
Metabolism and Intracellular Localization of a Fluorescently Labeled

Intermediate in Lipid Biosynthesis within Cultured Fibroblasts

Phosphatidic acid (PA) is a key intermediate in lipid metabo-
lism, functioning as a precursor in glycerolipid biosynthesis .
Although the metabolic pathways of PA are well documented,
the intracellular site(s) for conversion of PA to other lipids and
the movement(s) of these molecules among intracellular mem-
branes are essentially unknown . In addition to its role in de
novo synthesis of glycerolipids, PA may have other physiolog-
ically important functions in cells . Forexample, in many tissues
where hormones or neurotransmitters are postulated to increase
Ca" influx, stimulation of PA turnover has been found (10,
15). Again, the cellular localization of PA turnover is not
known . To approach this problem, we have synthesized a
fluorescent PA analogue having spectral properties similar to
those of fluorescein and have introduced it into cells from an
exogenous source, phospholipid vesicles . This approach allows
us to carry out biochemical studies of PA metabolism and to
determine the intracellular localization of lipid metabolites by
fluorescence microscopy .

MATERIALS AND METHODS

Lipids and Lipid Vesicles

Dioleoylphosphatidylcholine (DOPC) and 1-acyl-2-(N-4-nitrobenzo-2-oxa-
1,3-diazole)-aminocaproyl phosphatidylcholine (NBD-PC) were purchased from

872

RICHARD E. PAGANO, KENNETH J . LONGMUIR, ONA C. MARTIN, and DOUGLAS K. STRUCK
Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210. Dr. Struck's present address is the
Department of Medical Biochemistry, TexasA&M University, College of Medicine, College Station, Texas 77843.

ABSTRACT In this paper we report on the uptake and distribution of an exogenously supplied
fluorescent phosphatidic acid analogue by Chinese hamster fibroblasts . Under appropriate in vitro
incubation conditions, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidic acid
was rapidly and preferentially transferred from phospholipid vesicles to cells at 2°C. However, unlike
similar fluorescent derivatives of phosphatidylcholine and phosphatidylethanolamine that remain
restricted to the plasma membrane under such incubation conditions (Struck, D. K., and R. E. Pagano .
1980 . /. Biol . Chem . 255:5405-5410), most of the phosphatidic acid-derived fluorescence was localized
at the nuclear membrane, endoplasmic reticulum, and mitochondria . This was shown by labeling
cells with rhodamine-containing probes specific for mitochondria or endoplasmic reticulum, and
comparing the patterns of intracellular NBD and rhodamine fluorescence . Extraction and analysis of
the fluorescent lipids associated with the cells after treatment with vesicles at 2° or 37 °C revealed that
a large fraction of the fluorescent phosphatidic acid was converted to fluorescent diglyceride,
phosphatidylcholine, and triglyceride . Our findings suggest that fluorescent phosphatidic acid may
be useful in correlating biochemical studies of lipid metabolism in cultured cells and studies of the
intracellular localization of the metabolites by fluorescence microscopy . In addition, this compound
provides a unique method for visualizing the endoplasmic reticulum in living cells .

Avanti Biochemical Corp. (Birmingham, Ala.) . N-(Lissamine) rhodamine B
sulfonyl dioleoylphosphatidylethanolamine (N-Rh-PE) was synthesized as pre-
viously described (19) . l-Acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-amino-
caproyl phosphatidic acid (NBD-PA) was prepared from NBD-PC using phos-
pholipase D(2), and was purified by preparative thin-layer chromatography . 1-
Acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-aminocaproyldiglyceride (NBD-DG)
was prepared from NBD-PC using phospholipase C (8) . Lipids were stored in
CHCb at -20°C, periodically examined by thin-layer chromatography, and
repurified when necessary. The concentrations of all lipid stock solutions were
determined by a modified lipid phosphorus procedure (1) .

Small unilamellar vesicles were formed by ethanol injection (9) . In a typical
preparation, -1 pmol of lipids were mixed in thedesired proportions, dried under
a stream ofargon gas, and further dried in vacuo. The lipids were dissolved in 0.2
ml of ethanol, then injected into 2.6 ml of HCMF' with stirring . The preparation
was then dialyzed at 4°C overnight against several changes of buffer. In some
experiments, small vesicles were also prepared by ultrasonication (6), giving
identical results .

