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ABSTRACT Muscle fibers of the tarantula femur exhibit structural and biochemical character- 
istics similar to those of other Iong-sarcomere invertebrate muscles, having long A-bands and 
long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a 
paramyosin:myosin heavy chain molecular ratio of 0.31 _ 0.079 SD. We studied the myosin 
cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively 
stained, and unidirectionally metal-shadowed specimens by electron microscopy and optical 
diffraction and filtering and found it to be similar to that previously described for the thick 
filaments of muscle of the closely related chelicerate arthropod, Limulus. Cross-bridges are 
disposed in a four-stranded right-handed helical arrangement, with 14.5-nm axial spacing 
between successive levels of four bridges, and a helical repeat period every 43.5 nm, The 
orientation of cross-bridges on the surface of tarantula filaments is also likely to be very similar 
to that on Limulus filaments as suggested by the similarity between filtered images of the two 
types of filaments and the radial distance of the centers of mass of the cross-bridges from the 
surfaces of both types of filaments. Tarantula filaments, however, have smaller diameters than 
Limulus fi.laments, contain less paramyosin, and display structure that probably reflects the 
organization of the filament backbone which is not as apparent in images of Limulus filaments. 
We suggest that the similarities between Limulus and tarantula thick filaments may be 
governed, in part, by the close evolutionary relationship of the two species. 

Using a modified isolation procedure and improved electron 
microscopic techniques together with computer image and 
optical diffraction analyses, we recently described the struc- 
ture of the myosin cross-bridge arrangement on the surface 
of negatively stained thick filaments isolated from unstimu- 
lated Limulus telson levator muscle (15, 22, 30). Four cross- 
bridges extend from the surface of these filaments at each 
level, with an axial rise of 14.5 nm between adjacent levels 
and a helical repeat period of 43.5 nm, as predicted by Wray 
et al. (36) and confirmed by computer image reconstruction 
(30). Furthermore, by unidirectional metal-shadowing we de- 
termined that the myosin cross-bridges are disposed in a major 
right-handed helix, having 12 subunits per complete turn (175 
nm), on the filament surface (16). 

Wray (35) recently reported that the x ray patterns from 
glycerinated, relaxed tarantula leg muscle resemble those he 

earlier obtained from similar preparations of Limulus muscle 
(36). Here we present the results of an electron microscopic, 
optical diffraction, and biochemical analysis of the structure 
and paramyosin content, respectively, of thick filaments from 
tarantula femur muscle fibers and compare them with those 
from our previous analysis of Limulus telson muscle thick 
filaments (15, 16, 22, 30). 

MATERIALS AND METHODS 

Tarantula (Eurypelma sp.) specimens (sex unknown) were purchased from 
Carolina Biological Supply Co. (Burlington, NC). The spiders were cooled to 
promote torpor either by surrounding them with ice for an hour, or by placing 
them in the freezer at -4°C for 20 min, and the legs were removed. The femur 
(with patella and coxa attached) was cut loose and slit lengthwise to expose the 
muscles which were dissected according to Dillon (7). All femur muscles were 
used. 
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Electron Microscopy: For sectioned material, live muscles were fixed 
at body length, in situ with 2.5% glutaraldehyde (Tousimis) and 0. I% tannic 
acid (Mallinckrodt Inc., Science Products Div., St. Louis, MO) in 20 mM MES 
(2, [N-morpholino] ethanesulfonic acid) (Calbiochem-Behring Corp., San 
Diego, CA) buffer, l0 mM MgO~, 5 mM NAN,, pH 6.8, 4"C for 1 h. Bundles 
were dissected free in 20 mM MES buffer, pH 6.8, and postfixed in 1% osmium 
tetroxide in 0.1 M phosphate buffer, l0 mM MgC12, pH 6.8, 4"C for 30 min, 
rinsed in water and stained en bloc with 1% uranyl acetate for 2 h at room 
temperature. Specimens were dehydrated, infiltrated, embedded in Araldite 
506 (CIBA-Gelgy Chemical Co.) (25), and sectioned on a Reichert OMU-3 
ultramicrotome with a Diatome knife. Bronze-to-grey sections on thin carbon 
films were stained with 2% aqueous potassium permanganate (26) and alkaline 
lead (25, 27). 

Thick filaments were isolated from freshly dissected leg muscle, according 
to our previously published technique (15), adsorbed onto thin carbon films 
on electron microscope grids, and negatively stained with 1% aqueous uranyl 
acetate. In some preparations, the filaments on the grids were washed with 
several drops of 0.1% Bacitracin (Sigma Chemical Co., St. Louis, MO), prior 
to negative staining (I 1). Shadowing of isolated filaments on grids was per- 
formed according to our previously reported method (16). In the case of 
shadowed material, precautions were taken to insure proper orientation of the 
specimen with respect to insertion of the grid for electron microscopy and 
orientation of the negatives for reversal negative-making and final printing, as 
previously described (16), in order to maintain the true direction of the surface 
helix. Electron micrographs were taken at nominal magnifications of 10,000, 
20,000, and 70,000, at 80 kV on either a Siemens 101 or Philips EM 300 
electron microscope. Catalase crystals (38) were photographed to calibrate the 
electron-optical magnifications. 

