12-binding protein. These data indicate that 
the b-cytochrome is in the membrane of the specific granules of unstimulated neutrophils 
and that stimulus-induced fusion of these granules with the plasma membrane results in a 
translocation of the cytochrome. Our observations provide a basis for the assembly of the 
microbicidal oxidase of the human neutrophil. 

Neutrophils generate toxic oxygen derivatives such as super- 
oxide anion (03), hydrogen peroxide (H202), and hydroxyl 
radicals (OH.) when stimulated by a variety of particulate 
and soluble stimuli (1-4). These oxygen species are generated 
through the cyanide-insensitive reduction of oxygen (5, 6) by 
electrons ultimately originating from oxidation of glucose in 
the hexose monophosphate shunt (6, 7). They are essential, 
either alone or in combination with myetoperoxidase and a 
halide, for optimal function of the neutrophil in the killing of 
bacteria and fungi (8-11), for lysis of antibody-coated target 
cells ( 12-14), and for inactivation of chemotactic factors (15) 
and of protease inhibitors ( 16, 17). 

The biochemical basis for this reduction of oxygen, known 
as the respiratory burst, is still a matter of debate. One 
candidate is an "enzyme" functioning as an NADPH-oxidase 
(18-20). This enzyme activity can be measured in plasma 
membrane preparations from activated normal neutrophils, 
but is not detectable in plasma membranes from resting 

neutrophils or from activated neutrophils from patients with 
chronic granulomatous disease (CGD) (21-23). Several lines 
of evidence support the view that the NADPH-oxidase may 
consist of an electron transport chain, one link of which is a 
b-type cytochrome (23-26). This cytochrome is present in 
substantial amounts in normal neutrophils and is reduced 
when intact neutrophils from normals, but not from CGD 
patients, are stimulated under anaerobic conditions (27-29). 
Moreover, the cytochrome is absent from the neutrophils of 
patients with the most common form of CGD, the classical 
X-linked type (30). 

The subcellular localization of this cytochrome is not yet 
agreed upon. An association with cytoplasmic granules has 
been indicated by Shinagawa et al. (24) in rabbit neutrophils 
and by Sloan et al. (31) in human neutrophils. In contrast, 
Segal et al. (32) have argued for a plasma membrane localiza- 
tion in human neutrophils based on the observation that all 
b-cytochrome is reduced when dithionite is added to intact 
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cells, whereas the intragranular heme protein, myeloperoxi- 
dase, is only reduced by dithionite following disruption of the 
cells. However, subcellular fractionation indicated the pres- 
ence of cytochrome b both in the plasma membrane and in 
more dense fractions (33). Millard et al. (34) reported a plasma 
membrane localization of the b-cytochrome in rat peritoneal 
leukocytes, and Gabig et al. (23) found a plasma membrane 
localization in phorbol myristate acetate (PMA)-stimulated 
human neutrophils. 

Our preliminary studies indicate that the traditional meth- 
ods of subcellular fractionation, which make use of shear 
force to disrupt cells followed by either density gradient 
centrifugation or differential centrifugation, are unsatisfactory 
because artifacts are introduded by centrifugation on hyper- 
tonic sucrose gradients and because separation of the two 
main types of granules is impossible following differential 
centrifugation. We circumvented these problems as follows: 
the cells were disrupted by nitrogen cavitation. This technique 
has been shown by Klempner et al. (35) to induce minimal 
granule damage and proteolysis. Centrifugation of the post- 
nuclear supernatant on discontinuous Percoll gradients results 
in a fast and efficient separation of granules and plasma 
membrane vesicles. 

MATERIALS AND METHODS 

Isolation of Neutrophils: 450 ml of blood was withdrawn from 
healthy donors who gave informed consent. The blood was anticoagulated with 
25 mM sodium citrate and mixed with an equal volume of 3% Dextran T-500 
(Pharmacia Fine Chemicals, Piscataway, N J) in 0.9% NaCI to ease the sedi- 
mentation of erythrocytes. After 45 min at room temperature, the leukocyte- 
rich supematant was siphoned off and the cells were pelleted in plastic tubes 
by centrifuging at 200 g for 10 rain. The cell pellets were resuspended in 0.9% 
NaCI. Mononuclear cells were separated from polymorphonuclear cells and 
residual erythrocytes by centrifugation through Ficoll-Hypaque (Ficoll; Phar- 
macia Fine Chemicals) (Hypaque, Winthrop Laboratories, New York, NY) as 
described by Boyum (36). The resulting granulocyte-ecythrocyte pellets were 
resuspended in ice-cold distilled H20 for 30 s to lyse the erythrocytes. Isotonicity 
was restored with an equal volume of 1.8% NaCI. The granulocytes were 
pelleted at 200 g for 6 min; the lysis of erythrocytes was repeated with 0.2% 
NaCI instead of distilled H20. After an additional wash in ice-cold saline, the 
cells were resuspended either in ice-cold relaxation buffer minus EGTA-100 
mM KCI, 3 mM NaCI, 1 mM ATP(Na)2 (Sigma Chemical Co., St. Louis, MO), 
3.5 mM MgC12, 10 mM PIPES, pH 7.3, if cavitation was to follow, or in Krebs 
Ringer-phosphate-119 mM NaCI, 4.7 mM KCI, 1.2 mM MgSO4, 0.75 mM 
CaCI2, 15 mM NaH2PO4/Na2HPO4, pH 7.4, containing 5.5 mM glucose, if the 
cells were to be stimulated before cavitation. More than 97% of the cells were 
polymorphonuclear leukocytes and more than 98% excluded trypan blue. 