Cell Culture and Vesicle-Cell Incubations

Monolayer cultures of Chinese hamster V79 fibroblasts (4) were grown to
confluence in Eagle's minimal essential medium (EMEM) supplemented with
12% horse serum in a water-saturated atmosphere of 5% Co, in air . Single-cell
suspensions were prepared by trypsinization as described (20) .

Cell pellets containing 10-20 x 106 cells were suspended in 1 ml of vesicle

' HCMF, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-
buffered, calcium- and magnesium-free Puck's saline, pH 7 .4 .
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solution (0 .2 pmol lipid/ml) and incubated for 60 min at 2'C or 30 min at 37°C .
Cells were washed three times in cold HCMF, with the last wash carried out in
a new tube . The cells were then resuspended in buffer and divided into aliquots
for fluorescence microscopy and lipid extraction . In some experiments, sub-
confluent monolayer cultures were incubated directly with NBD-PA containing
vesicles, washed several times with HCMF, and examined by fluorescence
microscopy. To prevent detachment of cells from the substrate, all experiments
with monolayer cultures were carried out in the presence of I mM Ca" and
Mgt+ .

For lipid extraction, cell pellets were suspended in 0.9 ml of HCMF and
acidified using 0.1 ml of IN HCI. The cell lipids were extracted with 3 ml of
ethyl acetate:acetone (2 :1), followed by two additional extractions with 2.6 ml of
ethyl acetate:acetone (2:0.6) (17) . The organic phase was then taken to dryness
under a stream ofargon gas, and the lipids were redissolved in CHCI3:CH,OH
(2 :1) . The amounts of fluorescent NBD-(n.., = 470 nm ; Aem = 530 nm) and
rhodamine-(X_ = 555 nm ; A.m = 585 nm) labeled lipids present in the extracts
were determined by reference to standard curves generated from known amounts
of NBD-PA or N-Rh-PE in CHCL,:CHa0H (2 :1) .

Lipid extracts were analyzed qualitatively by thin-layer chromatography on
Silica Gel 60 thin-layer plates (Merck & Co ., Inc., Rahway, N. J.) in CHCI,,:
CH;,OH :28% NH,OH (65:35:5) . Plates were air-dried and the fluorescent lipids
visualized for photography by excitation with UV light . For quantitative analysis
of the fluorescent lipids, extracts were subjected to thin-layer chromatography as
above, using silica gel H thin-layer plates (Analtech, Inc., Newark, Del.) . Flu-
orescent lipids were located with UV light, and the spots were scraped and the
lipids extracted as described above, except that 1% Triton X-100 was present in
the aqueous phase.

Microscopy
Microscopy was performed with a Zeiss Universal microscope equipped with

Nomarski optics and epi-illumination for fluorescence . The light source for
fluorescence was a tunable argon gas laser (Lexel Corp., Palo Alto, Calif) that
was defocussed and attenuated for observation and photography. For NBD
fluorescence, the sample was excited at 457.9 nm and fluorescence observed with
an FL 500 dichroic mirror and BF 500 barrier filter suitable for the 530-nm
emission peak of this fluorophore. For rhodamine fluorescence, the sample was
excited at 514.5 nm and fluorescence observed with an FL 580 dichroic mirror
and BF 580 barrier filter combination. The microscope was equipped with a
micrometer stage to permit relocation of a given field of cells after initial
photography and subsequent fixation and staining with a second fluorophore.

