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ABSTRACT Membrane excitation was the basis for backward swimming of Paramecium facing 
stimulus. According to standard genetic tests, inexcitable mutants fell into three complemen- 
tation groups for both Paramecium tetraurelia (pwA, pwB, and pwC) and Paramecium caudatum 
(cnrA, cnrB, and cnrC). Cytoplasm from a wild type transferred to a mutant through microin- 
jection restored the excitability. Transfusions between genetically defined complementation 
groups of the same species effected curing, whereas transfusions between different mutants 
(alleles) of the same group or between sister cells of the same mutant clone did not. 

Cytoplasmic transfers of all combinations among the six groups of mutants of the two species 
showed that any cytoplasm, except those from the same group, was able to cure. Since the 
pawns and the caudatum nonreversals complement one another through transfusion, they 
appeared to belong to six different complementation groups. The extent of curing, the amount 
of transfer needed to cure, and the time course of curing were characteristic of the group that 
received the transfusion. Variations in these parameters further suggested that the six groups 
represented six different genes. 

Because the donor cytoplasms from either species.were equally effective quantitatively in 
curing a given mutant, the curing factors were not species specific. These factors are discussed. 

Ciliated protozoa such as Paramecium perform avoiding re- 
actions when stimulated by chemicals, heat, or touch at the 
anterior (12). An avoiding reaction consists of transient back- 
ward swimming that results from the reversal of ciliary-beat 
direction. Ciliary reversal is due to an increase in intraciliary 
Ca ++ , which flows in through the opened calcium channel 
(21). The voltage-dependent opening of the calcium channel, 
the essence of membrane excitation, has been investigated in 
great detail recently using voltage clamps (5, 6, 19). 

Some ciliates can be genetically manipulated (22, 31). Mu- 
tants defective in their membranes or axonemes and, there- 
fore, in their behavior, have been isolated and characterized 
( 16, 17, 34). Members of one class of behavioral mutants have 
no avoiding reactions although they are perfectly motile. Such 
mutants are called pawns (after the chess piece) in Parame- 
cium tetraurelia (14, 15), caudatum nonreversal (CNR) ~ in 
Paramecium caudatum (32, 34), and tetrahymena nonrever- 
sal in Tetrahymena pyriformis (33). Extensive electrophysio- 
logical studies show that these mutants fail in generating the 
calcium-action potential (18, 33, 34). Upon an abrupt depo- 

~Abbreviations used in this paper. CNR, caudatum nonreversal. 

larization with a voltage clamp, the Ca ++ inward current in 
the wild type, which peaks within several ms, is greatly re- 
duced or absent in pawns (24, 25, 28). Complementation in 
F~ and phenotypic segregation in F2 have led to the conclusion 
that the more than 200 lines of pawns (representing more 
than 100 independent mutations) belong to pwA, pwB, and 
pwC (4, 15, 16), and the seven lines of CNR belong to cnrA, 
cnrB, and cnrC (32). 

Diffusible substances in the cytoplasm of the wild type can 
restore excitability in the mutants. This can be achieved 
naturally through the cytoplasmic bridge during conjugation 
(l) or artificially through microinjection (7-9, I 1). Transfer- 
ring the cytoplasm of a live wild-type donor or various frac- 
tions of a wild-type homogenate to a mutant recipient effects 
the "cure." Curing occurs hours after injection, lasts 3-4 d, 
and corresponds to the recovery of Ca ++ current upon step 
depolarization under voltage clamp (7, 8). Such cytoplasmic 
"transfusion" among many pawns shows that cytoplasmic 
complementation strictly parallels the genetic complementa- 
tion so that microinjection can be used to classify the pawns 
(8). 

The question of whether any pawns are genetically equiv- 
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alent to CNR cannot be answered by the standard comple- 
mentation test since the interspecific conjugation is not fertile, 
although it can be artificially initiated (10). In this study, we 
tested the complementarity of these mutants by transferring 
their cytoplasm across the species boundary through injection. 
Much to our surprise, all pawns complemented all CNR and 
vice versa, indicating that they are likely to be mutants of 
different genes. There appeared to be at least six genes in all 
paramecia that controlled the calcium-channel function. 

MATERIALS AND METHODS 

Stocks and Cultures: We used stock 51s (wild type), d4-500 (pwA), 
d4-95 (pwB), and d4-580 (pwC) of P. tetraurelia, and stock G3 (wild type), 
16A712 (cnrA), 16B802 (cnrB), and 16D341 (cnrC) ofP. caudatum (4, 5, 31, 
32). Paramecia were cultured in Cerophyl medium (Cerophyl Laboratories, 
Inc., Kansas City, MO) buffered with sodium phosphates and bacterized with 
Enterobacter aerogenes (30). Cells were grown at 23"C except in the case of 
pwC, a heat-sensitive mutant, whose phenotype was best expressed after they 
were grown at 35"C (2, 3, 26). 