Disruption of Cells: Purified neutrophils, 0.5-1.5 x 109 in 20 ml of 
ice-cold relaxation buffer minus EGTA, were pressurized with N2 for 20 min 
at 350 psi with constant stirring in a nitrogen bomb (Parr Instrument Company, 
Moline, 1L) at 4"C (35). The cavitate was then collected dropwise into EGTA, 
pH 7.4, sufficient for a final concentration of 1.25 mM. 

Subcellular Fractionation: Nuclei and unbroken cells were pelleted 
(P0 by centrifugation of the cavitate at 500 g for 10 rain at 4"C. The supernatant 
(S~) was decanted and loaded onto gradients precooled to 4"C. 

Density Centrifugation on Percoll Gradients: The tonicity of 
Percoll (Pharmacia Fine Chemicals) was adjusted by adding one-tenth the final 
volume of a 10 times concentrated relaxation buffer (1,000 mM KCI, 30 mM 
NaCI, 35 mM MgCI2, 10 mM ATP[Na]2, 12.5 mM EGTA, 100 mM PIPES, 
pH 6.8). For continuous Percoll gradients, the Percoll was adjusted to density 
1.08 g/ml, and 30 ml was centrifuged for 10 rain at 20,000 rpm (48,000 g) in 
an SS34 rotor in a Sorvall RC-5B centrifuge (DuPont Co., Wilmington, DE) at 
4"C. Thereafter, 8-10 ml of sample, S~, was applied on top of this preformed 
gradient and centrifuged for an additional 35 rain at 20,000 rpm. For discon- 
tinuous Percoll gradients, 14 ml of Percoll, density 1.120 g/ml, was layered 
under 14 ml of Percoll, density 1.050 g/ml, through a spinal needle. 8-10 ml 
of sample, S~, was then applied on top and centrifugation was carried out at 
4°C for 15 min at 20,000 rpm in an SS34 rotor. The density of the gradient 
was estimated from the bands of calibration beads of known density (Pharmacia 
Fine Chemicals) in gradients run in parallel. 

Continuous sucrose gradients were made from sucrose solutions of density 
1.112 g/ml and 1.250 g/ml by a gradient mixer. The volume of gradients was 
30 ml, and 8 ml of the sample, Sj, was carefully layered on top. The gradients 
were then centrifuged for 210 rain at 25,000 rpm ( 1130,000 g) in an SW28 rotor 
(Beckman Instruments, Inc., Palo Alto, CA). 

Fractions of ~ I ml were collected at 4"C by aspiration from the bottom of 
the gradients through a 50-ul disposable glass pipet attached to a polyethylene 
tube which was connected to a peristaltic pomp. Since the resolution into three 
distinct and well-separated bands was excellent on the discontinuous Percoll 
gradients, these bands, referred to as a, ~, and 3' in order of decreasing density, 
could alternatively be collected by hand through a pasteur pipette. 

Percoll was removed from pooled fractions by spinning at 35,000 rpm 
(180,000 g) for 120 rain in an SW41 rotor (Beckman Instruments, Inc.). To 
prevent trapping of biological material in the Percoll pellet, it is essential that 
the density of the pooled fractions in the centrifuge tubes is at least as high as 
that of the biological material. Therefore, Percoll in relaxation buffer, density 
1.122, was added to fill and balance the centrifuge tubes. This is particularly 
important in the preparation of plasma membranes since these fractions near 
the top of the gradient contain the least amount of Percoll. After centrifugation, 
the sedimentable biological material was layered directly on a hard-packed 
pellet of Percoll from which it was easily separated by aspiration. 

Disruption of Granules: To separate granule membranes from gran- 
ule contents, the granules from the B-band were resuspended in 1.5 ml of 
relaxation buffer and were subjected to freezing and thawing seven times (37). 
To deplete the membranes of adsorbed proteins, 6 ml of extraction buffer (1 
M KC1, 3.5 M urea, 50 mM glycine, 10 mM Na2HPO4/NaH2PO4, pH 6.8) was 
added and the sample incubated for 45 min at 4"C (38). Membranes were then 
pelleted I~Y centrifugation, 45,000 rpm (220,000 g) for 90 min at 4"C in an 
SWS0.1 rotor (Beckman Instruments, Inc.). The supernatant was aspirated and 
the membrane pellet resuspended in relaxation buffer. 