Measurements of sarcomere and A-band lengths were made from electron 
micrographs of longitudinally sectioned muscle. Thick-filament diameters were 
measured both on electron micrographs of cross-sectioned muscle and on high 
magnification electron micrographs of negatively stained filaments. Filament 
lengths were measured on electron micrographs of unidirectionally shadowed 
isolated filaments. 

Optical Diffraction: Original electron micrograph negatives were dif- 
fracted according to standard techniques using a helium-neon laser (Spectra- 
Physics Inc., Mountain View, CA), operating at 632.8 nm wave length, as the 
light source. Diffraction patterns were recorded on either 35 mm film or 
Polaroid type 55 P/N sheet film. Layer-line spacings and positions of primary 
and subsidiary maxima were measured and computed as previously described 
(15). In most cases, the spacings on the transforms were calculated relative to 
the spacing of the third layer line (first meridional reflection) at 1/14.5 nm-L 
Filtered images were obtained from some original negatives according to 
Erickson et al. (10), using their method for preparing aluminum foil masks. A 
200-pro diameter punch was used to make slits extending over the full extent 
of all the layer lines visible in Fig. 2 c. The first (1/43.8 nm -~) layer line extended 
out to a radius of ~1/7.2 nm -j, the second and fourth layer lines somewhat 
less. The third 1 / 14.5 nm-t and sixth meridionals and layer lines were punched, 
but in the particular image used in Fig. 5a no intensity was detectable on the 
fifth layer line and no slit was punched in the mask. This was done because the 
fifth layer line was always extremely weak or absent in all optical diffraction 
patterns and made no detectable contribution to the image, but the slit in the 
mask selected out Fourier components with that periodicity from the back- 
ground and laid them at random over the entire image (10). Averaging occurred 
over ~ 130-140 nm. The equator was not included in the mask of the image 
shown in Fig. 5a, so that the muscle transform spikes were not included; the 
edge of the filament is therefore indistinct. 

Quantitative SDS PAGE: For determination ofparamyosin:myosin 
heavy chain molecular ratios (PM:MHC), freshly dissected tarantula leg muscle 
was glycerinated and stored at -18"C for 3 wk prior to use (8). Myofibrillar 
homogenates at different protein concentrations (4.1-22.5 #g total protein in 
20-gl sample buffer) were prepared for quantitative SDS polyacrylamide disc 
gel electrophoresis (SDS PAGE) (32) from both glycerinated tarantula leg and 
Limulus telson muscles as previously described (21). In a separate experiment 
to identify the paramyosin band on both Limulus and tarantula gels, purified 
Limulus paramyosin (LPM 1-4 #g) was co-electrophoresed with 10-20 ~g 
loadings of both Lirnulus and tarantula myofibrillar homogenates, respectively, 
on slab gels, according to Laemmli (18). The gels were scanned at 580 nm on 
an ISCO Model 1310 gel scanner and Model OA-5 absorbance transmitter 
(Instrumentation Specialities Co.). Scans were traced on a Kipp and Zonen BD 
12 recorder, and the areas under the peaks were measured by planimetry using 
an electronic graphics calculator (Numonics Corp., Lansdale, PA). The 
PM:MHC dye binding ratios were averaged from the integration of 61 tarantula 
and 62 Lirnulus gels, and the PM:MHC molecular ratios were calculated as 
previously described (21). The Limulus gels were used as system controls, since 
we had previously reported the PM:MHC ratio for this muscle (21). 

RESULTS 

Electron Microscopy of Sectioned Muscle 
We found that the myofibrillar and myofilamentous orga- 

nization of tarantula femur muscle fibers is essentially iden- 
tical to that described for four different tarantula leg muscles 
(39), tarantula tarsal claw depressor muscle (29), and the 
femoral flexor of the spider Heteropoda venetoria L. (14) and 
closely resembles that of other "long-sarcomere" invertebrate 
striated muscles (4, 5, 8). 

All regions of the sarcomere appear sequentially within 
each myofibril in single cross-sections (Fig. I b). This probably 
reflects the skewed orientation of the sarcomeres, which is 
common to such long-sarcomere fibers (8). In cross-section 
(Fig. 1), it is also apparent that the sarcomeres in muscle fixed 
at body length are at complete filament overlap. There are 
very narrow areas which contain only thin-filament profiles 
(I-bands) and no regions which contain only thick-filament 
profiles (H-zones). There is no evidence of double overlap of 
thin filaments, however, since everywhere in the A-band each 
thick filament is surrounded by a rosette of nine to twelve 
thins (Fig. 1,a-c). 

The thick filaments themselves appear approximately cir- 
cular in cross-section and are disposed in an irregular hexag- 
onal lattice which becomes increasingly regular at the ends of 
the A-bands, where thick-filament profiles are seen in prox- 
imity to the Z-line material (Fig. 1 b). While tarantula thick 
filaments do not appear "hollow" as do the thick filaments of 
many other arthropid muscles, notably insect and crustacean 
muscles (20, 23, 27), they do exhibit slightly decreased elec- 
tron density at their cores. The filament cortices are very 
electron-dense and a cloud of moderately electron-dense ma- 
terial, presumably cross-bridges, extends from the thick-fila- 
ment surfaces toward the surrounding thin filaments (Fig. 
I c). The mean diameter of 215 thick filaments, measured on 
such high magnification micrographs, is 20.2 _+ SD 0.45 nm. 