Microinjection and Behavioral Test: Koizumi's method of mi- 
croinjecting paramecia (13) was modified as described by Haga et al. (8): 
Approximately 15-20 pl of cytoplasm was injected into a P. tetraurelia and 
45-50 pl into a P. caudatum, the larger paramecium. These volumes, ~ 12% 
of the total volume of the recipient, were the largest possible for single injections 
into live cells. The injected cells were incubated in a resting solution and were 
periodically withdrawn and transferred to a test solution with a micropipette. 
The test solution was the Dryrs solution enriched with 20 mM KCI. The 
duration of the backward swimming induced by the transfer was a quantitative 
measurement of the excitability of the paramecium (8). 

Dark-field Photography and Electrophysiology: A polaroid 
camera mounted over a glass plate illuminated at a low angle w;th a Schott 
KL-1500 light source (Schott Optical Glassware, Inc., Duryea, PA) in a dark- 
room was used to register the behavior of the injected cells in a test solution. 
This has been described previously (2). Methods for capturing, rinsing, immo- 
bilizing, penetrating, and recording paramecia have been established (20). The 
voltage-clamp method was also standard (25). Cells were bathed in l mM K ÷, 
l mM Ca ÷÷, l0 mM tetraethylammonium ÷, l mM HEPES, and 10-SM EDTA, 
pH 7.3, during recording. All chemicals are reagent grade; cations were from 
chloride salts. 

RESULTS 

Interspecific Restorations of Membrane Excitability 
We have previously shown that the ability of a pawn or a 

CNR mutant to swim backward can be restored by microin- 
jection of cytoplasm from a wild type or a mutant of a 
different complementation group of the same species (7, 8, 
l 1). We show here that transfer of cytoplasm between P. 
tetraurelia and P. caudatum also effects such a "curing" of 
the mutants. A mutant receiving the foreign cytoplasm, like 
those receiving potent cytoplasm of the same species, regained 
its ability to swim backward and have the avoiding reactions 
when properly stimulated. One standard method for showing 
the avoiding reactions was to transfer the cells into Ba ÷÷- 
containing solutions. Because of the generation of the all-or- 
none Ba-Ca action potentials, the excitable cells performed 
the "Ba-dance" with almost regular rapid backward and for- 
ward steps (17, 20). All inexcitable mutants performed this 
dance hours after receiving the cytoplasm from the other 
species. Fig. 1 shows that cnrC cells of P. caudatum injected 
with the cytoplasm of pwC of P. tetraurelia danced in the 
barium-solution, indicating restored calcium channel activity, 
whereas control cells (cnrC injected with cnrC cytoplasm) did 
not dance, showing no restoration. 

Electric Properties of the Mutant Membrane 
before and after Cytoplasmic Transfusion 

The avoiding reaction resulted from an action potential 

FIGURE 1 Behavior of the inexcitable mutant cnrC of P. caudatum 
6-8 h after receiving ~50 pl of cytoplasm from (A) sister cnrC cells 
or from (B) the inexcitable mutant, pwC, of P. tetraurelia. Several 
cells were collected from the rest solution and transferred to a 
solution of 4 mM Ba ÷+, 1 mM Ca, and 1 mM Tris, pH 7.2, and their 
reactions to this barium solution were registered by dark-field 
photography with 3-s exposure. The gentle helices of A indicate 
the usual forward swimming of the mutants that remained incapable 
of responding to the barium solution. The clustered barbs of B were 
due to repeated jerks of cnrC mutants after receiving the pwC 
cytoplasm. The jerks (avoiding reactions) were the consequence of 
the Ba-Ca action potentials. 