Stimulation of Neutrophils: For each experiment, the isolated 
intact neutrophils from one donor were suspended in 20 ml of Krebs-Ringer 
phosphate buffer containing 5.5 mM glucose. Half of the cells were incubated 
with stimulus, either PMA (Sigma Chemical Co.) 5 ug/ml for 20 rain, or 
A23187 (Eli Lilly and Co., Indianapolis, IN), 1 /~M for 10 min, at 37"C in a 
water bath with shaking (90 strokes/rain). The incubation was terminated by 
adding 10 ml of ice-cold Krebs-Ringer phosphate buffer. The cells were then 
pelleted by centrifugation at 200 g for 6 min at 4°C. The supernatant, So, was 
removed for enzyme and spectral analyses and the cell pellet resuspended in 
20 ml of ice-cold relaxation buffer minus EGTA and cavitated as described 
above. The other half of the cells, the control, was treated in exactly the same 
way except that only solvent, dimethyl sulfoxide (7 mM) for PMA, ethanol (18 
mM) for A23187, was added. 

Spectroscopy: Absorption spectra from 400 to 600 nm were measured 
and recorded in the turbid sample compartment of a Perkin-Elmer 576 ST 
spectrophotometer (Coleman Instruments Division, Oak Brook, IL). Samples 
of 3 ml were divided into two plastic cuvettes and one, the sample, was reduced 
by adding solid dithionite ( 1-2 mg). The spectral scans were repeated following 
addition of 0.2% Triton X-I@) (Fisher Scientific Co., Fair Lawn, NJ) from a 
stock of 10% to both sample and reference cuvette. Cytochrome b was quanti- 
tated using an absorption coefficient of the 559-nm peak of 21.6 mM -j cm -t 
(39). Myeloperoxidase was quantitated using an absorption coefficient for the 
472-nm peak of 75 mM -~ cm -~ (40). 

Enzyme Assays: Alkaline phosphatase (EC 3:1.3.1) was assayed with 
p-nitrophenyl phosphate (Sigma Chemical Co.) 1 mg,/ml as substrate in a 1 
mM MgC12, 50 mM sodium barbital buffer, pH 10.5 (41). 50-#1 samples were 
assayed in duplicate. Samples were incubated for 30 rain at 37°C in a total 
volume of 1 ml and the reaction was terminated by addition of 1 ml of ice- 
cold barbital buffer. Sodium hydroxide, which normally terminates this assay, 
was found to induce flocculence in Percoll-containing samples. The absorbance 
at 410 nm was read immediately after the assay was terminated, and the enzyme 
activity was calculated using an absorption coefficient for p-nitrophenol of 18.6 
mM -~ cm -~ (42). For samples containing Percoll, an identical assay with 
omission of p-nitrophenyl phosphate was always run in parallel to estimate the 
light scattering at 410 nm induced by the presence of Percoll. These values 
were subtracted from the enzyme assay values. 1 U of enzyme liberates 1 umol 
product per minute. 

/~-glucuronidase (EC 3.2.1.31) was assayed in duplicates as described (43) by 
liberation of phenolphthalein from 1 mM phenolphthalein/~-monoglucuronic 
acid (Sigma Chemical Co.) in 100 mM sodium acetate buffer, pH 4.4, at 37°C 
for 4 h. The assay was terminated by adding 120 mM glycine, pH 10.5. The 
activity was calculated using an absorption coefficient for phenolphthalcin of 
33 mM -1 cm-! at 550 nm (44). I U of enzyme liberates 1 umol of substrate 
per minute. Samples containing Percoll became very turbid during incubation 
at the low pH but clarified immediately upon addition of the glycine buffer. 
However, it was found that the enzyme activity in samples to which Percoll 
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was added was inhibited in proportion to the content of Pereoll. We observed 
a 40% inhibition when Pereoll was added to samples to give the same contem 
as that in the a-peak. 

Cytochrome c oxidase was assayed as described by Cooperstein and Lazarow 
(45). Cytochrome c was purchased from Sigma Chemical Co. 

Lysozyme (EC 3.2. I. 17) was assayed kinetieally by following the decrease in 
turbidity measured at 450 nm of 0.2 mg/ml Micrococcus lysodeikticus (Sigma 
Chemical Co.) in a 67 mM NaH2PO,/Na2HPO4 buffer, pH 6.2, at room 
temperature (46). Egg white lysozyme (Sigma Chemical Co.) was used as 
standard. 

Vitamin B~2-binding protein was measured in duplicates on 25-, 50-, and 
100-~l samples essentially as described by Gonlieb et al. (47). To 1,0 ml of 
saline was added 500 ~1 STCo-vitamin B,~ (New England Nuclear, Boston, 
MA), 4 ng/ml, sp act l0 s cpm/ng. The sample was then added and, after 
mixing, 1 ml of albumin-coated charcoal was added. The samples were centri- 
fuged for 15 min at 1,000 g at room temperature and I ml of the supernatant 
was aspirated and counted in a Packard auto-gamma scintillation counter 
(Packard Instrument Co., Inc., Downers Grove, IL) to determine the amount 
of bound STCo-B~5. 