The complete overlap of thin and thick filaments in sarco- 
meres of tarantula fibers fixed at "body length" is also visible 
in longitudinal sections. The sarcomeres are ~5  ~m in length 
with very narrow I-bands. Although the length of individual 
thick filaments could not be measured accurately in longitu- 
dinally sectioned fibers, A-bands range between 4 and 4.7 um 
in length with no visible H-zones (Fig. 1 d). 

Although we did not study the membrane systems of the 
fibers comprehensively, our observations agree with previ- 
ously published studies of spider long-sarcomere muscles (14, 
29, 39). 

Electron Microscopy of Isolated Thick Filaments 
Thick-filament length is best determined in both negatively 

stained and metal-shadowed preparations of isolated fila- 
ments. Only those filaments with central bare zones and 
tapered ends were measured. As suggested by the length of 
the A-band in longitudinally sectioned muscle fibers, and as 
expected for a long-sarcomere muscle, tarantula thick fila- 
ments are long, with an average length for isolated filaments 
of 4.2 _+ SD 0.31 pm (n = 92). 

Negatively Stained Isolated Thick Filaments 
In negatively stained preparations (Fig. 2, a and b), the thick 

filaments show bipolar symmetry on either side of the prom- 
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FIGURE 1 Electron micrographs of sections of fresh-fixed tarantula leg muscle fibers. (a, b, and c) Cross sections. Note the strap- 
like myofibrillar shape in a and b. (a) Bar, 0.5/zm. x 41,000. (b) (A) A band. (/) I band. (Z) Z line. Note the regular hexagonal array 
of thick filaments near the end of the A band, especially evident within the white circle. Bar, 0.5 /~m. x 46,500. (c) High 
magnification image of the filament lattice. Note the paler appearance of the centers of the thick filaments, and the rosettes of 
9-12 thin filaments surrounding each thick filament. Bar, 100 nm. x 150,000. (d} Longitudinal section showing complete overlap 
of the thick and thin filaments (no H band) in this ~4.5/~m sarcomere. Bar, 1.0/zm. x 30,000. 

inent, central bare zone. They are strikingly periodic, with the 
surface structure repeating at ~43 nm. The surface periodicity 
of tarantula thick filaments is remarkably similar to that 
reported for Limulus thick filaments with respect to both the 

overall pattern of stain-excluding structures, presumably 
myosin cross-bridges, and the symmetrical disposition of these 
on either side of the filaments' central longitudinal axes (17, 
22). At high magnification it is apparent that the pattern on 
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FIGURE 2 Negatively stained, isolated tarantula thick fil- 
aments and a representative optical diffraction pattern 
obtained from such images. (a) Medium-power electron 
micrographs of one arm of a negatively stained thick 
filament, showing the repeating periodicity along its 
length. The white structures are protein masses: the cross- 
bridges. Bar, 0.3 #m. x 80,000. (b) High-power electron 
micrograph of a portion of a similarly prepared filament. 
The periodicity along the shaft is prominent. The white 
arrowheads point to regions where longitudinal striping, 
presumably due to the filament's backbone structure, is 
apparent. Bar, 0.1 /~m. x 210,000. (c) Representative 
optical diffraction pattern obtained from a low magnifi- 
cation image of a filament prepared in the same way as 
those in a and b. Layer lines are indicated by the numbers 
on the right. Note the prominence of the layer lines 1, 3, 
4, and 6. The second layer line is less prominent and the 
fifth is not apparent. Layer line 1 corresponds to an axial 
repeat of 43.5 nm along the filament. The meridional 
reflections on layer lines 3 and 6 correspond, respec- 
tively, to axial distances of 14.5 and 7.2 nm along the 
filament. 
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FIGURE 3 Images of unidirectionally metal-shadowed thick filaments isolated from tarantula leg muscle. In both a and b, the 
large white arrowheads indicate the direction of shadowing. (a) Medium-power electron micrograph showing a field of isolated, 
shadowed filaments. A major right-handed helix is present on all filaments. Note the difference in appearance of the filament 
surface depending upon its position in relation to the shadowing source. Bare zones are indicated by black arrowheads. Bar, 0.5 
/~m. x 48,000. (b) High-power electron micrograph of a filament (present in the upper right-hand corner of a) oriented almost 
parallel to the direction of shadowing. The bare zone is indicated by the black arrowhead. Note the knoblike appearance of the 
surface subunits, presumably cross-bridges, which are arranged along a major right-handed helix that repeats axially every 43.5 
nm. Six subunits are visible along each helical strand on the surface facing the viewer (white arrowheads). Bar, 0.3 ~m. x 115,000. 
(c) Optical diffraction pattern from a shadowed filament. Note the persistence of the layer lines, despite the one-sided appearance 
of the transform. 



tarantula thick filaments also repeats at every third level of  
cross-bridges (Fig. 2b). Interestingly, as suggested by Wray 
(35) from x ray diffraction studies, tarantula thick filaments 
appear to show more backbone detail than do Limulus fila- 
ments. This backbone structure is seen as longitudinal striping 
of stain-excluding structure, running nearly parallel to the 
filaments' long axes (Fig. 2b). The diameter of  the filament 
at the bare zone is ~ 19-20 nm as measured on images at 
high magnification, while the centers of  the cross-bridge mass 
measure at a diameter of  ~ 2 8  nm. 