Intracellular Distribution of
NBD-PA-derived Lipids

Monolayer cultures were incubated for 60 min at 2°C with NBD-PA-contain-
ing vesicles, washed with HCMF, and selected fields of cells were photographed .
For subsequent staining of the endoplasmic reticulum in NBD-PA-treated cells
the method of Virtanen et al . (21) was used, with modifications. After selected
fields ofNBD-PA-treated cells were photographed, the monolayer cultures were
incubated for 30-45 min at 2°C with 100 I+g of nonfluorescent Lens culinaris
agglutinin (Vector Laboratories, Burlingame, Calif.) per ml phosphate-buffered
saline (PBS) (to block any surface receptors for the lectin) and washed with PBS.
The cultures were fixed for 60 min at room temperature in 3% formaldehyde (3),
washed with PBS containing 0.1 Mglycine, and rinsed again with PBS. The cells
were permeabilized by treatment with 0.1% Triton X-100 in PBS for 3 min (5)
and thoroughly washed . Cells were then stained with 100 Ag of rhodamine-
conjugated Lens culinaris agglutinin (Rh-LcA; Vector Laboratories) per ml PBS
for 20 min at room temperature, washed, and fixed for an additional 30 min. The
stained cells were washed and photographed for rhodamine fluorescence . After
this treatment, essentially no NBDfluorescence could be detected.

Mitochondria were visualized within cells using the fluorescent dye Rhoda-
mine 3B (Eastman) as described by Johnson et al . (7) . Monolayer cultures were
incubated with 1 pg dye per ml at 2'C for 2 min, washed, and photographed
using optics described above for rhodamine fluorescence.

RESULTS

When DOPC vesicles containing NBD-PA or NBD-PC and
the nonexchangeable lipid, N-Rh-PE (12, 19, 20) were incu-
bated with Chinese hamster fibroblasts at 2°C, significant
amounts of the NBD-lipids were transferred to the cells with
relatively little uptake of N-Rh-PE (Table I) . In every experi-
ment, the ratio of NBD to rhodamine fluorescence in the
washed, vesicle-treated cells was significantly greater than in

the applied vesicle suspension . This demonstrates that the
uptake of vesicle lipids was due to preferential exchange or
transfer of lipids (13, 14, 16, 20) and was not due to association
of intact vesicles with cells . Uptake of intact vesicles would
cause the ratio of NBD to rhodamine fluorescence in the cell
extracts to be identical to that found in the starting vesicles .
Whereas the amount of NBD-PC that became cell-associated
was approximately linearly dependent on the mole fraction of
NBD-PC present in the vesicles, a fourfold increase in NBD-
PA concentration in the vesicles resulted in approximately a
14-fold enhancement in uptake of NBD-fluorescence by the
cells. Vesicle-cell incubations at 37°C also resulted in prefer-
ential uptake of NBD-PA relative to N-Rh-PE (data not
shown) . Finally, in control experiments it was found that the
presence ofN-Rh-PE had no effect on the transfer of NBD-PA
or NBD-PC from vesicles to cells .

Fig . 1 and Table II present a thin-layer chromatogram and
quantitative analysis of the fluorescent lipids extracted from
cells treated at 2° or 37°C with exogenous NBD-PC or NBD-
PA . When NBD-PC was used, no metabolism of this fluores-
cent lipid could be detected . However, in cells incubated with
NBD-PA at 2° or 37°C, substantial conversion of the PA
analogue to other fluorescent lipids occurred . At 2°C, -90% of

TABLE I

Cellular Uptake of NBD-Phospholipid Analogues at 2'C

Cells were incubated with DOPC vesicles containing 3 mol % N-Rh-PE and 5
or 20 mol % NBD-lipid for 60 min at 2'C (0 .2 pmol lipid and 10' cells/ml) . The
uptake of each of the fluorescent lipids was determined as described in
Materials and Methods.

FIGURE 1

	

Thin-layer chromatogram of lipid extracts obtained from
Chinese hamster fibroblasts treated with DOPC vesicles containing
5 mol% NBD-PA or NBD-PC . Approximately 2 X 10' cells were
incubated with vesicles for 30 min at 37'C or 60 min at 2° C, washed,
and extracted. The lipid extracts were subjected to thin-layer chro-
matography and the chromatogram was photographed under UV
light. Vesicle-cell incubations were : Lane 2, NBD-PA, 2°C; Lane 3,
NBD-PC, 2°C; Lane 4, NBD-PA, 37°C; Lane 5, NBD-PC, 37°C ; Lane
1, fluorescent lipid standards: NBD- PA, -PC, -fatty acid (FA), -DG.
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Analogue
mol %