Protein was determined as described by Lowry (48) using bovine serum 
albumin (Sigma Chemical Co.) as a standard. Addition of Percoll to a concen- 
tration comparable to that of the samples had no effect on color development 
in the standards. DNA was measured as described by Giles and Myers (49) 
with standard obtained from Sigma Chemical Co. 

Electron Microscopy: Electron microscopy was done on samples 
fixed for 12 hours in relaxation buffer containing 4% formalin, 1% glutaralde- 
hyde. After rinsing, the samples were fixed in 1% osmium tctroxide for l h and 
stained in 0.1% uranyl acetate. After dehydrating by incubating in ethanol, 
70°/o. 95%, and 100%, the samples were covered with propylene oxide, infiltrated 
in Epon 812 propylene oxide, l:l, and imbedded in Epon 812. Sections of 400 
A were cut and stained with uranyl acetate and viewed on a Zeiss electron 
microscope. 

RESULTS 

The neutrophils were disrupted by nitrogen cavitation, and 
fractionation of  the cavitated sample was accomplished by an  
initial centrifugation, 500 g for l0 min,  to pellet nuclei and 
undisrupted cells, P~, followed by centrifugation of the super- 
natant  SL, on Percoll density gradients. Table I shows the 
distribution after the first centrifugation of  markers for nuclei 
(DNA), azurophil granules (myeloperoxidase, /3-glucuroni- 
dase [50-52]), specific granules (vi tamin B~z-binding protein 
[53, 54]), and plasma membranes  (alkaline phosphatase [31, 
33, 34, 50, 52, 54]). 5 ' -AMP-ase was abandoned  as a plasma 
membrane  marker since it has been shown to be absent from 
pure h u m a n  neutrophils (55, 56). Ouabain-inhibitable-Na+/ 
K÷-ATP-ase activity, although specific for plasma membranes  
of h u m a n  polymorphonuclear  leukocytes (3 l, 35), was also 
abandoned since only ~ 6 %  of the total activity was ouabain-  
sensitive even in the presence of  0.01% deoxycholate (31, 35, 
57). Relaxation buffer, a high-potassium, low-sodium, cal- 
cium-free buffer containing MgATP, was designed to mimic  
cytoplasmic condit ions in the neutrophil,  based in part upon 
condit ions shown to promote cytoplasmic relaxation in  non-  
muscle contractile systems (5 8). We found that the use of  this 

buffer resulted in less adherence of  granules to nuclei during 
the first centrifugation and  in better separation of organelles 
during density centrifugation than when Hanks '  buffer was 
used (35) (data not  shown). 

To determine the densities of  the granules and of the plasma 
membranes,  S, was centrifuged on a cont inuous  Percoll gra- 
dient (see Materials and Methods). This resulted in three 
visible bands, a, ~, and v, at densities 1.137 g/ml, 1.100 g/ 
ml, and 1.028 g/ml,  respectively (mean of  three experiments). 
However, since the gradient formed in this way is steep in the 
high-density end near the bot tom of the centrifuge tube, the 
spatial separation of  the a and ~ bands was not  satisfactory. 
Therefore, discont inuous Percoll gradients, designed on the 
basis of  the densities of the a and ~ bands given above, were 
made as described in Materials and Methods. The sample, S~, 
was applied on top of this gradient. As much as l0 ml of 
material (3.5 mg/ml  protein) can safely be applied on a 28- 
ml gradient. Centrifugation at 48,000 g for 15 rain at 4"C 
resulted in the formation of a gradient with a density profile 
as shown in Fig. I. The low viscosity of  Percoll permitted the 
organelles to equilibrate at their isopycnic densities, as indi- 
cated by the formation of sharp bands (Figs. 2 and 3a )  at the 
same densities (Fig. 1 ) as obtained on the cont inuous gradient. 
The mean  density of the a band was 1.135 g/ml (range I. 124- 
1.150 g/ml, n = 7); the mean  density of the B band  was 1.084 
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FIGURE I Density profile of Percoll gradient. Discontinuous Per- 
coll gradient, initial density 1.050/I .120 g/ml after centrifugation at 
48,000 g for 15 min. Arrows indicate visually determined positions 
of the three observed bands (a, B, and 'y bands) from neutrophil 
homogenates (postnuclear supernatants) run in parallel. Dots indi- 
cate visually determined positions of the density beads. 