and was therefore an indirect indicator of the excitability of 
the membrane. The membrane excitability can be directly 
measured with electrodes since paramecium is large enough 
for convenient intraceUular recording (5, 19, 20, 27). The best 
quantitative analysis of membrane excitability employs a 
voltage clamp to control the voltage and examine the voltage- 
dependent ion currents across the membrane. Voltage clamp 
experiments with wild-type Paramecium show that a step 
depolarization from the resting level ( -40 mV, inside nega- 
tive) by several tens of millivolts (e.g., to - 15 mV) triggers a 
transient inward current carried by Ca ÷+ that peaks in several 
milliseconds and subsides within another 5 ms (5, 19, 24). 
The peak inward current was ~ 7  nA in wild-type P. caudatum 
previously incubated in the resting buffer. Identical experi- 
ments with the pawn (24, 28) or the CNR mutants gave no 
inward current (Fig. 2A). We showed earlier that pawn mu- 
tants regain the calcium current hours after a transfusion from 
a wild type or from a mutant of a different complementation 
group of the same species (8). We report here that the same 
intraspecific restoration of calcium current was true of the 
CNR (Fig. 2, B-D). We also found that such a restoration of 
the calcium current could be achieved by transferring cyto- 
plasm of a different species. For example, as shown in Fig. 2, 
E-G, cnrC ofP. caudatum regained the calcium current after 
receiving cytoplasm from pwA, pwB, or pwC ofP. tetraurelia. 
The restored currents could be as large as those in the wild 
type, i.e., ~ 7 nA. The electrophysiological findings show that 
the restoration of the avoiding reaction as demonstrated in 
Fig. 1 was not due to some trivial addition of  ions to the 
recipient but reflected a profound change in the membrane 
excitability of these mutants. 

Complementation Matrix 
A quantitative measurement of a paramecium's membrane 

excitability is easily obtained by transferring it from a resting 
buffer to a test solution containing a high concentration of 
K ÷ and timing the duration of the first continuous backward 
swimming induced by this transfer (8). This duration is pro- 
portional to the inward calcium current under voltage clamp 
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FIGURE 2. Membrane currents 
(Ira) induced by step depolar- 
ization (Vm) in different P. cau- 
datum cells. All currents were 
recorded from cnrC mutants 
except the top traces of A. The 
voltage steps are given at the 
top left and the two current 
traces from each cell are su- 
perposed in the figures• A step 
from -44 mV to -30  mV or to 
-15 mV induced a small or a 
larger current in the excitable 
cells (5, 24, 25). The peak cur- 
rent induced by the larger 
voltage step was ~6 nA 
(range: 4-9 nA) in the unin- 
jected wild type, G3, previ- 
ously kept in the rest solution 
for 6-8 h (A, top traces). The 
same voltage steps did not 
induce the inward current in 
the inexcitable mutant cnrC 
similarly treated (A, bottom 
traces), cnrC mutants became 
excitable and generated the 
inward current 6-8 h after 
they were injected with ~50 
pl of cytoplasm from (B) cnrA, 
a P. caudatum mutant of a 

different complementation group; (C) cnrB, a P. caudatum mutant of yet another group; and (E) pwA, (F) pwB, and (G) pwC, mutants of 
three complementation groups in P. tetraurelia. The restored calcium currents were similar to that of an untreated wild-type paramecium. 
injection of the cytoplasm from sister cnrC donors to cnrC recipients did not restore the calcium current in the recipients (D). 
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FIGURE 3 Time course of the restoration of the ability to swim 
backward after microinjection of the cytoplasm. The recipients were 
injected at time 0 (arrows), periodically withdrawn from the rest 
solution, and transferred into Dryl's solution with 20 mM K +. The 
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(Y. Satow and N. Haga, unpublished results) and therefore 
provides an estimate of  the amplitude of  the calcium current 
restored by microinjection. Wild-type P. tetraurelia swam 
backward for ~45  s and wild-type P. caudatum swam back- 
ward for ~ 6 0  s in this test. Table 1 summarizes a complete 
study of  the restoration of  excitability, thus measured, with 
all eight cytoplasmic donors (the two wild types and the six 
mutants) and all six mutant recipients. Uninjected mutants 
or those injected with cytoplasm of the sister cells of  the same 
clone showed no backward swimming (0 s for pwA, pwB, 
cnrA, and cnrB) or barely measurable backing (2-3 s for pwC 
and cnrC). In contrast, all pawns and cnrC showed complete 
excitability after being injected with other cytoplasm (30-50 
s for pw.4, pwB, and pwC; 70-75 s for cnrC). With the standard 
transfusion of  12% recipient cell volume, cnrB was cured to a 
lesser extent (10-20 s), whereas cnrA was not cured at all. 

duration of backward swimming induced by this transfer, which is 
an estimate of the membrane excitability, was clocked and plotted 
over time. A shows that the cytoplasm of wild type, stock G3 of P. 
caudatum, injected into cnrC, a mutant of the same species, restored 
the ability of the mutant to swim backward (O, mean + SD, n = 6), 
whereas the cytoplasm from sister cnrC donors did not restore (A, 
n = 6). B shows that the cytoplasm of a wild type, stock 51 of P. 
tetraurelia, also restored the ability of cnrC, the P. caudatum mutant, 
to swim backward• The time courses of cnrC curing by the cyto- 
plasms of the two species were very similar. C shows that cytoplasm 
of G3, twice injected into cnrA, a different mutant of P. caudatum, 
also restored the ability of this mutant to swim backward (©, n = 
10), whereas the cytoplasm of sister cnrA cells did not restore the 
ability (A, n = 6). Note that the restored activity in cnrA was smaller 
and lasted shorter than in cnrC (see text). 