ng NBD-
l ipid

10'

ng N-
Rh-PE

cells

ng
ng

vesicles

NBD-lipid
N-Rh-PE

cells

NBD-PA (5) 160 16 1.7 10
NBD-PA (20) 2,320 20 6.7 116
NBD-PC (5) 95 22 1 .7 4.3
N8D-PC (20) 437 7 6.7 6.2



TABLE II

Distribution of Fluorescence in Lipids from Cells
Treated with NBD-PA

Cells were incubated with DOPC vesicles containing 10% NBD-PA for 60 min
at 2°C or 30 min at 37 °C. Lipids were extracted with ethyl acetate : acetone,
separated by thin-layer chromatography, and quantified as described in
materials and Methods.

FIGURE 2

	

Fluorescence micrograph of Chinese hamster fibroblasts
in suspension after incubation with NBD-PA containing vesicles for
60 min at 2° C. Bar, 10 gm .

the NBD-PA was metabolized, with the majority being con-
verted to NBD-DG, but also with small amounts of NBD-PC
and 1,3-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)-amino-
caproyl triglyceride (NBD-TG) being formed . At 37°C, the
qualitative pattern of fluorescent products was unchanged but,
quantitatively, significantly more fluorescent phosphatidylcho-
line and triglyceride were made. Vesicle-cell incubations were
also carried out at 2° and 37°C using isotopically labeled
phosphatidic acid in place ofNBD-PA. As with NBD-PA, this
compound was also hydrolyzed to diglyceride and further
metabolized to phosphatidylcholine and triglyceride (unpub-
lished observations) .
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Distribution of Cell-associated
NBD-PA-derived Lipids
Cells incubated with NBD-PA-containing vesicles at 2°C

(Figs . 2 and 3) had little or no fluorescence at the cell surface.
Instead, they had a bright fluorescence around the nucleus and
substantial cytoplasmic fluorescence . Similar fluorescence was
seen in both cell suspensions (Fig . 2) and monolayer cultures .
In the monolayer cultures this fluorescence could be resolved
into bright dots and a fine reticular network particularly visible
at the cell periphery (Fig. 3) . This pattern of fluorescence
persisted for hours as long as the cells were maintained at 2°C .
When incubations were carried out at 37°C with NBD-PA,
essentially identical patterns of labeling were seen except that
the specimen was more intensely fluorescent because of the
enhanced uptake at 37°C .
To identify the locations of NBD fluorescence, we first

treated monolayer cultures of V79 cells with NBD-PA vesicles
at 2°C and photographed selected fields of cells . Then, the
endoplasmic reticulum in the same cells was visualized by
labeling with Rh-LcA (21) (Fig. 4) . Comparison of the NBD
fluorescence (Fig. 4a, c) with the Rh-LcA fluorescence (Fig.
4b, d) demonstrated that the reticular network visualized by
NBD-fluorescent lipids appears coincident with the endoplas-
mic reticulum .
We attempted to carry out similar colocalization experiments

on NBD-PA-treated cells using the mitochondria-specific dye .
Rhodamine 3B (7) but were unsuccessful . Apparently, photo-
damage that occurred during photography of the NBD-fluo-
rescence inhibited subsequent uptake of the rhodamine dye by
the photographed (but not by the surrounding) cells . Therefore,
to determine whether mitochondria were labeled by treatment
of cells with NBD-PA, we conducted separate experiments in
which the fluorescence and Nomarski images of a given cell
were compared. In Fig . 5 a it is seen that the Rhodamine 3B-
labeled mitochondria correspond to cytoplasmic images that
appear as bumps with Nomarski optics . In Fig . 5 b the fluores-
cent dots seen in NBD-PA-treated cells also correspond to such
Nomarski images. We thus concluded that NBD-PA treatment
of cells also leads to labeling of mitochondria .