TABLE I 

Distribution of Markers among Subcellular Fractions from Nitrogen-cavitated Human Neurotrophils 

Vitamin B~2- Alkaline 
Lysozyme ~-Glucuron- binding pro- Myeloperox- phosphatase Cytochrome 

Protein (4) DNA (2) (3) idase (7) tein (7) idase (7) (5) b (8) 
% 

Cavitate I00 I00 I00 I00 I00 100 100 I00 
P~ 16.4 82.7 13.4 17.4 15.7 18.9 17.6 I 5.0 

[11-28] [80-85] [10-19] [8-30] [11-27] [15-24] [10-26] [9-23] 
$1 84.0 12.6 8~5.5 86.7 89.7 93.7 80.2 86.8 

[75-90] [I 1-14] [81-92] [67-93] [70-91] [86-96] [74-91] [81-92] 

Results are mean of the number of experiments indicated in parentheses, range indicated in brackets. 
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FIGURE 3 Distribution of marker enzymes on discontinuous Per- 
coil gradients. 8 ml of postnuclear supernatant $1 (protein concen- 
tration 3.02 mg/ml) was layered on each of two discontinuous 
Percoll gradients. Fractions ~ 1 ml each were collected by aspiration 
from the bottom of each gradient until only the supematant, $2, 
was left. The fractions from the two gradients were combined and 
assays performed on these. Spectra, for determination of myelo- 
peroxidase and cytochrome b, were obtained in the absence and 
presence of 0.2% Triton X-100 on samples diluted sixfold with 
relaxation buffer. Enzyme assays were done in sixfold diluted sam- 
ples in the presence of 0.2% Triton X-100. $2 indicates assay on 
undiluted supernatant from the gradient. 

FIGURE 2 Photo of postnuclear cavitate, Sl after centrifugation on 
discontinuous Percoll gradients (see Materials and Methods). The a 
(lowest), /3 (middle), and 3' (highest) bands are readily visible. 
Magnification, 1.5-fold. 

g/ml (range 1.066-1.096, n = 7); the mean density of the 3" 
band was 1.026 g/ml (range 1.022-1.029, n = 7). 

Analysis of the gradients collected in ~ 1-ml fractions (Fig. 
3, a-d) identified the a band as azurophil granules by their 
content of myeloperoxidase and fl-glucuronidase with no 
contamination by markers of specific granules or plasma 
membranes. The B band was identified as specific granules by 
the content of vitamin B~2-binding protein, with no contam- 
ination by plasma membranes, but with some contamination 
by azurophil granules, as indicated by the presence of 10% of 
the myeloperoxidase in this peak. Of the fl-glucuronidase 
recovered, ~25% was in the fl band; however, this gives an 
artificially high estimate of the contamination of this band 
with azurophil granules since the high Percoll concentrations 
in the fractions containing most of the fl-glucuronidase (the 
a band) markedly inhibited the enzyme assay (see Materials 
and Methods). The 3' band was identified as plasma mem- 
branes by the distribution of alkaline phosphatase. The recov- 
eries from gradients of the marker enzymes were as follows: 
myeloperoxidase 78% (range 71-91%), vitamin Bt2-binding 
protein 90% (82-100%), alkaline phosphatase 80% (73-85%), 
and 3-glucuronidase 54% (52-56%). The reason for the ap- 
parently lower recovery of &glucuronidase is given above. 
Cytochrome c oxidase activity was too low to identify the 
position of mitochondria which are known to be scarce in 
neutrophils (59). 

It is clearly observed from Fig. 3 that the markers for the 
azurophil granules, specific granules, and plasma membranes 
closely follow the peaks of light scattering measured as optical 
density at 450 nm. Therefore, routinely the fractions contain- 
ing each type of organelle were pooled based on the optical 
density peaks. The Percoll was removed by centrifuging (see 
Materials and Methods). The recovery of the marker enzymes 
was essentially 100% after spinning out the Percoll (data not 
shown). A suspension of granules from the a band was 
intensely chartreuse colored in accordance with the azuro- 
phils' content of myeloperoxidase. The granules from the fl 
band were beige and the plasma membranes were slightly 
whitish and opalescent in suspension. Electron micrographs 
of each fraction (Fig. 4) show the a and ~ bands to consist of 
granules bound by a single membrane, each fairly uniform in 
size and shape, the fl granules slightly more electron-dense 
than the a granules. The 3" band was found to contain closed 
vesicles bound by a single membrane, heterogeneous in size 
and shape, and empty but for residual filamentous material. 

The major peak of cytochrome b migrates with the vitamin 
B,2-binding protein, a specific granule marker (Fig. 3 c). None 
was found in the azurophil granules and only minimal 
amounts were in the plasma membrane (mean 11.7% of the 
total, range 6.9-17.4% in four experiments). The recovery of 
the b-cytochrome from the gradients was 86% (range 75- 
109%). 

Absorption spectra, from 400 to 600 nm, of oxidized versus 
dithionite-reduced samples of a, fl, and 3' bands in the pres- 
ence and absence of 0.2% Triton X-100 (Fig. 5) showed that 
all of the b-cytochrome in the fl peak was fully reduced by 
dithionite in the absence of Triton X-100, but that only 4.5% 
(mean of eight experiments, range 2.6-6.3%) of the myelo- 
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FiGure 4 (a, b, and c) Electron micrographs of material from o~, ~' 
and "y bands, respectively. See text for details. Bars, 1.0 #m. (a) x 
22,500. (b) x 28,000. (c) x 27,000. 

peroxidase in the a band was reduced in the absence of  
detergent. Spectra of the 3' band confirmed that only little 
cytochrome b is present and is fully reduced in the absence 
of  detergent. The resistance of myeloperoxidase in the azur- 
ophil granules to dithionite reduction has not been previously 
observed when subcellular fractionation was carried out on 
sucrose gradients (33). We also found that in azurophil gran- 
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ules, isolated from a sucrose gradient, the myeloperoxidase 
was indeed susceptible to dithionite reduction in the absence 
of  Triton X-100 (Fig. 5 d), thus indicating that granules iso- 
lated by our method maintain greater structural integrity. 

