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Separation in Hela and 3T3 Cells
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ABSTRACT Using indirect immunofluorescence, we have found that epidermal growth factor (EGF),
at 100 ng/ml, induces centrosomal separation within 20 min in Hela and 373 cells. The effect was
evident both in unsynchronized cultures and in Hela cells blocked in early S phase by hydroxyurea.
EGF also induced centrosomal separation in quiescent 3T3 cells blocked in Go/G4 by serum depriva-
tion, indicating that DNA replication is not necessary for this effect. The mechanism of this rapid
centrosomal separation and its role in the mitogenic effects of EGF remains to be determined.

Epidermal growth factor (EGF) (6,045 mol wt) is probably the
most extensively studied mammalian mitogenic peptide (6).
EGF was originally isolated from mouse submaxillary glands
but it is clearly made by other tissues because submaxillary
gland excision does not lower plasma levels of EGF (4). In
man, EGF is found in plasma, saliva, and urine but its precise
physiological role is unknown (13, 37). Since a wide variety of
cells of epithelial (19, 33, 39), fibroblastic (1, 2, 5, 21), and
neuronal (45) origin are stimulated to proliferate in vitro in
response to EGF, it seems that this peptide is likely to be an
important regulator of cell division in vivo.

As with all other peptide hormones studied thus far, the
initial event in the action of EGF is binding to specific high-
affinity receptors on the external surface of the plasma mem-
brane (1, 5, 6, 21); 15-22 h later DNA synthesis ensues with
subsequent cell replication (1, 5, 6, 22). Although it is clear that
major changes in the organization and function of the cell must
occur in response to EGF before cell division, the key events
leading from membrane binding to cell division are unknown.

Centrosomes are perinuclear structures which consist of a
pair of centrioles surrounded by an electron-dense cloud of
pericentriolar material (34, 40). During interphase many cyto-
plasmic microtubules originate from this structure (14, 17, 29).
During mitosis a centrosome is located at each spindle pole
and serves as an anchoring site for microtubules that make up
the spindle apparatus. The centriole cycle, which includes
duplication, elongation, and polar migration is, in general,
believed to be tightly coupled to the cell cycle but the precise
relationship between centriole and cell-cycle events remains to
be elucidated. For example, while centriole formation can
proceed in the absence of DNA synthesis (26, 32) it does
require the presence of the nucleus (26). Whether centrosomal
behavior influences nuclear events is an open question.

Using a specific antiserum to a high molecular weight mi-
crotubule-associated protein (MAP,), which stains centrosomes
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in a variety of cells, we have found that, after addition of EGF,
the centrosome splits. The paired daughter centrosomes main-
tain close contact with the nucleus but migrate away from one
another along the nuclear surface. The rapidity of the response
and the fact that it precedes S phase by many hours raises the
possibility that centrosomal separation may be an important
event in the sequence leading to initiation of DNA synthesis in
response to EGF.

MATERIALS AND METHODS
Cell Culture and Synchronization

Hel.a and BALB ¢ 3T3 cells were obtained from the American Type Culture
Collection (Rockville, MD) and were grown in Dulbecco’s modified Eagle’s
medium (DME) supplemented with 5% fetal (FCS) and 5% newborn calf serum.
HeLa cells (50-70% confluent) were synchronized in early S phase by 48 h of
serum deprivation (0.25% newborn) in the presence of 1 mM hydroxyurea (16,
44). <10% of synchronized cells showed nuclear labeling during a I-h exposure
to 1 pCi/ml of [*H]thymidine whereas 76% showed incorporation during a 1-h
pulse 3 h after serum readdition and removal of hydroxyurea. 3T3 cells (70-80%
confluent) were synchronized in G, by culturing them for 48 h in DME containing
0.5% FCS (42). <5% of cells showed nuclear labeling during a 2-h exposure to 1
pCi/ml of ["H]thymidine. Logarithmically growing 3T3 cells routinely show 50~
60% nuclear labeling under these conditions. Cells were processed for autora-
diography using Kodak NTB-2 emulsion according to the method of Stein and
Yanishevsky (38).