DISCUSSION
In this report we have shown that an exogenously supplied
fluorescent phosphatidic acid derivative, NBD-PA, was incor-
porated into mammalian fibroblasts in a distinctive manner.
Whereas fluorescent analogues such as NBD-PC and NBD-
phosphatidylethanolamine label predominantly the cell surface
during vesicle-cell lipid transfer at 2°C (20), under identical
incubation conditions NBD-PA labeled the nuclear membrane,
mitochondria, and endoplasmic reticulum. Furthermore, un-
like NBD-PC or NBD-phosphatidylethanolamine, NBD-PA
was converted to the fluorescent products expected from the
established lipid biosynthetic pathways in mammalian cells .
This metabolism of NBD-PA suggests that the presence of the
fluorescent group on the acyl chain of the PA molecule does
not inhibit the activity of enzymes involved in PA metabolism.
The intracellular localization of the NBD-lipids derived from

exogenously supplied NBD-PA is ofconsiderable interest. For
determining the distribution of the fluorescent lipids within
cells, we did not use cell fractionation methods because the
NBD-lipid molecules might redistribute between membranes
(I1, 12) during the fractionation procedure, and because pure
subcellular membrane fractions are difficult to obtain . Instead,

Lipid

Relative

2°C

Fluorescence

37°C

NBD-PA 10 9
NBD-PC 2 34
NBD-Fatty acid 2 4
NBD-Monoglyceride 5 1
NBD-Diglyceride 78 16
NBD-Triglyceride 3 36



FIGURE 3

	

Fluorescence micrographs of Chinese hamster fibroblast monolayercultures incubated with NBD-PA-containing vesicles
for 60 min at 2° C . (a) Bar, 10 tm . (b) The same cell at higher magnification . Bar, 2 lim.

we used separate rhodamine-containing probes for mitochon-
dria (7) and endoplasmic reticulum (21) and showed that the
intracellular distributions of rhodamine and NBD fluorescence
were highly correlated . Although correlation of NBD-fluores-
cence and the Rh-LcA-stained endoplasmic reticulum was not
perfect, it should be noted that the rhodamine-fluorescence
photomicrographs were made using fixed and permeabilized

cells. Apparently, these procedures, which are necessary for
staining of the endoplasmic reticulum with Rh-LcA, damaged
the reticular network to some extent .
Although the presence of the NBD-lipids on the endoplasmic

reticulum and nuclear membrane (an extension of the endo-
plasmic reticulum) might be expected because most of the
enzymes involved in lipid biosynthesis are found there, the
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FIGURE 4

	

Photomicrographs showing co-localization of intracellular NBD-lipids with endoplasmic reticulum in Chinese hamster
fibroblasts. Cells were incubated for 60 min at 2°C with exogenous NBD-PA, washed, and selected fields photographed . The NBD-
PA-treated cells were then fixed, permeabilized, and stained with RhAcA, and the same cells rephotographed under conditions
appropriate for visualizing rhodamine fluorescence. (a) and (c): NBD fluorescence ; (b) and (d) : rhodamine fluorescence in
corresponding cells. Bar, 5 pm .

FIGURE 5

	

Fluorescence and corresponding Nomarski photomicro-
graphs comparing intracellular distribution of mitochondria and
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apparent staining of the mitochondria is somewhat surprising .
This finding cannot be explained at present but may be due to
rapid translocation of newly synthesized lipids from the endo-
plasmic reticulum to mitochondria (18), or to selective uptake
of a particular fluorescent lipid species by this organelle.

In summary, we have shown that a fluorescent compound,
NBD-PA, behaves as an analogue for phosphatidic acid, an
important intermediate in lipid biosynthesis . Because both
biochemical studies of lipid metabolism and fluorescence mi-
croscopy on the intracellular location of the probe are possible,
we hope this approach will prove useful in examining the
pathways and mechanism(s) of lipid metabolism and lipid
transport within cells. In addition, this compound provides a
useful method for visualizing the endoplasmic reticulum in
living cells.
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NBD fluorescence. Cells were treated with (a) Rhodamine 3B as
described in Materials and Methods or (b) NBD-PA for 60 min at
2°C. Note (e .g . at arrows) the correlation of both the Rhodamine 3B
and punctate NBD fluorescence with cytoplasmic images seen by
Nomarski optics . Bar, 10 tm .
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