Metal-shadowed Isolated Thick Filaments 
When unidirectionally shadowed with either platinum or 

platinum-carbon, tarantula filaments oriented nearly perpen- 
dicular to the shadowing source exhibit a ropelike surface 
structure, with a separation of ~ 4 3  nm axially between 
adjacent right-handed helical strands (Fig. 3). Filaments ori- 
ented more nearly parallel to the shadowing source have a 
knobbier surface, due to the outlining of individual surface 
subunits, presumably the cross-bridge regions of  the myosin 
molecules (16, 22), by the deposited metal (Fig. 3b). Each 
half-turn of each helical strand is composed of at least six 
such subunits. Occasionally, there is evidence of a seventh 
subunit, but never are more than seven nor fewer than six 
visible. 

Optical Diffraction 
Electron micrographs of both negatively stained and metal- 

shadowed tarantula thick filaments produce strong optical 
diffraction patterns (Fig. 2 c). Meridional reflections occur at 
1/14.5 and 1/7.3 nm -~ and occasionally as far out as 1/4.8 
nm -~. The transform in Fig. 2c does not extend out this far. 
In many transforms from negatively stained filaments, mod- 
erately strong subsidiary maxima are seen to be associated 
with the 1/14.5 nm -~ meridional reflection. Off-meridional 
reflections produce layer-lines which index close to the first, 
second, fourth, fifth and occasionally seventh order of a 43.5- 
nm helical repeat (Tables I and II). Reflections on the first 
and fourth layer lines are more intense than those on the 
second and fifth layer lines. Equatorial reflections are present 
at ~ 1/11.0-1/12.0 nm -~ and ~ 1/6.0 nm -~. Using the argu- 
ment  2~rrR = 3.8 to describe the position of the secondary 
peak of the zero-order Bessel function, Jo, which describes the 
third layer line, and the measured radial spacing (R in the 
above equation) of  these subsidiary maxima: 1/22.1 nm -~, 
(12, 37), we calculated that the cross-bridges were centered at 
a radius (r in the above equation) of  13.4 nm. Since the radial 
position of the primary peak on the first layer line is related 
to both the radial position of the cross-bridges and the number  
of  strands on the myosin helix (12, 37), we estimated the 
rotational symmetry of the filaments using the calculated 
value (r = 13.4 rim) for the radial position of the center of  the 
cross-bridge mass and the measured radial position of the 
primary maxima on the first layer line (R = 1/15.8 nm -~) in 
the argument 2~rrR = J,, where J, is the Bessel function 
describing the position of the primary maxima on the first 
layer line. Our calculated value: 5.33 is extremely close to the 
expected maximum of 5.32 for a J4 Bessel function, indicating 
the extremely high probability of  a rotational symmetry of 
four for the myosin helix on tarantula thick filaments (Tables 
I and II). 

As expected, optical transforms obtained from shadowed 

TABLE I 

Measurements of Maxima 

Tarantula Limulus* 

Mean 4- SD n* Mean + SD 
( l / r im -~) (1/nm -1) 

n* 

Layer line spacings 
Layer lines (LL) 

1 
2 
3 
4 
5 
6 

Radial spacinss of 
diffraction maxima 

Maxima 
Primary on first LL 
Primary on fourth 

LL 
First subsidiary on 

third LL 

43.1 -+ 1.4 15 43.2 4- 1.4 49 
21.9 + 0.7 14 22.1 4- 0.4 49 
14.5 ~ S 14.6 -+ 0.1 49 
10.9+0.2  16 10.94-0.1 49 
8 .7+0 .2  7 8.8___0.1 15 
7.2 4- 0.1 14 7.3 4- 0.1 19 

15.7--.1.8 16 17.8-+1.8 49 
15.8-+ 1.5 16 18.2 - 2.1 49 

22.1 -+ 3.5 6 25.7 - 2.6 39 

Measurements of maxima on diffraction patterns obtained from negatively 
stained tarantula thick filaments and a comparison of these data with those 
previously obtained from Limulus thick filaments. Calculations of the cross- 
bridge radius and Bessel functions describing the position of the primary 
maxima on the first line of the two thick filaments are also given (Table II). 

* Previously published data (13). 
* Number of diffraction patterns measured. 
I AII tarantula measurements were normalized to 1/14.5 nm -1 spacing for 

meridional reflections on third LL. 