However, a second injection, 1 h after the first to allow for 
recuperation, can partially restore the ability to swim back- 
ward even in cnrA (see Fig. 3 C). 

Time Courses of Curing 
Curing the inexcitable mutants with foreign cytoplasm took 

time. Upon periodic testing, we showed previously that pawns, 
for example, first regain detectable backward swimming by 
~ 2  h after injection. Complete restoration occurs by 6-8 h. 
Full excitability is maintained for 1 d after which it gradually 
subsides until it is barely measurable after 3-4 d (8). The time 
course of the rise and fall of excitability after injection in cnrC 
was similar to those of the pawns (Fig. 3, A and B). The 
curing time course, like the extent of curing, was characteristic 
of the recipients and not the donors, even though the donors 
may be of two different species, e.g., the time course of curing 
of cnrC with G3 cytoplasm (Fig. 3A) was the same as that 
with 5 Is cytoplasm (Fig. 3B). 

The course of curing of cnrB was similar to that of pawns 
and cnrC, although the extent of curing was smaller (data not 
shown). The course of curing of cnrA, however, was different. 
After two injections spaced 1 h apart, the excitability, as 
measured by the K÷-induced backward swimming, gradually 
rose in the first 6 h as in other mutants. However, the 
excitability was not maintained for days. The bulk of the 
restored excitability was lost by 10 h after the second injection 
(Fig. 3 C). 

DISCUSSION 

Since the inexcitable mutants could be temporarily cured by 
transfusions of heterologous cytoplasms, these cytoplasms 
contained the gene products missing or defective in the mu- 
tants. Our previous study (8) shows that mutual curing among 
the pawn mutants through microinjection separates them into 
groups exactly as defined by genetic complementation. Thus, 
as long as a donor has the normal product of a particular 
gene, it is capable of curing a recipient that has a mutation in 
that gene. The normal gene product can be provided by the 
wild type or by mutants defective in different genes. The 
effectiveness and efficiency of curing were clearly functions 

of the recipients (compare columns in Table 1 and Fig. 3, A 
and B with 3 C) and not the donors (compare entries in each 
column in Table 1 and Fig. 3A and 3B). Because we found 
that cytoplasms from a different species could cure the mu- 
tants to the same extent and with the same time course, the 
normal gene products from the two species of Paramecium 
appeared to be functionally equivalent. 

The curing was not due to the transfer of nuclear fragments 
because the nuclei were anchored and we were careful to place 
the micropipette away from the nuclei. In theory, the gene 
products transferred can be from either RNA (23) or protein 
(7, 8). In our experiments, curing of the pawns and cnrC 
could take place in the absence of translation. This, and other 
experiments with the fractions active in curing, demonstrated 
that these molecules are proteinaceous. Fractionations of the 
proteins that effect the cure in the mutants are in progress. 

The finding that all pawns complement all CNR is very 
interesting. The simplest interpretation of these results is that 
these mutants defined six different complementation groups 
and therefore six different functional genes. This interpreta- 
tion rests heavily on observing pawns, where extensive studies 
show that no curing of a recipient (cytoplasmic complemen- 
tation) ever results from injection of a cytoplasm from a 
donor mutant previously defined by breeding analysis to be 
of the same complementation group. In other words, intra- 
genic complementation has never been observed in pawns by 
either the genetic or the cytoplasmic tests. Formally, in the 
absence of intragenic complementation, a new complement- 
ing mutation defines a new gene. Since the number of alleles 
in each cnr group remained small, the interpretation that 
there were at least six genes involved in the excitability 
phenotype is not entirely secure. The possibility of intragenic 
complementation among different alleles of each of the cnr 
has not been completely ruled out. Nonetheless, two alleles 
of cnrB did not complement according to our microinjection 
tests and two alleles of cnrA also did not complement, even 
after double injections (N. Haga, unpublished results). Al- 
though the above formal reservation remains, there were other 
indications that the CNR harbored mutations in genes differ- 
ent from those of pawns, cnrA was most difficult to cure and 
the curing only lasted a short time. cnrB was significantly 

TABLE I 

Curing Matrix Showing the Duration of Backward Swimming in the K+-test Solution after Injection* 