The immediate susceptibility of  the b-cytochrome in the 
granules to reduction by dithionite indicates, although does 
not prove, a granule membrane as opposed to an intragranular 
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FIGURE 5 Difference spectra of di thionite reduced minus oxidized samples in the absence (broken lines) or presence (solid 
lines) of 0.2% Triton X-100. A, B and C are spectra of sixfold diluted samples of the c~, fl, and y bands, respectively, from a 
discontinuous Percoll gradient after the Percoll has been removed and the biological material from each band has been 
resuspended in 2 ml of relaxation buffer. D is a spectrum of the fraction containing peak amounts of myeloperoxidase obtained 
from a continuous sucrose gradient (see Materials and Methods). The fraction, 1 ml, was diluted five times with relaxation buffer 
and a difference spectrum was obtained under absence and presence of 0.2% Triton X-100. Height of bars indicates 0.005 
absorbance. 

localization of this cytochrome. To investigate this, ~ granules 
were lysed by freezing and thawing seven times followed by 
incubation in a high ionic strength buffer (see Materials and 
Methods) to dissociate adsorbed protein from the membranes. 
The membranes, pelleted by centrifugation (see Materials and 
Methods), were visibly reddish. All of the vitamin B~2-binding 
protein was found in the supernatant (Table II), indicating 
complete lysis of the granules, a conclusion that was further 
supported by electron microscopy, Fig. 6. Spectral analysis of 
the pellet and supernatant showed that all the b-cytochrome 
was present in the pelleted membranes, whereas all myeloper- 
oxidase from contaminating azurophil granules was in the 
supernatant. The same distribution was found when the neu- 
trophils had been treated with 5 mM diisopropylfluophos- 
phate for 5 min prior to cavitation to inhibit serin proteases 
(data not shown). 

Since the b-cytochrome is located in or tightly associated 
with the membrane of the # granules, it might be expected to 
be translocated to the plasma membrane during stimulation 
of the cells as a result of fusion of granules with the plasma 
membrane. To investigate this possibility, cells were stimu- 
lated with either PMA or the ionophore A23187, both of 
which are known to induce degranulation primarily of specific 

TABLE II 

Localization of Cytochrome b within fl-Granules 

Vitamin 
B~2-bind- Myelo- 

Cyto- ing pro- perox- 
chrome b tein idase 

/3-granules 
Supernatant of disrupted /~- 

granules 
Pellet of disrupted ~-granules 

(ng B~- 
(nmol) bound) (nmol) 
1.114 121.9 0.45 

0 93.6 0.39 

1.06 0 0.01 

B-granules, isolated from a discontinuous Percoll gradient, were resuspended 
in 1.5-ml relaxation buffer. A sample was taken for determination of cyto- 
chrome b, myeloperoxidase and vitamin B12-binding protein in the presence 
of 0.2% Triton X-100. The granules were lysed by freezing and thawing and 
incubated in extraction buffer and centrifuged as described in Materials and 
Methods. The supernatant and the pellet, resuspended in relaxation buffer, 
were analyzed for cytochrome b, vitamin B12-binding protein and myelope- 
roxidase in the presence of 0.2% Triton X-100. 

granules and activation of the respiratory burst (60-63). Stim- 
ulation resulted in a decrease in the height of the ~ peak and 
an increase in the "v peak (as determined by the optical density 
at 450 nm) but no change in the position of the peaks on the 
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FIGURE 6 Electron micrograph 
of membranes from lysed and 
extracted B-granules (see Mate- 
rials and Methods and legend to 
Fig. 2). Bar, 1.0/~m. x 30,000. 

gradient (data not shown). Stimulation by either PMA or 
A23187 resulted in liberation of vitamin Bt2-binding protein 
from the cells and in a corresponding translocation of the b- 
cytochrome from ~ granules to the plasma membranes (Fig. 
7 and Table III). These data indicate fusion of the cytochrome 
b-containing granule membranes with the plasma mem- 
branes. Electron microscopy (Fig. 8) shows that the 3' mem- 
branes from activated cells are not just a mixture of intact 
granules and plasma membranes but look like empty vesicles. 
Recovery of granular enzymes extracellularly during activa- 
tion has been shown to be an unreliable quantitative measure 
of degranulation since the enzymes liberated are subject to 
damage by products of the respiratory burst (64). Therefore, 
quantitation of enzymes in the remaining granules is a better 
measure of degranulation during activation. However, espe- 
cially for activation experiments, an artifact in comparing 
total amounts of enzyme left in activated cells versus control 
cells may be induced because activated cells stick to surfaces 
which may affect their recovery during fractionation. There- 
fore, in order to correlate the liberation of vitamin B~2-binding 
protein from the B band with disappearance of cytochrome b 
from the/3 band during activation, the ratio of cytochrome b 
to vitamin B~2-binding protein in the B band was calculated 
in each experiment for activated and control cells. These 
figures were almost identical for control and activated cells in 
each experiment, but some interexperimental variation in the 
determination of vitamin B~2-binding protein occurred. To 
eliminate the effect of this variation, the ratio 