TABLE II 

Measurements of Maxima 

Tarantula Limulus* Table values 

Calculated cross-bridse ra- 
dius 

Based on first subsidiary 
maxima on the third LL 

Comparison of calculated 
maxima (27rrR)* 

Measurements used 

Calculated radius of cross- 
bridges and calculated 
radial spacings of max- 
ima on first LL 

13.4 15.5 

h 1, 15 
5.36 5.5 4.2 5.32 6.4 

* For Bessel Function describing position of primary maxima on first layer line 
and table values 

filaments are qualitatively very similar to those from nega- 
tively stained preparations but are dominated by reflections 
arising from only one side of  the helical array of  myosin cross- 
bridges (Fig. 3c) (16, 22). The most detailed transforms of 
shadowed preparations are obtained from filaments oriented 
with their long axes nearly parallel to the shadowing source, 
since these display cross-bridge structure in greatest detail. 

Thus, optical diffraction analysis of  electron micrographs 
of both negatively stained and unidirectionally shadowed 
tarantula thick filaments supports the visual interpretation of 
the cross-bridge arrangement of  these structures as a four start 
helix with each chain consisting of  12 cross-bridges per turn. 
There are four cross-bridges at each 14.5 nm axial level (or 
crown) and the threefold screw symmetry produces an axial 
repeat at every third cross-bridge level (43.5 nm). 
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FIGURE 4 Comparison of optically fi ltered images of negatively 
stained and platinum-carbon shadowed tarantula thick filaments 
with computed models of the cross-bridge arrangement on Limulus 
thick filaments. (a) Optical filtration of negatively stained tarantula 
thick fi lament and computed model of Limulus thick fi lament at 0 ° 
rotation. Dark regions represent the mass of the cross-bridges and 
both surfaces of the filaments are included. (b) Optical filtration of 
plat inum-carbon-shadowed tarantula thick fi lament and computed 
model of cross-bridge arrangement on one surface of Limulus thick 
filament, showing helical path of each strand in these four-stranded 
structures. Subunits (knobs) on the filtered image represent cross- 
bridges, which are arranged in a fairly similar fashion on both 
filaments. It should be noted that subtle differences that may exist 
between the cross-bridge arrangements on the surfaces of tarantula 
and Limulus filaments are not detectable at the level of resolution 
attained here. Nevertheless, the threefold screw symmetry and the 
rotational symmetry of four (4-strandedness) that is common to 
both of these filaments is readily apparent. In both a and b, levels 
of 43.5 nm on each filtered image and its paired model are con- 
nected by lines. 

Optical Filtration 
Optical filtration was performed on original electron micro- 

graph negatives of  negatively stained and shadowed thick 
filaments. In Fig. 4, the appearance of the cross-bridge array 
in the filtered images is compared with models for the Limulus 
filament. The great similarity in structure of the two types of  
thick filaments is readily apparent. The filtered image of the 
negatively stained tarantula thick filament resembles the view 
of the Limutus model seen in Fig. 4a of Kensler and Levine 
(15) while the filtered image of the platinum-carbon shadowed 
tarantula filament shows a subunit arrangement similar to 
the one-sided model. Of particular interest is the observation 
that the angles between subunits and filament axis in the 
filtered images of tarantula filaments are similar to the cross- 
bridge angles apparent on computed reconstructions of Lira- 
u/us filaments (30). 

Quantitative SDS PAGE 
SDS gels of  myofibrillar homogenates of  tarantula leg mus- 

cle show a band at ~ 112,000 daltons which appears to he 
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FIGURE 5 SDS PAGE slab gel of purified Limulus paramyosin (LPM) 
electrophoresed alone and together with myofibri l lar homogenates 
of glycerinated limulus telson muscle (L) and tarantula leg muscle 
(T). (M) Myosin heavy chain band. (P) Paramyosin band. (A) Actin 
band. Lane 1 contains LPM (5 #g) alone. Lane 2 contains LPM (10 
#g), alone. Lanes 3, 4, and 5 contain 10 #g each, T, plus added LPM 
(1, 2, and 4 /~g, respectively.). Lane 6 contains L (20 /zg), alone. 
Lanes 7, 8, and 9 contain 20 ~.g L, each, plus added LPM (1, 2, and 
4/zg, respectively). Note that the LPM comigrates on gels with the 
paramyosin band in homogenates of tarantula as well as Limulus 
muscle. 

TABLE III 

Comparisons of Data 

Tarantula Limulus 
Measured and 

calculated values Mean _+ SD n* Mean _+ SD n* 

Thick fi lament 
diameter 
(nm) 

In situ cross- 20.2 _ 0.45 215 
sections 
(overlap 
zone) 

Isolated, nega- 19-20 5 
t ively 
stained (bare 
zone) 

Calculated value 3.5-4 
for distance 
of greatest 
cross-bridge 
mass from 
filament 
shaft (nm) 

Thick fi lament 4.2 _ 0.31 92 
length (/~m) 
(isolated, 
negatively 
stained) 

Paramyosin:myo- 0.31 _ 0.079 61 
sin heavy 
chain (my- 
ofibrillar ho- 
mogenates 
on SDS 
PAG E) 

2 4 . 6 + 1 . 6 '  111' 

23.4 _ 1.3 s 36 ~ 

4 t 

4.1 __ 0.2 t 100 s 

0.49 _ 0.12 62 
0.48 _ 0.12 ~ 70 ~ 

Comparing various structural parameters and the paramyosin: myosin heavy 
chain molar ratios between tarantula and Limulus thick filaments. 
* Number of measurements. 
* Previously published (5). 