P. tetraurelia* P. caudatum ~ 

Wild  type pwA pwB pwC cnrA t cnrB cnrC 

P. tetraurelia I 
pwA 
pwB 
pwC 

P. caudatum I 
cnrA 
cnrB 
cnrC 

No in ject ion 

3 4 . 4 4 - 1 2 . 8 ( 8 )  41 .0 -+5 .2  (7) 50 .84 -5 .8  (6) 12 .04 -1 .4  (3) 1 2 . 2 + 2 . 8 ( 6 )  71 .0 -+5 .5  (6) 
0 4 - 0  (47) 51 .5 -+18 .3  (8) 41 .54 -18 .3  (8) 19 .04 -1 .4  (3) 15 .04 -2 .0  (6) 70 .34 -9 .4  (6) 

39 .0 -+12 .7  (12) 0 - + 0  (17) 36 .0 -+6 .6  (6) 2 9 . 0 + 2 . 6  (3) 17 .74 -3 .4  (6) 76 .2 -+12 .2  (6) 
35 .04 -12 .4  (6) 35 .74 -12 .0  (6) 3 .0 -+3 .6  (11) 26 .0-+6.1  (3) 1 1 . 7 + 3 . 4  (6) 71.74-11.1  (6) 

34.0 + 3.7 (6) 47.3 4- 5.4 (6) 51.0-+ 4.4 (6) 14.7 + 8.7 (10) 8.7 4- 3.4 (6) 76.1 + 6.4 (6) 
37 .2 -+5 .2  (6) 37 .0 -+2 .4  (6) 50 .74 -5 .4  (7) 0 4 - 0  (15) 1 5 . 8 4 - 4 . 6 ( 6 )  7 0 . 8 + 8 . 3  (6) 
5 0 . 3 - + 1 1 . 7 ( 6 )  37 .0 -+4 .7  (6) 38 .7-+4.1  (6) 61 .5-+19.1  (2) 0 4 - 0  (6) 69 .24 -7 .6  (6) 
36.8 4- 6.6 (6) 47.5 4- 8.9 (6) 47.8-+ 7.7 (6) 52.5 4- 3.5 (2) 19.2-+ 8.8 (6) 2.7-+ 2.3 (6) 

0 4 - 0  (10) 0--+0 (10) 2.4--+2.7 (10) 0 - + 0  (10) 0 _ 0  (10) 1 .8 -+1 .8  (10) 

* Values are in seconds, mean -+ SD (n); uninjected wild-type P. tetraurelia (51s): 454- 3.8 (10); uninjected 
were injected with -- 12% of their volume and tested ~ 8  h after injection. 

* P. tetraurelia and P. caudatum acting as recipients. 
i Double injections were spaced 1 h apart. See fig. 3C and text. 
i p. tetraurelia and P. caudatum acting as donors. 

wild-type P. caudatum (G3): 60.2 - 4.8 (10). Cells 

HAGA ET AL. Complementation of Mutants of Paramecium 381 



more difficult to cure than the pawns (Table 1, Fig. 3), which 
may be due to certain inherent properties of  cnrB that made 
it less receptive to the curing factor. Finally, cnrC is clearly a 
mutant of a different sort since the factor that cured it has 
now been traced to a postmicrosomal soluble fraction and is 
therefore most likely a soluble protein, whereas the factors 
that cured the three pawns have been traced to a microsomal 
pellet and are probably proteins bound to internal membranes 
(7, 9). 

That pwA, pwB, pwC, cnrA, cnrB, and cnrC are likely to be 
six different genes in both species is an unexpected result. 
Over 100 independent mutational events leading to mutations 
in pwA and pwB have been analyzed (4, 16). Although rela- 
tively rare, more than five independent mutations of pwC 
have been observed. It is therefore surprising that we have not 
yet encountered mutations in the counterparts of  cnrA, cnrB, 
and cnrC in P. tetraurelia. Although not as many mutants 
have been analyzed, it is equally surprising that the counter- 
parts of  pwA and pwB mutants have not been found in P. 
caudatum since they appear to be abundant, at least in the 
other species. One possible explanation may be that the 
methods employed to select pawns (4, 15, 29) and CNR (32) 
are different in actual execution, although based on the same 
principle. If pawns and CNR are different mutants, there is 
hope of finding all six kinds of mutants in both species simply 
by using different mutagens and/or different mutant-screen- 
ing methods. Progress is being made toward identifying the 
factors in the cytoplasm that effect the cure and comparing 
the factors isolated from the two species. It would be interest- 
ing to find out whether these proteins act directly or indirectly 
(e.g., catalyze a reaction) to restore the calcium-channel activ- 
ity. 
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