Antibodies and Immunofluorescence

To prepare antibody to MAP; we used twice-cycled rat brain microtubule
protein (36) which was electrophoresed on 7.5% SDS polyacrylamide gels. The
MAP, band was cut from the stained gel, homogenized with Freund’s adjuvant
(Gibco, Grand Island Biological Co., Grand Island, NY), and the suspension,
containing ~30 ug of MAP,, was injected into a rabbit. After 1 mo the rabbit was
boosted and then bled 10 d later. Rabbit serum was used at a dilution of from
1:20 to 1:30 to stain centrosomes. At lower dilutions, microtubules were also
stained and centrosomes were less easily identified. Fluorescein-conjugated goat
anti-rabbit immunoglobulin (Miles-Yeda Laboratories, Elkhart, IN) was used at
a dilution of 1:40. Guinea pig antitubulin antiserum (a kind gift of S. Blose, Cold
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Spring Harbor Laboratory, Cold Spring Harbor, NY) was used at a dilution of
1:20 and rhodamine-conjugated goat anti-guinea pig immunoglobulin (U. S.
Biochemical Corp., Cleveland, OH) was used at a 1:30 dilution. To stain
centrosomes, cover slips were rinsed once in phosphate-buffered saline (PBS) at
room temperature and then immersed in absolute methanol at —20°C for 5 min.
After drying, the first antibody was applied for 30 min at 37°C in a humidified
chamber. The cover slips were then rinsed three times in PBS, overlayed with
fluorochrome-labeled goat anti-rabbit antibody, and incubated for 30 min at
37°C. They were then rinsed three times in PBS, mounted on slides in PBS
containing 50% glycerol, and the edges were sealed with nail polish. Slides could
be stored in the dark for up to 2 mo at 4°C without evident fading of fluorescence.

Cells were viewed with a Zeiss Photoscope II1 equipped for epifluorescence
and photographed on Kodak Tri-X 35 mm film. If the distance between centro-
somes was greater than their diameter, they were scored as separated. Mitotic
cells or those in which separation was equivocal were not counted. At least 100
cells were scored per cover slip. Slides were coded and the observer was not aware
of the treatment group.

To measure the degrees of arc between centrosomes, randomly selected fields
containing 8-15 cells were photographed and the angular distance was measured
directly from projections with a protractor.

EGF (Ultrapure) was purchased from Laref SA (Cadempino-T1, Switzerland).

RESULTS

Unsynchronized HeLa and 3T3 cells (80-90% confluence)
showed intensely stained centrosomes (Fig. 14, b) or spindle
poles (Fig. le, f). No centrosomal staining was observed with
preimmune serum (Fig. lc, d). In over 95% of nonmitotic
HeLa and 3T3 cells, centrosomes were either single or within
5° of one another. Within 20 min after addition of EGF (100
ng/ml) to cultures, a substantial proportion of cells (21% in
3T3, 14% in HeLa) showed centrosomes separated by >5°.
Representative cells are shown in Fig. 2. After 45 min, 32% of
3T3 and 28% of HeLa cells had separated centrosomes, at 90
min 34% of 3T3 and 35% of HeLa cells showed separation and
the average distance between them had increased. No further
increase was seen with longer incubation (240 min: 35% in 3T3;
31% in HeLa).

Our initial thought was that EGF was stimulating centroso-
mal separation in the subpopulation of cells in G2 before
prophase. To test this, we arrested HeLa cells in early S phase
with 1 mM hydroxyurea for 48 h (16, 44). Within 20 min after
addition of EGF (100 ng/ml) many celis with widely separated
centrosomes were observed (Control 6%, EGF {20 min] —19%,
EGF [45 min] —28%, EGF [90 min] —35%, EGF [4 h] —92%).

To further confirm the somewhat surprising finding that
EGF induced rapid centrosomal separation at the onset of or
prior to DNA replication, we synchronized 3T3 cells in Go/G:
by 48 h of serum deprivation (0.5%) after which we added
EGF (100 ng/ml) and, after various intervals, fixed and stained
the cover slips. In serum-arrested 3T3 cells, <3% of cells had
separated centrosomes, but within 20 min after exposure to
EGF 22% of the cells showed separation, by 45 min 32%
showed separation, and by 4 h 91% of centrosomes were
separated. These results suggested that EGF was capable of
inducing centrosomal separation in previously quiescent cells
arrested in Go/G1 and that DNA replication was not required
for this event since in these cells there is a 15- to 20-h lag
period before the onset of DNA synthesis in response to EGF
(5, 6). In parallel cover slips pulsed with [*H]thymidine at the
time of addition of EGF, labeled nuclei were not seen by
autoradiography until 20 h later (data not shown).