[cytochrome b in ~ band] 
[vitamin B12-binding protein in ~ band]/activated cells 

[cytochrome b in ~ band] band]~ control cells 
[vitamin B~2-binding protein in J 

from activated cells to control cells was calculated. The fact 
that this ratio was close to 1.00 shows that the ratio of 
cytochrome b to vitamin B12-binding protein in the B granule 

5 8  THE JOURNAL OF CELL BIOLOGY • VOLUME 97, 1983 

FIGURE 7 Translocation of cytochrome b from the B band (specific 
granules) to the ~, band (plasma membranes) upon activation. Two 
sets of experiments are described in which for each experiment 
0.8-1.4 x 10 9 purified neutrophils were divided. One-half of the 
cells was stimulated by either 1 /~M A23187 for 10 min or by 5 ,~g/ 
ml PMA for 20 min at 37°C. The other half of the cells was treated 
as a control (see Materials and Methods). Release of cytochrome b, 
B-glucuronidase and vitamin B12-binding protein into the supema- 
tant, So, was measured after pelleting the cells. The pelleted cells 
were cavitated and fractionated on discontinuous Percoll gradients 
as described in Materials and Methods. The percentage of loaded 
b-cytochrome in the B and ~' bands is given. The values are 
corrected for recovery of alkaline phosphatase in the ~, band and 
B12-binding protein in the B bands. Bars are mean and range of 
three experiments with A23187 and two experiments with PMA. 

was the same in resting cells as in cells that had degranulated 
up to 85% of their specific granules, providing further evidence 
that the b-cytochrome is in the specific granules. 



TABLE III 

Translocation of Cytochrome b during Activation 

[(Cytochrome b in 
band/Vit. B12-binding 

Disappearance of protein) Activated]/[(Cy- 
Liberation of vita- Liberation of #-glu- vitamin B12-bind- tochrome b in/3 band/ 
rain 812-binding curonidase to me- ing protein from b-Cytochrome in 3,- Vit. B~2-binding protein) 

protein to medium, dium, /~-band band Control] 
mean (range) mean (range) mean (range) mean (range) mean (range) 

(%) (%) (%) (%) 

A23187 1 uM (3) 33.5 (29-36) 5.0 (4.9-7) 45.7 (42-53) 
46 (42-50) 0.95 (0.76-1.07) Control (3) 2.6 (0-6) 4.7 (4.0-6) 16.4 (14.9-17.4) 

PMA 5 ~g/ml (2) 48.0 (37-59) 33.5 (25-42) 72.4 (62-82.8) 
85 (84-86) 0.88 (0.76-1.00) Control (2) 5.2 6.5 (5-8) 17.5 (12.6-23) 

The data were obtained from the experiments described in Fig. 7. Disappearance of vitamin B1a-binding protein was determined as ratio of total vitamin Bu- 
binding protein in the/~-band of activated cells versus control cells. 

FIGURE 8 Electron micrograph 
of material from the 3' band from 
cells that have been activated 
with PMA 5 #g/ml for 20 min (see 
Materials and Methods). Bar, 1.0 
~m. x 30,000. 

DISCUSSION 

The method described here for subcellular fractionation of 
human neutrophils by nitrogen cavitation and discontinuous 
Percoll density gradient centrifugation is rapid, simple, and 
reproducible. Furthermore, it offers several distinct advan- 
tages over traditional methods. First, the use of relaxation 
buffer circumvents the problem with aggregation of organelles 
that has forced others to use high concentrations of heparin 
in the subcellular fractionation of human neutrophils (52). 
Second, the method appears to result in less damage to the 
organelles than techniques based on hypertonic sucrose gra- 
dients. The indication for this is the difference between Per- 
coil- and sucrose-sedimented azurophil granules on addition 

of dithionite. The reducing agent readily enters the granules 
isolated on sucrose gradients and reacts with intragranular 
myeloperoxidase, whereas reduction of this enzyme within 
granules isolated on Percoll gradients is detected only in the 
presence of Triton X-100, suggesting major differences in 
granule membrane integrity. Third, the densities reported here 
are significantly less than those reported for the same organ- 
elles isolated on sucrose density gradients (52). Such differ- 
ences between organelles isolated from Percoll and sucrose 
gradients have been reported from other types of cells (65). 
This is not unexpected, considering the high osmolarity of 
the sucrose, which is likely to cause the organelles to shrink. 
Also, for the plasma membranes, which re-seal into vesicles 
containing the medium in which the cells are disrupted, the 
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use of relaxation buffer as opposed to a sucrose-heparin buffer 
does not artificially increase the density of this structure. In a 
previous attempt to use colloidal silica for subcellular frac- 
tionation of human neutrophils, Olsson (66) reported a higher 
density for the granules than we find, but in his preparation 
granules were heavily coated with silica beads, thus increasing 
their density. 