Previously published (13). 
Previously published (19). 



paramyosin on the basis of its having similar mobility to that 
of purified Limulus paramyosin (8, 21). In all cases where 
purified Limulus PM was added to homogenates of tarantula 
muscle the staining intensity of this band but no other was 
increased (Fig. 5). We previously reported (8, 21) that the 
paramyosin band on gels of homogenates of glycerinated 
muscle does not appear to undergo the type of proteolysis 
observed when molluscan paramyosin is freshly prepared. 
Nor do we see any indication of/~ or,r paramyosin breakdown 
products in our purified Limulus paramyosin. 

In all gels a thin, weakly staining band precedes the para- 
myosin band but does not show increased staining intensity 
upon the addition of purified paramyosin. Thus, all of our 
measurements excluded the contribution of this lower molec- 
ular weight polypeptide. There is no difference in the appear- 
ance of the paramyosin band on disk or slab gels. We did not 
attempt further identification of the paramyosin band in 
tarantula gels. 

Gels loaded with between 4.1 and 22.5 ~g of total myofi- 
brillar protein, respectively, give consistent "uncorrected" 
(dye binding) paramyosin:myosin heavy chain ratios for each 
of the two species. Thus, we are confident that, within the 
range of protein loadings used, Coomassie Brilliant Blue 
bound to these in direct proportion to their protein content. 
The "corrected" (2 l) molar ratios from a total of 62 individual 
gels were averaged to obtain the PM:MHC molar ratio of 0.49 
_+ 0.12 SD for Limulus thick filaments which is in excellent 
agreement with our previously reported ratio of 0.48 _+ 0.12 
SD (21). The values from 61 gels were averaged to obtain the 
PM:MHC molar ratio of 0.31 _+ 0.079 SD for tarantula thick 
filaments. Thus, paramyosin accounts for 33% of the mole- 
cules of Limulus filaments but only 24% of the molecules of 
tarantula filaments (Table III). 

DISCUSSION 

Our images of fixed, sectioned tarantula femur muscles show 
the same structural organization earlier reported by Zebe and 
Rathmeyer (39) in their study of four different tarantula leg 
muscles, as well as by Sherman and Luff (29) for tarantula 
tarsal claw depressor muscle and Kawaguti and Kamishima 
(14) for other spider leg muscles. The contractile apparatus of 
spider muscle also resembles that of other long-sarcomere 
arthropod muscles, having narrow myofibrils with somewhat 
skewed sarcomeres, thick filaments organized into an irregular 
hexagonal lattice within the A-band, and 9-12 thin filaments 
surrounding each thick filament (4, 8, 21). Many such long- 
sarcomere muscles are highly extensible and undergo consid- 
erable changes in sarcomere length during isotonic contrac- 
tion, in situ, which may involve alteration in filament orga- 
nization. For example, at their longer lengths, the sarcomeres 
of Limulus telson and slow crustacean fibers frequently dis- 
play A-bands with jagged boundaries due to misalignment of 
thick filaments (4, 19, 21). At the shortest in situ sarcomere- 
lengths barnacle thick filaments have been observed to pene- 
trate the Z-bands and enter neighboring sarcomeres (23), 
while Limulus thick filaments have been reported to decrease 
in length (3-6). We have not yet determined whether or not 
such extensibility is a property of tarantula leg muscle. All of 
the fibers we examined were fixed at "body length" and show 
complete overlap of thick and thin filaments at a sarcomere 
length of ~ 5.0 ~m. Zebe and Rathmeyer (39) reported sar- 
comere lengths between 3.0 and 7.3 um with A-bands between 
2.8 and 5.6 um for the tarantula leg muscles they examined. 

It is not clear, however, whether the variability they observed 
was present in separate muscles (as in the case of tarantula 
tarsal claw depressor vs. levator [18]) or even different fibers 
in the same muscle. Heteropoda leg muscle sarcomeres meas- 
ure 5.3-5.5 vm when fixed slightly stretched. Thick filaments 
(up to 3.5 um long) are misaligned, forming an irregular A-I 
boundary (14). Tarantula tarsal claw depressors have a mean 
sarcomere length of 6.2 um with A-bands ranging from 4.0 
to 5.2 #m (29). All of these spider muscles exhibit solid, rather 
than discontinuous, Z-bands, which might seem to preclude 
passage of thick filaments from one sarcomere to another at 
short sarcomere lengths. We have, however, seen some indi- 
cation of just this phenomenon in rare instances, in tarantula 
fibers, in sarcomeres <4.0 ~zm in length. Spider sarcomeres 
have not yet been examined at their longest in situ length, 
but in the case of the tarantula femur muscles, if we assume 
a mean thick filament length of ~4.5 um and a mean thin 
filament length of ~2.5 vm (we see no double overlap of thin 
filaments but also no H zone in 5 ~m long sarcomeres), it is 
possible for sarcomeres to extend to slightly >9.0 um and still 
retain filament overlap, without the necessity for gross misa- 
lignment of thick filaments within the A-bands. Additional, 
systematic studies must be done before we can describe the 
appearance of tarantula femur sarcomeres at different lengths. 