The frequency distribution of angular arc separation between
centrosomes in hydroxyurea-arrested HeLa cells is shown for
four time points in Fig. 3. As is evident, the average separation
increases with time after EGF exposure; however, even at 240
min, <5% of cells show separation >120°.
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DISCUSSION

With the use of a specific immunofluorescent marker we have
found that EGF causes rapid centrosomal separation in HeLa
and 3T3 cells. Other rapid morphological changes have also
been described in response to EGF, notably stimulation of
fluid-phase pinocytosis (20) and membrane ruffling (9) in A-
431 cells. In calcium-deprived A-431 cells, EGF induces an
energy-dependent shape change from a flattened epithelioid
configuration to a spherical form within 20 min of exposure
(10). However, it is unclear how these changes might relate to
the mitogenic effect of the hormone. Similarly, rapid biochem-
ical alterations have been described in cells in response to
EGF, including an increase in a aminoisobutyric acid uptake
in human fibroblasts (22), an increase in 2-deoxyglucose uptake
and glycolysis in 3T3 cells (3, 15), and an increase in *Rb*
influx (measure of K* transport) in 3T3 cells (35). Again,
however, we do not know how these early biochemical re-
sponses to EGF relate to DNA replication and cell division
which occur many hours later.

The effect of EGF to stimulate a membrane-associated,
tyrosine-specific protein kinase (7, 8, 43) may be the key event
which triggers both the early biochemical and morphological
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FIGURE 2 Unsynchronized near-confluent
373 and Hela cells were incubated in cul-
ture medium containing EGF (100 ng/ml)
for 45 min and then processed for indirect
immunofluorescence. Arrows indicate nu-
clear borders. (a) 373 cell, demonstrating
centrosomal separation. (X 2,000). (b) A pair
of Hela cells demonstating centrosomal
separation. (X 2,000).

responses and ultimately cell proliferation. Protein tyrosine
phosphorylation appears to be necessary for transformation
and consequent cell proliferation induced by Rous sarcoma
(RSV) and other retrovirus (11, 23, 27). Furthermore, EGF has
recently been shown to induce tyrosine phosphorylation of at
least two proteins in intact A-431 cells within 1 min of exposure
(24). The further identification of the in vivo target proteins
phosphorylated by the src and EGF kinase(s) would seem then
to be essential for understanding how RSV and EGF alter cell
morphology and trigger proliferation. It will then be necessary
to determine how the function of these proteins is altered by
tyrosine phosphorylation.

Microtubules, or a protein which regulates microtubule as-
sembly, may be an important target for EGF or the EGF-
stimulated kinase. We know that microtubule depolymeriza-
tion can initiate DNA synthesis in quiescent fibroblasts in the
absence of added growth factors (12, 28). Furthermore, a
number of studies have now shown that the mitogenic effect of
growth factors including EGF is substantially augmented by
antimicrotubule drugs (18, 25, 30, 31, 41). Thus, there is reason
to suspect that microtubule reorganization is necessary for
initiation of DNA synthesis by EGF and other growth factors.

Since centrosomes are microtubule organizing centers, the



Fiaure 3

EGF‘ ©
EGF, a0
Numbes
of
Cells f
EGF, 180

EGF 240

6=Y S£-10 W-1B 6=30 21-30 3145 6-40 41-TS TC-90 W-120 14U-KO iel-iBe

Arc s(.po.ra.\"-ot\ (dc.sregs)
FiGURE 3 Frequency histogram of angular separation in synchro-
nized Hela cells at various times after EGF (100 ng/ml).

finding that EGF rapidly stimulates centrosomal splitting and
separation is consistent with the suggestion that the microtu-
bule reorganization occurs during the lag phase in response to
EGF. The fact that centrosomal separation occurs before DNA
replication in EGF-stimulated cells raises the possibility that
such separation is a prerequisite for entrance of cells into S
phase. Since microtubules radiate from the centrosome to the
cell membrane, it seems likely that they act to maintain the
centrosome in a relatively fixed position in the cell. If centro-
somal separation is required for the subsequent DNA synthetic
response to EGF, then drug-induced microtubule depolymer-
ization, by releasing this constraint on centrosomal movement,
would be expected to facilitate DNA synthesis and ultimately
cell division in response to EGF.

In synchronized Hela cells, centrosomes begin to separate
in G, with centriolar replication and further separation during
S and G (34). In quiescent 3T3 cells stimulated to proliferate
by serum, centrioles rapidly deciliate but centrosomes were
noted to separate only at the onset of DNA synthesis some 15
h after serum addition (42). Thus, the interval between centro-
somal separation and DNA synthesis may vary in different
circumstances and the question of how centrosomal events and
DNA synthesis are coordinated remains unanswered. It will
therefore be important to determine the time of centrosomal
separation in relation to DNA replication in a variety of
circumstances to clarify the causal connection, if any, between
these two events. It will also be of interest to understand how
EGF brings about such a rapid and dramatic repositioning of
centrosomes.
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