Using our method, we have achieved a clear-cut separation 
of azurophil granules, specific granules, and plasma mem- 
brane vesicles. Each of these populations of organelles was 
easily detected in the gradients by visual examination, optical 
density at 450 nm, and assay of marker enzymes. 

A major stimulus for developing this method was the desire 
to determine the localization within the neutrophil of the b- 
cytochrome. We have demonstrated that in the resting neu- 
trophils ~90% of the b-cytochrome is associated with the 
membranes of the specific granules. It is, of course, an open 
question whether the cytochrome that is present in the plasma 
membrane, ~ 10%, is a result of partial degranulation at some 
step(s) on the route of the neutrophil from the bone marrow 
to the test tube. This issue will very likely be clarified when 
an antibody against the b-cytochrome becomes available, 
permitting identification of b-cytochrome containing organ- 
elles in intact cells, including bone marrow preparations. 

In previous reports on the subcellular localization of the b- 
cytochrome, fractionation by differential centrifugation has 
indicated a granule localization (24, 31). However, when 
sucrose gradients have been used, most of the b-cytochrome 
in unstimulated cells was found in the plasma membrane (33, 
34). The demonstration here, that the cytochrome is in the 
membrane of the granules in unstimulated cells but translo- 
Gates to the plasma membrane upon stimulation of the cell, 
shows the results of the experiments based on sucrose gra- 
dients to be artifactual. A further argument for a plasma 
membrane localization has been the ability of dithionite, 
when added to intact resting neutrophils, to reduce cyto- 
chrome b but not myeloperoxidase (32). However, we found 
that myeloperoxidase within isolated azurophil granules was 
protected from reduction by dithionite unless a detergent was 
added. Thus, our data suggest that in intact neutrophils, 
dithionite penetrates the plasma membrane but does not 
penetrate the membrane of the azurophil granule, leaving 
myeloperoxidase unaffected. 

The demonstration here that the b-cytochrome is in the 
membrane of granules with the same density as the specific 
granules does not prove that these granules are the site of the 
cytochrome since gelatinase-containing (vitamin B~2-binding 
protein-free) granules with the same density as the specific 
granules have recently been described (54). These gelatinase- 
containing granules were reported to fuse much more readily 
than the specific granules with the plasma membrane, partic- 
ularly in response to stimulation by ionophore A23187 (54). 
We found that following either PMA or A23187 stimulation, 
the extent of translocation of cytochrome b to the plasma 
membrane closely parallels release of vitamin B~2-binding 
protein and that a constant ratio of b-cytochrome to vitamin 
B~2-binding protein was found in the remaining intact gran- 
ules of the fl band after stimulation by both agents. This close 
association suggests that cytochrome b is in the membrane of 
the granules that contain vitamin Bt2-binding protein, i.e., 
the specific granules. Definite proof of this may await the 
development of an anticytochrome b antibody, which will 
permit positive morphologic identification of the b-cyto- 
chrome containing granules. 
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During formation of phagolysosomes, granules fuse with 
the plasma membrane at the site of the developing phagosome 
(67). Thus, our demonstration of the translocation of the b- 
cytochrome to the plasma membrane in response to stimu- 
lation provides a mechanism by which the oxidase responsible 
for H202-generation is brought into close contact with the 
targets enclosed in the phagosome. In these experiments, only 
soluble stimuli have been used to induce fusion of granules 
with the plasma membrane, but b-cytochrome has also been 
detected in IgG latex containing phagolysosomes isolated by 
flotation on sucrose (32, 68). Work is in progress to isolate 
phagolysosomes induced by different particulate stimuli. 

We propose that fusion of granule membrane with plasma 
membrane is an essential step in activation of the neutrophil 
respiratory burst. The similarity of the kinetics of granule 
fusion with phagosomes and the respiratory burst (69) is 
compatible with this concept. If, as accumulating evidence 
suggests (26, 28, 34, 70), the respiratory burst machinery is a 
multicomponent system which transfers electrons from pyri- 
dine nucleotides to oxygen, membrane fusion would be an 
ideal mechanism for bringing components from separate sites 
in the cell together during stimulation and would also provide 
a safe control to ensure that the oxidase is not activated unless 
the cell is challenged. Some of these components are very 
likely in the plasma membrane and others, such as the b- 
cytochrome, are in granule membranes. Definitive proof of 
this hypothesis will require the identification and localization 
of all components of the system. Nonetheless, the concept is 
fully supported by the findings we have reported here and has 
the appeal of explaining a number of other observations such 
as the lack of oxidase activity in resting cells (18-20), the 
rapid appearance of such activity upon stimulation (26, 32, 
69), and the apparent plasma membrane site of the oxidase 
isolated from stimulated neutrophils (23). 
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