When negatively stained and metal-shadowed thick fila- 
ments isolated from tarantula fibers are examined, one is 
aware of their striking resemblance to similarly prepared 
filaments isolated from Limulus muscle. Both electron micro- 
scope images of negatively stained tarantula filaments and the 
optical transforms obtained from these images demonstrate a 
highly ordered cross-bridge arrangement on the filaments' 
surfaces. Calculations, based on measurements of spacings on 
the diffraction patterns, strongly support a threefold screw 
symmetry and a rotational symmetry of four for the tarantula 
filaments. It should be noted that although we examined 
many tarantula filaments, we have analyzed the optical trans- 
forms from fewer of them (n = 16) than we originally did for 
Limulus filaments (n --- 50) (15). Nevertheless, the values that 
we obtained are consistent, as can be seen by comparing the 
standard deviations of the measurements on diffraction pat- 
terns from tarantula filament images with those from Limulus 
(Tables I and II). In addition to their helical and rotational 
symmetries, there are other points of similarity between ta- 
rantula and Limulus thick filaments. The orientation and 
location of stain-excluding regions on optical reconstructions 
of tarantula filaments closely resemble the disposition of cross- 
bridges both on the computer-filtered image of negatively 
stained Limulus filaments and on a model for the arrange- 
ment of Limulus cross-bridges that we have generated from 
diffraction data (22, 30) (Fig. 4). Both unidirectionally metal- 
shadowed tarantula and Limulus filaments display a major 
right-handed surface helix which repeats axially every 43.5 
nm. Both filaments also appear to have the same number of 
subunits arranged along each strand of this helix, which can 
be seen in fortuitously oriented specimens and optically fil- 
tered images of such specimens (16). For Limulus, we have 
been able to ascertain that each subunit represents the two S- 
Is from one myosin molecule, based on computer image 
analysis and stem mass measurements (R. J. C. Levine, Free- 
man, and W. Hofmann, unpublished results). Although we 
cannot determine whether this is the case for tarantula fila- 
ments as well, from the data reported here we believe that it 
is the most likely interpretation of subunit structure. 
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The structural similarities between tarantula and Limulus 
filaments seem quite remarkable, in view of the fact that the 
organization of cross-bridges on the surface of many other 
arthropod thick filaments is quite different. Wray (33-35) 
and Wray et al. (37) has reported helical repeats between 30 
and 40 nm for a variety of insect and crustacean thick 
filaments from his x ray diffraction analyses, and in prelimi- 
nary studies we observed similar periodicities, most likely 
arising from nonintegral surface helices, in optical transforms 
from negatively stained images of thick filaments isolated 
from such long-sarcomere arthropod muscles as insect leg (17) 
and lobster crusher claw (R. Kensler and R. J. C. Levine, 
unpublished observation). The similarity between tarantula 
and Limulus thick filaments may be explained on the basis 
of the close phylogenetic relationship between these species: 
both Limulus and the arachnids (of which tarantula is an 
example) belong to the chelicerate subphylum of the arthro- 
pod phylum. In support of a phylogenetic basis for this 
structural organization, preliminary examination of thick fil- 
aments isolated from muscles of another chelicerate arthro- 
pod: scorpion reveals that these also show a marked resem- 
blance to those of Limulus and tarantula (17). 

Despite the obvious and striking similarities in the arrange- 
ment of cross-bridges on their surfaces, there are differences 
between Limulus and tarantula thick filaments, most promi- 
nently with respect to paramyosin content and filament di- 
ameter. These may be related, although in an earlier study we 
found that for the muscles examined the paramyosin content 
was directly proportional to filament length, not diameter 
(21). Surprisingly, although tarantula thick filaments are as 
long as those isolated from unstimulated Limulus muscle, 
they contain ~9% fewer paramyosin molecules than the 
latter. We are confident that the value we have obtained for 
the paramyosin content of tarantula filaments is correct, since 
we simultaneously obtained a PM:MHC molecular ratio for 
Limulus thick filaments which was virtually identical to that 
we reported several years ago (21). 

The role of paramyosin, which occupies the core of most 
invertebrate thick filaments, is not well understood, other 
than as "scaffolding" upon which a cortical layer of myosin 
molecules aggregates in order to form thick filaments >1.6 
#m in length. This has been reported for synthetic filaments 
of horseshoe crab myosin and paramyosin (13) and for in situ 
thick filaments of nematode mutants that lack paramyosin 
(24). Cohen (2) has recently suggested that paramyosin affects 
filament assembly only in the case of the thick filaments of 
molluscan catch muscles, which have extraordinarily large 
amounts of this protein (75-80%) relative to myosin. Epstein 
et al. (9), however, reported that molluscan paramyosin de- 
creases the affinity of both molluscan and rabbit myosin for 
F actin in vitro, indicating a specific biochemical interaction 
between the two thick-filament proteins. 

A possible structural reflection of paramyosin content of 
thick filaments is a difference in the appearance of their core 
and cortical regions (2). Fly muscle, which has relatively little 
paramyosin (1, 28), has noticeably "hollow"-appearing thick 
filaments (25, 28), while the thick filaments of Lethocerus 
flight muscle contain more paramyosin (1, 20) and appear 
more "solid," although they do display core regions which 
stain different than the cortices, particularly when tannic acid 
is included in the fixative (25). Our electron micrographs of 
cross-sectioned tarantula fibers fixed in the presence of tannic 
acid show filaments with core regions that stain less intensely 
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than does the periphery, but the filaments do not usually 
appear "hollow." Limulus filaments appear even more "solid" 
(4). The longitudinal striping which is seen much more clearly 
on negatively stained tarantula thick filaments than on those 
of Limulus may reflect the organization of myosin tails or 
subunits composed of several myosin tails. The prominence 
of these structures on the tarantula filaments may be due to 
their lesser content of paramyosin, which does not obscure 
their presence. 

We found that tarantula femur thick filaments have smaller 
diameters than those of Limulus muscle, from analysis of 
measurements made of cross-sectioned filament profiles in 
intact fibers and in the bare-zone regions of negatively stained 
isolated filaments on high power electron micrographs. Earlier 
reports have given tarantula thick-filament diameters from as 
small as 15 nm to as large as 23.5 nm (29, 39). All of the 
previous measurements were made on several thick-filament 
profiles in cross-section only and were not analyzed statisti- 
cally nor supported by independent measurements by another 
technique. Limulus thick filaments have been shown to have 
a diameter of 23.5 nm by a variety of techniques (3, 15, 30). 
The smaller diameter of tarantula filaments (~20 nm) that 
we demonstrated by electron microscopy can also be deduced 
from optical transforms obtained from images of negatively 
stained isolated filaments. In the tarantula diffraction pat- 
terns, the reflections which are governed wholly or in part by 
the radius of the centers of mass of the cross-bridges: the 
subsidiary maxima on the 1/14.5 nm -~ meridional reflection 
and the primary maxima on the first and fourth layer lines 
(12, 37) are radially positioned farther away from the meridian 
than is the case on transforms obtained from Lirnulus fila- 
ments. While this is consistent with a smaller diameter for 
the tarantula filaments, it also may indicate that they have a 
more ordered surface lattice than do Limulus filaments. A 
transition from a less ordered to a more ordered cross-bridge 
array has been reported for glycerinated, relaxed Limulus 
fibers exposed to solutions of decreasing ionic strength by 
Wray et al. (36). 

The actual orientation of surface subunits and number of 
myosin cross-bridges/subunit on tarantula thick filaments, 
however, cannot be established with certainty until computer 
image reconstructions are available (30, 31). Nevertheless, 
based on our measurements of the diameter of the filament 
backbone, the centers of mass of the subunits lie close to 4 
nm from the tarantula filament shift, as they do in Limulus 
thick filaments. We have previously shown that the centers 
of mass occur at this radius in Limulus filaments because the 
cross-bridges, each composed of the two S-Is of a single 
myosin molecule (8-nm diameter × ~20  nm length), are 
tilted azimuthally so that their long axes lie nearly tangential 
to the circle describing the filament backbone (30). The 
similarity of the distance of the cross-bridge mass from the 
surfaces of the two filaments, as well as the resemblance 
between optically filtered images of tarantula filaments (Fig. 
4) and the computer-filtered one of the Limulus filaments 
(30), suggests a comparable orientation of cross-bridges on 
both. If this interpretation is confirmed by computer recon- 
struction of the tarantula filament, any differences in the 
orderliness of the cross-bridge array that may exist among the 
chelicerate thick filaments may indeed result from very subtle 
structural variations. 

As mentioned above, it is unlikely that the smaller diameter 
of tarantula thick filaments (vs. Limulus) is related to the 



lesser paramyosin content of the former, since a relationship 
between filament diameter and paramyosin content does not 
hold over a variety of thick filaments from invertebrate 
striated muscles (21). For example, the thick filaments of 
scallop striated adductors have much less paramyosin ( ~  16% 
of total molecules) (21) than those of either tarantula or 
Limulus muscle, yet both the mollusc and arthropod fila- 
ments have comparable diameters (21, 31). The scallop fila- 
ments most likely have a greater portion of their volume 
occupied by myosin rods than arthropod filaments do, since 
three-dimensional reconstructions indicate that the former 
possess seven, not four, myosin cross-bridges per crown (31). 

Since the evidence suggests that the amount of paramyosin 
present probably does not influence the packing of surface 
myosin molecules in the chelicerate arthropod filaments we 
have studied, it is interesting that myosin aggregates to form 
the cortical layers of filaments with different diameters but 
with almost, if not actually, identical cross-bridge arrays, as 
seen in these muscles. Studies underway on the structure of 
synthetic filaments formed from chelicerate myosin alone and 
comparative analysis of the properties of myosins of the 
different chelicerate muscles may clarify this finding. 

Of even greater significance is the usefulness of the cheli- 
cerate thick filaments as models in experiments designed to 
examine cross-bridge movement during muscle contraction. 
Since the structure of these filaments in the "relaxed" state is 
both ordered and well-defined, interpretation of any changes 
in cross-bridge orientation associated with changing environ- 
mental conditions such as ATP depletion, divalent cation 
concentration or variations in ionic strength should be both 
fairly straightforward and highly informative. We are cur- 
rently pursuing this line of research. 
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